JPH02160220A - Preparation of organic thin film single crystal - Google Patents

Preparation of organic thin film single crystal

Info

Publication number
JPH02160220A
JPH02160220A JP31572488A JP31572488A JPH02160220A JP H02160220 A JPH02160220 A JP H02160220A JP 31572488 A JP31572488 A JP 31572488A JP 31572488 A JP31572488 A JP 31572488A JP H02160220 A JPH02160220 A JP H02160220A
Authority
JP
Japan
Prior art keywords
thin film
single crystal
film single
crystal
polar axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31572488A
Other languages
Japanese (ja)
Inventor
Tetsuya Tsunekawa
哲也 恒川
Masami Ohashi
大橋 眞美
Tetsuya Goto
哲哉 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31572488A priority Critical patent/JPH02160220A/en
Publication of JPH02160220A publication Critical patent/JPH02160220A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a org. thin film single crystal having superior quality and large area and to permit to control an orientation of an axis of polarity of the thin film single crystal by forming a crystal nucleus at >=40 deg.C using polar molecules having >=4 debye dipole moment, as solute. CONSTITUTION:A crystal nucleus is formed at >=40 deg.C when an org. thin film single crystal is prepd. from a soln. of an org. compd. inserted between substrates by a temp. lowering method or a slow evaporation method of a solvent, by regulating the org. compd. to a polar molecule having >=4 debye dipole moment. Thus, an org. thin film single crystal having superior quality a large breadth and a relatively large area and, an axis of polarity oriented in a face is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は良質の有機薄膜単結晶を必要とする産業分野、
たとえば光学、情報処理、通信分野において有用な有機
薄膜単結晶の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to industrial fields that require high-quality organic thin film single crystals;
For example, the present invention relates to a method for producing organic thin film single crystals useful in the fields of optics, information processing, and communications.

[従来の技術] 従来、薄膜状の有機単結晶の作製方法としては、主に(
イ)溶融法、(ロ)溶液法がある。また、薄膜状の単結
晶を得るための工夫としては、ガラ、ス基板間に融液ま
たは溶液を挟み、温度降下または溶媒のスローエバポレ
ーションにより結晶化させるという方法が用いられてい
る。
[Conventional technology] Conventionally, the main method for producing thin film-like organic single crystals has been (
There are a) melt method and (b) solution method. In order to obtain a thin film-like single crystal, a method has been used in which a melt or solution is sandwiched between glass substrates and crystallized by lowering the temperature or by slow evaporation of the solvent.

(イ)溶融法の場合、融点を有し、かつ長時間の溶融状
態においても分解、変質などの起こらない有機化合物を
用いるといった制限があるが、比較的大面積化が容易で
あり、また短時間で結晶作製可能であるという特徴があ
る。しかし、ガラスなどの基板と有機化合物の熱膨脹率
が大きく異なるため、結晶化温度と室温との大きな温度
差に起因して、成長させた薄膜単結晶にクラックが入り
易く実質的には大きなサイズの薄膜単結晶を得ることが
困難であるという問題があった。
(b) In the case of the melting method, there are restrictions such as using an organic compound that has a melting point and does not decompose or change in quality even in a molten state for a long time, but it is relatively easy to increase the area and is short. It has the characteristic that crystals can be produced in a short period of time. However, because the coefficient of thermal expansion of a substrate such as glass and that of an organic compound are significantly different, the large temperature difference between the crystallization temperature and room temperature can easily cause cracks in the grown thin film single crystal. There was a problem in that it was difficult to obtain a thin film single crystal.

(ロ)溶液法の場合、溶融法の場合のような熱分解、熱
変質の問題が少なく、また大きく異なる基板と有機化合
物の熱膨脹率と大きな結晶化温度と室温との温度差に起
因するクラックの問題も無く、成長薄膜単結晶は良質で
あるが、溶質濃度が高くないことなどに起因して、サイ
ズが小さく、また成長する個々の薄膜の面方位(すなわ
ち極性軸方位)も一定でなく一般的にはランダムである
という問題があった。
(b) In the case of the solution method, there are fewer problems of thermal decomposition and thermal alteration as in the case of the melt method, and cracks due to the significantly different thermal expansion coefficients of the substrate and organic compound and the large temperature difference between the crystallization temperature and room temperature. There were no problems, and the thin film single crystals grown were of good quality, but due to the fact that the solute concentration was not high, the size was small, and the plane orientation (i.e. polar axis orientation) of the individual thin films grown was not constant. Generally, there was a problem that it was random.

