JPH01172297A - Production of organic single crystal - Google Patents

Production of organic single crystal

Info

Publication number
JPH01172297A
JPH01172297A JP33168087A JP33168087A JPH01172297A JP H01172297 A JPH01172297 A JP H01172297A JP 33168087 A JP33168087 A JP 33168087A JP 33168087 A JP33168087 A JP 33168087A JP H01172297 A JPH01172297 A JP H01172297A
Authority
JP
Japan
Prior art keywords
single crystal
organic
organic single
film thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33168087A
Other languages
Japanese (ja)
Other versions
JPH058159B2 (en
Inventor
Mutsuo Aoyanagi
青柳 六夫
Tetsuya Goto
哲哉 後藤
Keiichi Egawa
江川 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP33168087A priority Critical patent/JPH01172297A/en
Publication of JPH01172297A publication Critical patent/JPH01172297A/en
Publication of JPH058159B2 publication Critical patent/JPH058159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To precisely control the film thickness and to easily obtain good- quality organic single crystal having a smooth surface of required precise thickness by building up the same kind of organic compd. as organic single crystal on this single crystal by a vapor phase method. CONSTITUTION:An organic compd. being the same kind of nonlinear optical material as the following organic single crystal (e.g., 4'-nitrobenzylidene-3- acetoamino-4-methoxyaniline) is built up by homoepitaxial growth with a vapor phase method such as a sublimation method, a vacuum deposition method and a sputtering method on the organic host single crystal which has been produced by either a melt crystallizing method such as a Bridgman method, a Czochralski method and a floating-zone method or a soln. crystallizing method for utilizing reduction of solubility of an organic compd. and thereby a grown single crystal line part having <=5mu film thickness is imparted thereon.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は良質の有機単結晶を必要とする産業分野、例え
ば光学、非線形光学、音響光学、情報処理、通信分野に
、十分使用可能な有機単結晶を提供することのできる有
機単結晶の製造法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides an organic single crystal that can be fully used in industrial fields that require high-quality organic single crystals, such as optics, nonlinear optics, acousto-optics, information processing, and communication fields. The present invention relates to a method for producing an organic single crystal that can provide a single crystal.

[従来の技術] 有機化合物の単結晶製造法には、大別して、(ア)気相
法(昇華法など) (イ)溶融法〈ブリッジマン法など) (つ)溶液法 がある。
[Prior Art] Methods for producing single crystals of organic compounds can be roughly divided into (a) gas phase methods (sublimation method, etc.), (b) melting methods (Bridgeman method, etc.), and (1) solution methods.

(ア)気相法による直接の有機単結晶の作製は、一般に
有機化合物分子がランダムにガラスなどの基体に付着し
、無秩序な微結晶集合体しか得られず、このようにして
得られた微結晶集合体では光散乱が多く、光学用途とし
ては使用できない。
(a) Direct production of organic single crystals by the gas phase method generally results in organic compound molecules randomly adhering to a substrate such as glass, resulting in only disordered microcrystal aggregates; Crystal aggregates cause a lot of light scattering and cannot be used for optical purposes.

それに比べて、(イ)溶融法は所望の場所に所望の大き
さと形、更に詳しくは、サブミクロンの膜厚制御をした
有機単結晶を作製するのに多用され、(つ)溶液法は、
より穏やかな条件下で結晶製造できること、広範な条件
設定が可能であること、及び比教的容易に大型単結晶が
得られるなどの特徴を有する。
In comparison, (a) the melting method is often used to produce organic single crystals of a desired size and shape in a desired location, more specifically, with submicron film thickness control; (b) the solution method is
It has the characteristics of being able to produce crystals under milder conditions, being able to set a wide range of conditions, and being able to easily obtain large single crystals.

しかしながら、従来の溶融法あるいは溶液法は、精密な
膜厚制御が困難であり、溶融法あるいは溶液法の有機単
結晶製造では以下に述べるような問題点があった。
However, with the conventional melting method or solution method, it is difficult to precisely control the film thickness, and the production of organic single crystals using the melting method or solution method has the following problems.