また、薄膜単結晶成長の極性軸方位制御に関しては、 ■基板を選択しエピタキシャル成長させる(液相法)、 ■イオンビーム等の外場により配向制御する(気相法)
、 などの試みがあるが、いずれも模索段階であって技術確
立されていない。
Regarding the polar axis orientation control of thin film single crystal growth, there are two methods: 1. Select a substrate and perform epitaxial growth (liquid phase method); 2. Control orientation using an external field such as an ion beam (vapor phase method).
There have been attempts such as , , etc., but all of them are at the exploratory stage and the technology has not yet been established.

[発明が解決しようとする課題] 本発明は、前記した既存の有機薄膜単結晶化法における
欠点を解消しようとするものであり、■良質かつ大面積
化が可能であり、 ■さらに極性軸(成長)方位を制御することができる 極性軸を面内に持つ有機薄膜単結晶の簡便な製造方法を
提供することを目的とする。
[Problems to be Solved by the Invention] The present invention aims to eliminate the drawbacks of the existing organic thin film single crystallization methods described above, and is capable of (1) achieving high quality and large area; (2) further improving the polar axis ( The present invention aims to provide a simple method for producing an organic thin film single crystal having an in-plane polar axis whose orientation can be controlled.

[課題を解決するための手段] 上記目的を達成するために、本発明は下記の構成からな
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

[温度降下または溶媒のスローエバポレーションにより
、基板間に挟み込んだ有機化合物の溶液から有機薄膜単
結晶を製造する方法において、A、該有機化合物が、4
デバイ以上の双極子モーメントを有する極性分子である
こと、B、40℃以上の温度において結晶核形成を行な
うこと、 により極性軸が実質的に薄膜面内にある薄膜単結晶を製
造することを特徴とする極性軸を面内に持つ有機薄膜単
結晶の製造方法。」 本発明の特徴は、双極子モーメントが4デバイ以上の極
性分子を溶質として、40℃以上で結晶核を形成させる
ことにより、 ■極性軸を面内に持つ良質の薄膜単結晶の選択的な製造
を可能にした点、 さらには、 ■得られる薄膜単結晶の面積をより大きくした点、にあ
る。
[In a method for producing an organic thin film single crystal from a solution of an organic compound sandwiched between substrates by temperature reduction or slow evaporation of a solvent, A. the organic compound is 4
It is characterized by being a polar molecule having a dipole moment greater than or equal to Debye, B, by performing crystal nucleation at a temperature of 40°C or higher, and by producing a thin film single crystal in which the polar axis is substantially within the plane of the thin film. A method for manufacturing an organic thin film single crystal with an in-plane polar axis. ” The feature of the present invention is that by forming a crystal nucleus at 40°C or higher using a polar molecule with a dipole moment of 4 Debye or more as a solute, ■ selectively forming a high-quality thin film single crystal with the polar axis in the plane. The following points have been made possible: (1) The area of the obtained thin film single crystal has been made larger.

ここでいう結晶の極性軸とは、分子の持っ双極子モーメ
ントのベクトル和のなす軸を指し、極性結晶すなわち非
中心対称性の結晶にのみ存在するものである。このよう
な非中心対称性結晶は、例えば非線形光学における第2
高調波発生、−次電気光学効果などを有する2次非線形
光学材料として有用なものである。
The polar axis of a crystal here refers to the axis formed by the vector sum of the dipole moments of molecules, and exists only in polar crystals, that is, non-centrosymmetric crystals. Such non-centrosymmetric crystals are used, for example, in nonlinear optics.
It is useful as a second-order nonlinear optical material having harmonic generation, -order electro-optic effects, etc.

従来行なわれてきたように、結晶核を室温において形成
すると、薄膜面に対して種々の極性軸方位を持つ単結晶
が析出する。また、偶然成長する薄膜面内に極性軸を持
つ単結晶では、極性軸方向の結晶成長速度が極性軸に垂
直方向のそれに比較して非常に大きいため、薄膜単結晶
は幅が狭く針状になり易い。
When crystal nuclei are formed at room temperature as has been conventionally done, single crystals having various polar axis orientations with respect to the thin film surface are precipitated. In addition, in a single crystal that grows by chance and has a polar axis within the plane of a thin film, the crystal growth rate in the direction of the polar axis is much higher than that in the direction perpendicular to the polar axis, so the thin film single crystal becomes narrow and needle-shaped. It's easy.