溶融法あるいは溶液法を単独で適用した場合、例えば光
学用途に利用するに都合の良い、平滑な面を有する所望
の精密な厚さの有機単結晶を製造することは非常に困難
であった。良質の有機単結晶を必要とする産業分野、例
えば光学、非線形光学、音響光学、情報処理、通信分野
では製造された有機単結晶を用いて各種機能素子を構成
するには、所望の精密な厚さの平滑面を有することが好
都合であり、そうでない場合には、切削、研磨といった
、精密な膜厚を得るには困難かつ生産性を低下させる工
程が必要であった。
When a melt method or a solution method is applied alone, it is very difficult to produce an organic single crystal with a desired precise thickness and a smooth surface suitable for use in optical applications, for example. In industrial fields that require high-quality organic single crystals, such as optics, nonlinear optics, acousto-optics, information processing, and communication fields, it is necessary to obtain the desired precise thickness in order to construct various functional elements using manufactured organic single crystals. It is advantageous to have a smooth surface; otherwise, difficult and productivity-lowering processes such as cutting and polishing would be required to obtain a precise film thickness.

[発明が解決しようとする問題点] 本発明は、かかる従来技術における問題点を解決しよう
とするものであり、所望の精密な厚さの平滑な面を有し
、利用するに都合が良い良質の有機単結晶を製造するこ
とを目的とする。
[Problems to be Solved by the Invention] The present invention aims to solve the problems in the prior art. The purpose is to produce organic single crystals.

[問題点を解決するための手段] 上記目的を達成するため本発明方法は下記の構成を有す
る。
[Means for Solving the Problems] In order to achieve the above object, the method of the present invention has the following configuration.

「有機単結晶上に、該単結晶と同種の有機化合物を気相
法で堆積することにより、該有機単結晶上に成長単結晶
部分を付加することを特徴とする有機単結晶の製造法。
``A method for producing an organic single crystal, which comprises adding a growing single crystal portion onto the organic single crystal by depositing an organic compound of the same type as the single crystal on the organic single crystal by a vapor phase method.

」 本発明の母体有機単結晶の結晶製造法は、公知の溶融法
と溶液法が適用可能である。即ち、溶融法はブリッジマ
ン法、ストックバーガー法などのるつぼ冷却法、チョク
ラルスキー法などの回転引上げ法、フローティング・ゾ
ーン法、ベルヌーイ法及びレーザ加熱結晶法などがある
。特に、ブリッジマン法及びその変法は有機物質の単結
晶を作製するのに多用される。また、加熱の方法として
、通常のヒーター加熱、高周波加熱の他、局所的加熱方
法としてレーザ加熱がある。
” As the method for producing the host organic single crystal of the present invention, known melting methods and solution methods can be applied. That is, melting methods include a crucible cooling method such as the Bridgman method and the Stockberger method, a rotational pulling method such as the Czochralski method, a floating zone method, the Bernoulli method, and a laser heating crystallization method. In particular, the Bridgman method and its modifications are often used to produce single crystals of organic substances. In addition to heating methods such as normal heater heating and high frequency heating, laser heating is also available as a local heating method.

これら溶融結晶化法は、融液を冷却し、融点あるいは融
点以下で種子結晶の存在または非存在下に結晶を成長さ
せる方法であって、その制御は、温度をコントロールす
ることによって行われる。
These melt crystallization methods are methods of cooling a melt and growing crystals at or below the melting point in the presence or absence of seed crystals, and are controlled by controlling the temperature.

その形状は、どのようなものであってもよく、例えば、
膜状、塊状などが挙げられ、また、どのような膜厚であ
ってもよい。
The shape may be any shape, for example,
It may be in the form of a film or a lump, and may have any thickness.

また溶液法は(A>溶媒蒸発、(B)温度降下あるいは
(C)貧溶媒添加など有機化合物の溶解度の低下を利用
する。
Further, the solution method utilizes a decrease in the solubility of an organic compound, such as (A>solvent evaporation, (B) temperature decrease, or (C) addition of a poor solvent).