これに対して本発明では、比較的大面積の極性軸を面内
に持つ良質の薄膜単結晶が選択的に得られる。この時、
溶質としては双極子モーメントが4デバイ以上の極性分
子である必要があることから、40℃以上での結晶核形
成時に分子間および基板−分子間での双極子−双極子相
互作用が働いて一定方位の結晶核形成がなされ、面内に
極性軸を持つ薄膜単結晶の成長に大きな役割を果たして
いると推測される。また、比較的大面積の薄膜単結晶が
成長するのは、昇温により高い溶質濃度を適用できるこ
と、および成長速度の異方性がより小さくなること、す
なわち、室温においては、小さい、極性軸方向の結晶成
長速度に対する、極性軸方向に垂直の方向の結晶成長速
度を大きくすることによると推測される。
In contrast, in the present invention, a high-quality thin film single crystal having a relatively large area of polar axis in the plane can be selectively obtained. At this time,
Since the solute must be a polar molecule with a dipole moment of 4 Debye or more, dipole-dipole interactions between molecules and between substrate and molecules work during crystal nucleation at 40°C or higher, resulting in a constant dipole moment. It is assumed that oriented crystal nucleation occurs and plays a major role in the growth of thin film single crystals with in-plane polar axes. In addition, the reason why thin film single crystals with a relatively large area can be grown is that a higher solute concentration can be applied by increasing the temperature, and that the anisotropy of the growth rate is smaller. This is presumed to be due to increasing the crystal growth rate in the direction perpendicular to the polar axis direction relative to the crystal growth rate of .

但し、温度の設定には薄膜単結晶のクラック防止に関す
る注意が必要であり、すなわち、結晶の融点よりも低く
、かつ溶媒の沸点よりも低い温度に設定することが必要
であり、最適の結晶成長温度は、基板として無機材料を
用いた場合は大抵の場合100℃以下であり、有機材料
を用いた場合は、200℃以下である。
However, when setting the temperature, care must be taken to prevent cracks in the thin film single crystal. In other words, it is necessary to set the temperature to a temperature lower than the melting point of the crystal and lower than the boiling point of the solvent, to ensure optimal crystal growth. The temperature is usually below 100°C when an inorganic material is used as the substrate, and below 200°C when an organic material is used.

本発明の薄膜単結晶化で用いる基板は、金属、無機材料
(半導体等)、有機材料およびこれらの複合系材料など
、溶液に犯されないものならいかなるものでもよく、中
でも、表面の平滑性と耐溶剤性の点を考慮するとガラス
基板が有用である。
The substrate used in the thin film single crystallization of the present invention may be of any material, such as metals, inorganic materials (semiconductors, etc.), organic materials, and composite materials thereof, as long as they are not affected by solutions. A glass substrate is useful in consideration of solvent properties.

上記基板材料は結晶性、アモルファスのどちらでもよい
。結晶性の基板、特に薄膜単結晶と整合性の良い格子定
数を有する基板を選択すると結晶成長に対していわゆる
ヘテロエピタキシャル成長が起こることがある。
The substrate material may be either crystalline or amorphous. If a crystalline substrate, especially a substrate having a lattice constant that matches well with a thin film single crystal, is selected, so-called heteroepitaxial growth may occur with respect to crystal growth.

結晶核の形成および成長の手法としては、スローエバポ
レーション法、温度降下法、共に有効であるが、急激な
結晶核形成および成長は避ける必要がある。すなわち、
40℃以上の温度で徐々に結晶核を形成する必要がある
。また、結晶を成長させる段階においても、急激に結晶
成長させると転移、新たなランダムな極性軸方位を有す
る結晶核の形成などが原因となって良好な結果が得られ
ない可能性がある。
Both slow evaporation and temperature drop methods are effective methods for forming and growing crystal nuclei, but rapid crystal nucleus formation and growth must be avoided. That is,
It is necessary to gradually form crystal nuclei at a temperature of 40° C. or higher. Furthermore, at the stage of crystal growth, if the crystal is grown rapidly, good results may not be obtained due to dislocation, formation of crystal nuclei having new random polar axis orientations, and the like.