上記の溶液法においても適当な種子結晶を用いても適用
可能である。
The above solution method can also be applied using appropriate seed crystals.

溶融法と溶液法による単結晶の作製は、例えば無機結晶
、半導体、金属、セラミックス、ガラス、プラスチック
など結晶成長方位を制御する基体上、あるいは制御しな
い基体上で行ったものであっても良い。これら基体は必
要に応じて表面処理などの前処理を施したものであって
も良い。
Single crystals may be produced by melting and solution methods on substrates that control crystal growth orientation, such as inorganic crystals, semiconductors, metals, ceramics, glass, and plastics, or on substrates that do not. These substrates may be subjected to pretreatment such as surface treatment, if necessary.

この様にして得られた母体有機単結晶は、へき開研磨な
ど平滑面を作製して用いる。あるいは、平滑性の良い表
面を有するものはそのまま用いてもよい。
The base organic single crystal thus obtained is used after producing a smooth surface by cleavage polishing. Alternatively, those having a smooth surface may be used as is.

本発明の成長単結晶部分の製造法は、母体単結晶の結晶
性を、該母体単結晶上に形成される気相堆積薄膜に引継
ぐことにより単結晶を成長させんとする、いわゆるホモ
エピタキシャル成長技術によるものである。
The method for manufacturing the grown single crystal portion of the present invention is a so-called homoepitaxial growth technique in which a single crystal is grown by inheriting the crystallinity of a host single crystal to a vapor-deposited thin film formed on the host single crystal. This is due to

気相法を用いれば、数μm以下、好ましくは5μm以下
、さらにはオングストロームオーダーの成長単結晶部分
の精密な膜厚制御が可能となる。
If the vapor phase method is used, it is possible to precisely control the thickness of the grown single crystal portion on the order of several μm or less, preferably 5 μm or less, and even on the order of angstroms.

即ち、光学的モニターの併用によって有機単結晶の膜厚
を製造作業中に知ることができ、所望の膜厚に成長した
時点で気相法による堆積を停止すれば良い。
That is, the film thickness of the organic single crystal can be known during the manufacturing process by using an optical monitor, and the vapor phase deposition can be stopped when the film has grown to the desired thickness.

有機系材料、とりわけ化合物分子の単結晶製造に関して
、この様な気相ホモエピタキシャル成長が可能であるこ
とを発見し、かつ、製造技術として利用可能なまでに発
展させたことは本発明の最も強調すべき点である。
The most important feature of the present invention is the discovery that such vapor phase homoepitaxial growth is possible for the production of single crystals of organic materials, especially compound molecules, and the development of this method to the point where it can be used as a production technology. This is an important point.

用いる気相法としては、物理的方法の昇華法、真空蒸着
法、スパッター法、イオン・ビーム法及び分子ビーム法
などがある。そして化学的方法としてCVDなどがある
。良質な有機単結晶を簡便に得る方法としては昇華法、
真空蒸着法が好ましい。
The gas phase method used includes physical methods such as sublimation method, vacuum evaporation method, sputtering method, ion beam method, and molecular beam method. Chemical methods include CVD and the like. Sublimation method is a simple method to obtain high quality organic single crystals.
Vacuum deposition is preferred.

[実施例] 以下、実施例を用いて説明するが、本発明はこれらの例
によってなんらその効力を限定されることはない。
[Examples] The present invention will be described below using Examples, but the effectiveness of the present invention is not limited by these Examples in any way.

実施例1 大きな2次非線形光学効果を有する有機材料の4′−二
トロペンジリデン−3−アセトアミノ−4−メトキシア
ニリン(MNBA)の微結晶5.0gを、200 ml
のベンゼン/クロロホルム(体積比2:1)混合溶媒中
で、溶液結晶化法の1つであるスローエバポレーション
法により結晶化させた。
Example 1 5.0 g of microcrystals of 4'-nitropenzylidene-3-acetamino-4-methoxyaniline (MNBA), an organic material having a large second-order nonlinear optical effect, was added to 200 ml.
Crystallization was performed in a mixed solvent of benzene/chloroform (volume ratio 2:1) by slow evaporation, which is one of the solution crystallization methods.