有機薄膜単結晶を形成する化合物、すなわち本発明でい
う4デバイ以上の双極子モーメントを持つ極性分子の例
としては、ドナー基、アクセプタ基が両末端に導入され
たπ電子共役系化合物が挙げられる。
Examples of compounds that form organic thin film single crystals, that is, polar molecules having a dipole moment of 4 debyes or more in the present invention, include π-electron conjugated compounds in which donor groups and acceptor groups are introduced at both ends. .

双極子モーメントの測定は、実験化学講座3.38ペー
ジ(1957、丸善)に記載の溶液法などで行なうこと
ができる。
The dipole moment can be measured by the solution method described in Experimental Chemistry Course, page 3.38 (1957, Maruzen).

本発明でいうドナー基とは、ハメットの置換基定数σp
で、σp<Qを満たすものであり、ハロゲンで例えれば
、アミノ、アルコキシ、ヒドロキシ、アルキルチオニル
などが挙げられる。また、アクセプター基とは、ハメッ
トの置換基定数σpで、σp>Qを満たすものであり、
ハロゲンで例えれば、ニトロ、シアノ、アセチル、ホル
ミルなどが挙げられる。
In the present invention, the donor group refers to Hammett's substituent constant σp
and satisfies σp<Q, and examples of halogen include amino, alkoxy, hydroxy, and alkylthionyl. In addition, the acceptor group is one that satisfies σp>Q with Hammett's substituent constant σp,
Examples of halogens include nitro, cyano, acetyl, and formyl.

双極子モーメントの方向が分子の長袖方向と一致してい
る溶質分子を選択すると本発明の極性軸方位の制御を実
現する上でより有効である。この意味で、ドナー基、ア
クセプター基を導入すべきπ電子共役系としてはベンゼ
ンなどの単環系ではなく、ベンジリデンアニリン誘導体
、スチルベン誘導体などが好ましい。
Selecting a solute molecule whose dipole moment direction coincides with the long sleeve direction of the molecule is more effective in realizing the polar axis orientation control of the present invention. In this sense, the π-electron conjugated system into which the donor group and acceptor group are to be introduced is preferably a benzylidene aniline derivative, a stilbene derivative, etc., rather than a monocyclic system such as benzene.

従って、好ましい化合物の例としては、4′ニトロベン
ジリデン−3−アセトアミノ−4−メトキシアニリン、
4′−二トロペンジリデン−4−メチルアニリン、4′
−二トロペンジリデン−4−ヨードアニリンなどのベン
ジリデンアニリン誘導体、4−メトキシ−3−メチル−
4′−二トロスチルベン、4−ブロモ−4′−二トロス
チルベンなどのスチルベン誘導体が挙げられる。
Therefore, examples of preferred compounds include 4'nitrobenzylidene-3-acetamino-4-methoxyaniline,
4'-nitropenzylidene-4-methylaniline, 4'
- benzylidene aniline derivatives such as ditropendylidene-4-iodoaniline, 4-methoxy-3-methyl-
Examples include stilbene derivatives such as 4'-nitrostilbene and 4-bromo-4'-nitrostilbene.

用いる溶媒は、■基板を不溶かつ溶質の良溶媒、■適度
に高い沸点を有し、■安定性の良いものが良質の極性軸
を面内に持つ有機薄膜単結晶の大面積化を図る上で好ま
しい。
The solvent to be used is: 1) a good solvent that does not dissolve the substrate, 2) has a moderately high boiling point, and 2) has good stability and has a polar axis in the plane. It is preferable.

既に述べたように、良溶媒は溶液濃度を向上させ、薄膜
の大面積化を図る上で有効である。適度に高い沸点とは
、結晶核を形成させる温度より高い温度を指し、好まし
くは結晶核形成温度より60℃以上高い温度をいう。こ
の意味で、適度に高い沸点とは100℃以上を指す。
As already mentioned, a good solvent is effective in improving the solution concentration and increasing the area of the thin film. A moderately high boiling point refers to a temperature higher than the temperature at which crystal nuclei are formed, preferably a temperature higher than the crystal nucleus formation temperature by 60° C. or more. In this sense, a moderately high boiling point refers to 100°C or higher.