得られた結晶をエタノール/イソ・プロパツール(体積
比1:1)混合溶媒中で洗浄し、清浄なスライドグラス
上に乗せ、自然乾燥した。この結晶の大きさは最大のも
ので、約3 cm X S mm X数μm(タテ×ヨ
コ×厚さ)であった。偏光顕微鏡観察によってこの結晶
が単結晶であることがわかった。
The obtained crystals were washed in a mixed solvent of ethanol/isopropanol (volume ratio 1:1), placed on a clean slide glass, and air-dried. The maximum size of this crystal was approximately 3 cm x S mm x several μm (vertical x horizontal x thickness). Observation using a polarized light microscope revealed that this crystal was a single crystal.

平滑な2面を有する2mmX3mmX5μmの大きさの
単結晶をスライドグラス上に乗せたまま真空蒸着装置内
にセットし、10’Torrまで排気後、MNBAを約
500人の厚さに蒸着した。偏光顕微鏡観察により偏光
特性、透光性、均一性は蒸着前と変らないが、膜厚増大
による偏光色の変化が見られることから、ホモエピタキ
シャル成長していることがわかった。
A single crystal with a size of 2 mm x 3 mm x 5 μm and having two smooth surfaces was placed on a slide glass in a vacuum evaporation apparatus, and after exhausting to 10' Torr, MNBA was evaporated to a thickness of about 500 mm. Observation using a polarized light microscope revealed that although the polarization properties, light transmittance, and uniformity remained the same as before vapor deposition, changes in the polarized light color due to the increase in film thickness were observed, indicating homoepitaxial growth.

実施例2 M N B A 5 gを400 mlのアセトンから
スローエバポレーション法により結晶化させた。得られ
た1 cm X S mm X数百μmの結晶は偏光顕
微鏡観察により単結晶であることがわかった。この単結
晶の広い面に平行にへき開が可能であった。
Example 2 5 g of MNBA was crystallized from 400 ml of acetone by slow evaporation. The obtained crystal measuring 1 cm x S mm x several hundred μm was found to be a single crystal by observation with a polarizing microscope. Cleavage was possible parallel to the wide plane of this single crystal.

へき開によって、膜厚を約120μmとした平滑な2面
を有する単結晶をスライドグラス上に乗せ昇華装置中に
セットし、この単結晶上に104Torr、190℃の
条件下で30分かけて約2μmの膜厚となるまで昇華法
によるMNBAの堆積を行った。偏光顕微鏡観察により
、堆積薄膜がホモエピタキシャル成長し、結晶全体が完
全な単結晶になっていることが確認された。
By cleaving, a single crystal with two smooth sides with a film thickness of approximately 120 μm was placed on a slide glass and set in a sublimation device, and a film thickness of approximately 2 μm was deposited on this single crystal under conditions of 104 Torr and 190° C. for 30 minutes. MNBA was deposited by sublimation until the film thickness reached . Observation using a polarized light microscope confirmed that the deposited thin film had grown homoepitaxially, and the entire crystal had become a perfect single crystal.

比較例1 スライドグラスを真空蒸着装置内にセットし、10 ’
 T o r rまで排気後、MNBAを500人の厚
さに蒸着した。偏光顕微鏡観察で透光性の低い微結、品
の集合体であることがわかった。
Comparative Example 1 A slide glass was set in a vacuum evaporation device and heated for 10'
After evacuation to Torr, MNBA was deposited to a thickness of 500 mm. Observation with a polarized light microscope revealed that it was a collection of fine particles with low translucency.

実施例3 MNBA (融点188℃)をスペーサーを介した間隔
5μmの2枚のスライドグラス基体間に約190℃で溶
融して吸い上げる。次に空隙中のモザイク状微結晶を、
温度分布をもつ水平炉の中を5mm/hrの速度で移動
させるという結晶化法を適用することによって、単結晶
化させた。
Example 3 MNBA (melting point: 188°C) is melted at about 190°C and sucked up between two slide glass substrates separated by a spacer of 5 μm. Next, the mosaic microcrystals in the voids are
Single crystallization was performed by applying a crystallization method in which the material was moved at a speed of 5 mm/hr in a horizontal furnace with temperature distribution.