すなわち、結晶化溶媒は高極性かつ水素結合性の比較的
高沸点のものが特に好ましい。カルボニル、チオカルボ
ニル、エーテル、アミノ(−NH−)、などをフラグメ
ントとして分子内に含む溶媒が有効であり、具体例とし
ては、N、N−ジメチルホルムアミド、ジメチルスルホ
キシド、N、N−ジメチルアセトアミド、N−メチルピ
ロリドンなどが挙げられる。
That is, it is particularly preferable that the crystallization solvent is highly polar, hydrogen bonding, and has a relatively high boiling point. Solvents containing fragments of carbonyl, thiocarbonyl, ether, amino (-NH-), etc. in the molecule are effective; specific examples include N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, Examples include N-methylpyrrolidone.

本発明において、有機化合物の溶液を基板間にはさんだ
状態(温度降下あるいは、スローエバポレーションする
前の状態)における溶液の厚みは、一般には、■溶液の
粘度(従って用いる溶媒、溶質の濃度、温度など)と、
■溶液と基板との濡れ性(親和性)、■基板間に働く圧
力(基板の重さと面積とで決まる)、および■基板の表
面平滑性などにより決まるものであり、どのような厚さ
であっても良いが1、通常サブミクロンから数十ミクロ
ンの範囲であり、0.01μ〜100μであることが好
ましい。最も簡便な方法は、因子■を変化させること、
または因子■をスペーサを用いて変化させることである
が、適用の限界があり、従って、因子■を、基板の表面
処理などの方法によって変化させるか、因子■を変化さ
せることが好ましい。
In the present invention, the thickness of the organic compound solution when it is sandwiched between the substrates (before temperature drop or slow evaporation) is generally determined by: temperature, etc.) and
It is determined by the wettability (affinity) between the solution and the substrate, the pressure acting between the substrates (determined by the weight and area of the substrate), and the surface smoothness of the substrate. Although it may exist, it is usually in the range of submicrons to several tens of microns, and preferably 0.01 μ to 100 μ. The simplest method is to change the factor ■,
Another method is to change the factor (2) using a spacer, but there are limits to its applicability. Therefore, it is preferable to change the factor (2) by a method such as surface treatment of the substrate, or to change the factor (2).

[実施例] 以下、実施例を用いて説明するが本発明の効力は、これ
らの例によるいかなる限定も受けない。
[Examples] The present invention will be described below using Examples, but the effectiveness of the present invention is not limited in any way by these Examples.

実施例1 4′−二トロペンジリデン−3−アセトアミノ−4−メ
トキシアニリン(MNBA)の極性軸を面内に持つ薄膜
単結晶を以下に示す方法で作製した。
Example 1 A thin film single crystal of 4'-nitropenzylidene-3-acetamino-4-methoxyaniline (MNBA) having an in-plane polar axis was prepared by the method shown below.

MNBAの黄色粉末結晶50mgをN、N−ジメチルホ
ルムアミド(DMF)lccに溶解し、このうち10μ
lをアルカリ洗浄した1 0 cmxlocmのソーダ
ガラス基板に挟み、50℃に保持した状態で2日間放置
したところ、溶媒のスローエバポレーションにより十数
側の薄膜結晶が析出した。薄膜結晶のサイズは、最大の
もので1゜2m rn X 15 m m N膜厚80
00オングストロームであった。薄膜結晶は単結晶であ
り、その面方位が全て同じであり、この結晶面は極性軸
を含むAC面であることが偏光顕微鏡による観察とX線
解析により判明した。
Dissolve 50 mg of yellow powder crystals of MNBA in N,N-dimethylformamide (DMF) lcc, and
1 was sandwiched between 10 cm×locm soda glass substrates that had been washed with alkali and left to stand at 50° C. for 2 days, and thin film crystals were precipitated on the sides due to slow evaporation of the solvent. The maximum size of the thin film crystal is 1゜2 mrn x 15 mm N film thickness 80
00 angstroms. It was found by observation with a polarizing microscope and X-ray analysis that the thin film crystal is a single crystal, and all its plane orientations are the same, and that this crystal plane is an AC plane including a polar axis.

さらに、極性軸は薄膜単結晶の成長軸方向から約20度
面内回転していることがわかった。従って、薄膜単結晶
における幅の拡大(比較例1参照)は極性軸に垂直方向
の成長も相対的に促進された結果であることがわかった
Furthermore, it was found that the polar axis was in-plane rotated by about 20 degrees from the growth axis direction of the thin film single crystal. Therefore, it was found that the width expansion in the thin film single crystal (see Comparative Example 1) was due to the relative promotion of growth in the direction perpendicular to the polar axis.

実施例2 4−メトキシ−3−メチル−4−m=トロスチルベン(
MMNS)の極性軸を面内に持つ薄膜単結晶を以下の方
法で作製した。
Example 2 4-methoxy-3-methyl-4-m=trostilbene (
A thin film single crystal of MMNS) having an in-plane polar axis was prepared by the following method.

MMNSの黄色粉末結晶150mgをN−メチルピロリ
ドン(N’MP) 1 c cに溶解し、このうち10
μlをアルカリ洗浄した1 0 cmX 10cmのソ
ーダガラス基板に挟み、60℃に保持した状態で4日間
放置したところ、溶媒のスローエバポレーションにより
十数側の薄膜結晶が析出した。薄膜結晶のサイズは、最
大のものでは2.4mm x 15 mm、膜厚1.5
μmであった。薄膜結晶は単結晶であり、その面方位が
全て同じであり、この結晶面は極性軸を含むAC面であ
ることが偏光顕微鏡による観察とX線解析より判明した
150 mg of yellow powder crystals of MMNS was dissolved in 1 cc of N-methylpyrrolidone (N'MP), and 10
When μl was sandwiched between 10 cm×10 cm soda glass substrates that had been washed with alkali and left at 60° C. for 4 days, thin film crystals were precipitated on the sides due to slow evaporation of the solvent. The size of the thin film crystal is 2.4 mm x 15 mm at its largest, and the film thickness is 1.5 mm.
It was μm. It was found from observation with a polarizing microscope and X-ray analysis that the thin film crystal is a single crystal, and all its plane orientations are the same, and that this crystal plane is an AC plane including a polar axis.

さらに、極性軸は薄膜単結晶の伸長方向から約30度面
内回転していることがわかった。従って薄膜単結晶の幅
の拡大(比較例2参照)は極性軸に垂直方向の成長が相
対的に促進された結果であることがわかった。
Furthermore, it was found that the polar axis was in-plane rotated by about 30 degrees from the direction of elongation of the thin film single crystal. Therefore, it was found that the expansion of the width of the thin film single crystal (see Comparative Example 2) was the result of relatively promoting growth in the direction perpendicular to the polar axis.

実施例3 MNBAの極性軸を面内に持つ薄膜単結晶を以下の方法
で作製した。
Example 3 A thin film single crystal of MNBA having an in-plane polar axis was produced by the following method.

MNBAの黄色粉末結晶120mgをN、  N−ジメ
チルホルムアミド(DMF)1 c cに約85℃で溶
解し、このうち10μlをアルカリ洗浄した1 0 c
mX 10 cmのソーダガラス基板に挟み、0.62
5°C/hの降温速度で80℃から25℃まで徐冷した
ところ(約4日間)、数個の薄膜結晶が析出した。この
間、60℃の段階において結晶核が形成されていること
が観察された。
120 mg of yellow powder crystals of MNBA was dissolved in 1 cc of N,N-dimethylformamide (DMF) at about 85°C, and 10 μl of this was dissolved in 1 cc of alkali-washed solution.
Sandwiched between mX 10 cm soda glass substrates, 0.62
When the sample was slowly cooled from 80°C to 25°C at a cooling rate of 5°C/h (about 4 days), several thin film crystals were precipitated. During this time, it was observed that crystal nuclei were formed at a temperature of 60°C.

薄膜結晶のサイズは、最大のもので2. 2mmX 2
4mm、膜厚1.1μmであった。薄膜結晶は単結晶で
あり、その面方位が全て同じであり、この結晶面は極性
軸を含むAC面であることが偏光顕微鏡による観察とX
線解析により判明した。
The maximum size of the thin film crystal is 2. 2mm×2
The film thickness was 4 mm and the film thickness was 1.1 μm. A thin film crystal is a single crystal, and all its planes have the same orientation, and observation with a polarizing microscope and X
This was revealed by line analysis.