得られた単結晶上に、実施例1と同様にして真空蒸着に
よりMNBAの堆積を行った。その結果、″ホモエピタ
キシャル成長によって膜厚を増大し、単結晶をさらに成
長させることができた。
MNBA was deposited on the obtained single crystal by vacuum evaporation in the same manner as in Example 1. As a result, we were able to increase the film thickness through homoepitaxial growth and further grow the single crystal.

実施例4 3次非線形光学材料として公知の4′−ジエチルアミノ
−4−ニトロスチルベン(DEANS。
Example 4 4'-diethylamino-4-nitrostilbene (DEANS), which is known as a third-order nonlinear optical material.

融点182〜188℃)をスライドグラス間でスペーサ
ーを用いずに溶融結晶化法により結晶化させた。片面の
スライドグラスを剥離し、偏光顕微鏡観察により単結晶
であること、及びハイミクロン干渉膜厚計による膜厚測
定から、8mmX3mmX1.7μmの薄膜単結晶であ
ることがわかった。次にこれを真空蒸着装置内にセット
し、DEANSを約200人魚着した。
(melting point 182-188°C) was crystallized between glass slides by the melt crystallization method without using a spacer. The slide glass on one side was peeled off, and observation using a polarizing microscope revealed that it was a single crystal, and film thickness measurement using a high micron interference film thickness meter revealed that it was a thin single crystal film measuring 8 mm x 3 mm x 1.7 μm. Next, this was set in a vacuum evaporation apparatus, and about 200 mermaids of DEANS were applied.

偏光顕微鏡観察により、蒸着薄膜がホモエピタキシャル
成長し、膜厚が増大した単結晶を得たことを確認した。
Observation using a polarized light microscope confirmed that the deposited thin film had grown homoepitaxially to obtain a single crystal with increased film thickness.

[発明の効果] 本発明によれば、所望の精密な厚さの平滑な面を有し、
利用するに都合が良い良質の有機単結晶を簡便に得るこ
とができる。従って、バルク結晶の切削、研磨といった
精密膜厚制御には不都合な、困難かつ生産性を低下させ
る工程を簡略化出来るので、たとえば光学、非線形光学
、音響光学、情報処理、通信などの産業分野で、これを
大いに活用出来る。
[Effects of the Invention] According to the present invention, it has a smooth surface with a desired precise thickness,
High-quality organic single crystals that are convenient for use can be easily obtained. Therefore, it is possible to simplify the difficult and productivity-reducing processes that are inconvenient for precise film thickness control, such as cutting and polishing bulk crystals, so it can be used in industrial fields such as optics, nonlinear optics, acousto-optics, information processing, and communications. , you can make great use of this.

Claims (5)

【特許請求の範囲】[Claims] (1)有機単結晶上に、該単結晶と同種の有機化合物を
気相法で堆積することにより、該有機単結晶上に成長単
結晶部分を付加することを特徴とする有機単結晶の製造
法。
(1) Production of an organic single crystal, characterized in that a grown single crystal portion is added to the organic single crystal by depositing an organic compound of the same type as the single crystal on the organic single crystal by a vapor phase method. Law.
(2)成長単結晶部分が、5μm以下の膜厚を有するこ
とを特徴とする特許請求の範囲第(1)項記載の有機単
結晶の製造法。
(2) The method for producing an organic single crystal according to claim (1), wherein the grown single crystal portion has a thickness of 5 μm or less.
(3)有機単結晶が、有機化合物の溶融結晶化法または
溶液結晶化法により得られるものであることを特徴とす
る特許請求の範囲第(1)項記載の有機単結晶の製造法
(3) The method for producing an organic single crystal according to claim (1), wherein the organic single crystal is obtained by a melt crystallization method or a solution crystallization method of an organic compound.
(4)有機化合物が、非線形光学材料であることを特徴
とする特許請求の範囲第(1)項記載の有機単結晶の製
造法。
(4) The method for producing an organic single crystal according to claim (1), wherein the organic compound is a nonlinear optical material.
(5)気相法が、真空蒸着法または昇華法であることを
特徴とする特許請求の範囲第(1)項記載の有機単結晶
の製造法。
(5) The method for producing an organic single crystal according to claim (1), wherein the gas phase method is a vacuum evaporation method or a sublimation method.
JP33168087A 1987-12-26 1987-12-26 Production of organic single crystal Granted JPH01172297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33168087A JPH01172297A (en) 1987-12-26 1987-12-26 Production of organic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33168087A JPH01172297A (en) 1987-12-26 1987-12-26 Production of organic single crystal