極性軸は薄膜単結晶の成長軸方向から約20度面内回転
していること、並びに、薄膜単結晶における幅の拡大(
比較例3参照)は極性軸に垂直方向の成長も相対的に促
進された結果であることは実施例1と同様であった。
The polar axis is in-plane rotated by about 20 degrees from the growth axis direction of the thin film single crystal, and the width of the thin film single crystal increases (
Comparative Example 3) was similar to Example 1 in that the growth in the direction perpendicular to the polar axis was also relatively promoted.

比較例1 溶液の保持温度を室温(約25℃)にし、保持日数を3
日間にした以外は、実施例1と同様の実験を行なったと
ころ、溶媒のスローエバポレーションにより十数側の薄
膜結晶が析出した。実施例1と同様にして、これらが全
て単結晶であることがわかった。
Comparative Example 1 The solution was kept at room temperature (approximately 25°C) and kept for 3 days.
When the same experiment as in Example 1 was carried out except that the time was changed for 1 day, thin film crystals were deposited on the 10-odd side due to slow evaporation of the solvent. As in Example 1, it was found that all of these were single crystals.

しかし、薄膜単結晶は実施例1でのものと比較して細長
く、サイズは最大で200μm×10mm、膜厚900
0オングストロームであった。
However, the thin film single crystal is elongated compared to that in Example 1, with a maximum size of 200 μm x 10 mm and a film thickness of 900 μm.
It was 0 angstrom.

また、薄膜面方位を偏光顕微鏡によるコノスコープ観察
、X線解析により調べたところ、面方位は一定でなく5
種類が混在していることがわかった。
In addition, when the thin film surface orientation was investigated by conoscope observation using a polarizing microscope and X-ray analysis, it was found that the surface orientation was not constant.
It was found that there was a mixture of types.

比較例2 溶液の保持温度を室温(約25°C)にし、保持日数を
7日間にした以外は、実施例2と同様の実験を行なった
ところ、溶媒のスローエバポレーションにより十数側の
薄膜結晶が析出した。実施例2と同様にして、これらが
全て単結晶であることがわかった。
Comparative Example 2 An experiment similar to Example 2 was conducted, except that the solution was held at room temperature (approximately 25°C) and held for 7 days. Crystals precipitated. As in Example 2, it was found that all of these were single crystals.

析出した薄膜単結晶には細長い形状のものと板状の形状
のものがあり、薄膜面方位を偏光顕微鏡によるコノスコ
ープ観察、X線解析により調べたところ、面方位は3種
類あった。細長い形状の薄膜には2種類あり、このうち
一方は極性軸を含むAC面を薄膜面とするものであり、
サイズは最大で400 μmX 15mm、膜厚1.2
μmであった。
The precipitated thin film single crystals had an elongated shape and a plate-like shape, and when the thin film surface orientation was examined by conoscope observation using a polarizing microscope and X-ray analysis, there were three types of surface orientation. There are two types of elongated thin films, one of which uses the AC plane that includes the polar axis as the thin film surface.
Maximum size is 400 μm x 15 mm, film thickness 1.2
It was μm.

比較例3 MNBAのDMF溶液(5mg/cc)を用いて、室温
(約25℃)から5℃まで(約4日間)、約0.208
℃/hの降温速度で徐冷したところ、十数側の薄膜結晶
が析出した。これらは全て単結晶であった。しかし、薄
膜単結晶は実施例3でのものと比較して細長く、サイズ
は最大で100μm x 40 rn m N膜厚70
00オングストロームであった。また、薄膜面方位には
5種類あることがわかった。
Comparative Example 3 Using a DMF solution of MNBA (5 mg/cc), from room temperature (about 25°C) to 5°C (about 4 days), about 0.208
When the sample was slowly cooled at a temperature decreasing rate of 0.degree. C./h, thin film crystals were precipitated on the sides. All of these were single crystals. However, the thin film single crystal is elongated compared to that in Example 3, with a maximum size of 100 μm x 40 rn m and a film thickness of 70 μm.
00 angstroms. It was also found that there are five types of thin film plane orientations.

[発明の効果] 本発明によれば、幅広く比較的大面積であり、かつ極性
軸を面内に持ち、さらに良質の有機薄膜単結晶が簡便に
得られ、光学、非線形光学、音響光学など情報処理、通
信分野でこれを太いに活用できる。
[Effects of the Invention] According to the present invention, a wide and relatively large area, a polar axis in the plane, and a high quality organic thin film single crystal can be easily obtained, and can be used for information processing such as optics, nonlinear optics, acousto-optics, etc. This can be widely used in the processing and communication fields.