Publications (2)

Publication Number Publication Date
JPH01172297A true JPH01172297A (en) 1989-07-07
JPH058159B2 JPH058159B2 (en) 1993-02-01

Family

ID=18246377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33168087A Granted JPH01172297A (en) 1987-12-26 1987-12-26 Production of organic single crystal

Country Status (1)

Country Link
JP (1) JPH01172297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294827A (en) * 1990-04-13 1991-12-26 Toray Ind Inc Lamination type organic nonlinear optical crystal body and production thereof
US5554220A (en) * 1995-05-19 1996-09-10 The Trustees Of Princeton University Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
CN103757692A (en) * 2014-01-13 2014-04-30 中南大学 Preparation method of ordered organic semiconductor mono-crystal array film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564380Y2 (en) * 1993-12-10 1998-03-09 大阪瓦斯株式会社 Tightening torque confirmation fitting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film
JPS6236095A (en) * 1985-08-06 1987-02-17 Nec Corp Formation of organic thin film crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film
JPS6236095A (en) * 1985-08-06 1987-02-17 Nec Corp Formation of organic thin film crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294827A (en) * 1990-04-13 1991-12-26 Toray Ind Inc Lamination type organic nonlinear optical crystal body and production thereof
US5554220A (en) * 1995-05-19 1996-09-10 The Trustees Of Princeton University Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
WO1996037639A3 (en) * 1995-05-19 1997-01-16 Univ Princeton Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
CN103757692A (en) * 2014-01-13 2014-04-30 中南大学 Preparation method of ordered organic semiconductor mono-crystal array film
CN103757692B (en) * 2014-01-13 2016-05-25 中南大学 A kind of preparation method of ordered organic semiconductor monocrystalline array film

Also Published As

Publication number Publication date
JPH058159B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
US4073675A (en) Waveguiding epitaxial LiNbO3 films
JPH01172297A (en) Production of organic single crystal
RU2802302C1 (en) METHOD FOR MANUFACTURING HIGHLY CRYSTALLINE INORGANIC PEROVSKITE THIN FILMS CsPbBr3
JP3044168B2 (en) Method for producing thin film of organic molecule and method for producing thin film pattern
EP1097982A1 (en) Process for producing crystalline film
JPH0745359B2 (en) Method for producing organic compound crystal
JPH02160698A (en) Production of surface-patternized organic single crystal
JPH0676280B2 (en) Method for producing organic single crystal with controlled growth direction
RU2507317C1 (en) Method of forming monocrystalline films of solid bismuth-antimony solution on substrates
JP2679708B2 (en) Organic film fabrication method
JPH03232792A (en) Production of single crystal
JPH02184594A (en) Production of single crystal thin film
JPH03197399A (en) Production of organic crystal
JPH05186300A (en) Method for growing organic crystal
JPH02197561A (en) Thin organic film and its production
JPS6236095A (en) Formation of organic thin film crystal
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPH02175697A (en) Production of non-linear optical crystal thin film
JPH09241356A (en) Thin organic molecularly oriented film and its production
JPH02160220A (en) Preparation of organic thin film single crystal
Liu et al. Preparation of crystalline beta barium borate thin films on Sr2+-doped alpha barium borate substrates by liquid phase epitaxy
JPH02196086A (en) Production of single crystal
FR2641004A1 (en)
JPH02197822A (en) Production of organic compound thin-film
SU953018A1 (en) Method of growing colorless lead molybdate single crystals