Claims (1)

【特許請求の範囲】[Claims] (1)温度降下または溶媒のスローエバポレーションに
より、基板間に挟み込んだ有機化合物の溶液から有機薄
膜単結晶を製造する方法において、A、該有機化合物が
、4デバイ以上の双極子モーメントを有する極性分子で
あること、 B、40℃以上の温度において結晶核形成を行なうこと
、 により極性軸が実質的に薄膜面内にある薄膜単結晶を製
造することを特徴とする極性軸を面内に持つ有機薄膜単
結晶の製造方法。
(1) In a method for producing an organic thin film single crystal from a solution of an organic compound sandwiched between substrates by temperature reduction or slow evaporation of a solvent, A. the organic compound has a polarity having a dipole moment of 4 debyes or more; B. Forming crystal nuclei at a temperature of 40° C. or higher, producing a thin film single crystal in which the polar axis is substantially in the plane of the thin film. A method for producing organic thin film single crystals.
JP31572488A 1988-12-14 1988-12-14 Preparation of organic thin film single crystal Pending JPH02160220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31572488A JPH02160220A (en) 1988-12-14 1988-12-14 Preparation of organic thin film single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31572488A JPH02160220A (en) 1988-12-14 1988-12-14 Preparation of organic thin film single crystal

Publications (1)

Publication Number Publication Date
JPH02160220A true JPH02160220A (en) 1990-06-20

Family

ID=18068770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31572488A Pending JPH02160220A (en) 1988-12-14 1988-12-14 Preparation of organic thin film single crystal

Country Status (1)

Country Link
JP (1) JPH02160220A (en)

Similar Documents

Publication Publication Date Title
Yuan et al. Growth of cadmium mercury thiocyanate single crystal for laser diode frequency doubling
Rajesh et al. Effect of crystal violet dye on the optical, dielectric, thermal and mechanical properties of< 0 0 1> directed KDP single crystal
Bhat Growth and characterization of some novel crystals for nonlinear optical applications
Majchrowski et al. Top seeded solution growth of KHo (WO4) 2 single crystals
Solntsev et al. Growth of α-BaB2O4 single crystals from melts at various compositions: comparison of optical properties
Zhang et al. Top-seeded solution crystal growth of noncentrosymmetric and polar Zn2TeMoO7 (ZTM)
Ibanez et al. Crystal growth of a promising nonlinear optical material: 2-amino-5-nitropyridinium chloride
Sethuraman et al. Unidirectional growth of< 1 1 0> ammonium dihydrogen orthophosphate single crystal by Sankaranarayanan–Ramasamy method
JPH02160220A (en) Preparation of organic thin film single crystal
Kagawa et al. Single crystal growth and characterization of a new organic nonlinear optical material: 8-(4'-acetylphenyl)-1, 4-dioxa-8-azaspiro [4.5] decane (APDA)
Arivanandhan et al. Ethyl p-amino benzoate (EPAB): A novel organic non-linear optical material for optical devices
Chinnasami et al. Temperature dependent refractive index, thermo-optic coefficient and birefringence of negative biaxial imidazolium L-tartrate non-linear optical crystal
JPH02160697A (en) Production of organic single crystal regulated in growth direction
JPH01172297A (en) Production of organic single crystal
US5097527A (en) Fiber type wavelength converter and module
Guo et al. A novel organometallic nonlinear optical complex crystal: Cadmium mercury thiocyanate dimethyl-sulphoxide
JPH03294827A (en) Lamination type organic nonlinear optical crystal body and production thereof
JPH0745359B2 (en) Method for producing organic compound crystal
US6608205B1 (en) Organic crystalline films for optical applications and related methods of fabrication
Suchanska et al. Possibilities and limitations of A2MX4 and AMX3 crystal growth
Wang et al. Investigation on growth and macro-defects of a UV nonlinear optical crystal: ZnCd (SCN) 4
JPH01245229A (en) Nonlinear type optical crystal and its production
JP3289904B2 (en) Method for producing single crystal of MTiOAsO4, composition comprising single-domain crystal of MTIOAsO4 and crystalline MTiOAsO4
Liu et al. Preparation of crystalline beta barium borate thin films on Sr2+-doped alpha barium borate substrates by liquid phase epitaxy
JPS63260898A (en) Method for growing crystal