JPH02160697A - Production of organic single crystal regulated in growth direction - Google Patents

Production of organic single crystal regulated in growth direction

Info

Publication number
JPH02160697A
JPH02160697A JP31572288A JP31572288A JPH02160697A JP H02160697 A JPH02160697 A JP H02160697A JP 31572288 A JP31572288 A JP 31572288A JP 31572288 A JP31572288 A JP 31572288A JP H02160697 A JPH02160697 A JP H02160697A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
growth
organic
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31572288A
Other languages
Japanese (ja)
Other versions
JPH0676280B2 (en
Inventor
Tetsuya Goto
哲哉 後藤
Toshiyuki Kondo
敏行 近藤
Masao Iwamoto
昌夫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31572288A priority Critical patent/JPH0676280B2/en
Publication of JPH02160697A publication Critical patent/JPH02160697A/en
Publication of JPH0676280B2 publication Critical patent/JPH0676280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce an organic single crystal under simple and intentional control of the place of single crystal growth and the growth orientation by using a single crystal of polydiacetylene derivative as a growth base crystal or a seed crystal. CONSTITUTION:A single crystal of a polydiacetylene derivative of poly[2,4- hexadiyne-1,6-diol bis(p-toluenesulfonate)] or poly[1,6-di(carbazolyl)-2,4-hexadiyne] is provided. In the production of a single crystal of an organic compound such as 4'-nitrobenzylidene-3-acetoamino-4-methoxyaniline, from vapor phase, liquid phase or melt phase, a peridiacetylene derivative is allowed to coexist and a single crystal of the organic compound is allowed to grow selectively on the growth surface along the crystal face matching to the lattice constant of the single crystal whereby an organic single crystal regulated in the growth orientation is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は良質かつ成長方位制御された有機単結晶の製造
方法に関するものであり、例えば光学、非線形光学、音
響光学、情報処理、通信分野において好適に用いられる
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing organic single crystals of high quality and whose growth direction is controlled. Suitably used.

[従来の技術] 近年、光学、非線形光学、音響光学、情報処理、通信分
野においては、異方性有機単結晶を使用したいという要
求が強まって来た。このような場合、それぞれの目的に
応じて、特定の形状を持つ結晶の特定方位に特定の結晶
軸が存在すると非常に都合が良い。また、結晶成長の場
所が指定できると更に都合が良い。
[Prior Art] In recent years, there has been an increasing demand for the use of anisotropic organic single crystals in the fields of optics, nonlinear optics, acousto-optics, information processing, and communications. In such cases, it is very convenient for a crystal with a specific shape to have a specific crystal axis in a specific orientation, depending on the purpose. Furthermore, it would be even more convenient if the location of crystal growth could be specified.

このような要望に対し、従来の有機化合物の単結晶製造
法には、大別して、 (ア)気相法(昇華法など) (イ)溶融法(ブリッジマン法など) (つ)溶液法 があるが、どれひとつとして有機単結晶の成長場所・成
長方位を意図的に制御し得る製造方法としては、満足な
ものではなく、最も目的に合致し得る単結晶の製造方法
としては、成長させようとする有機化合物の単結晶を種
子結晶として用いる方法が唯一の方法として考えられる
In response to these demands, conventional methods for producing single crystals of organic compounds can be roughly divided into (a) gas phase methods (sublimation method, etc.), (b) melting methods (Bridgeman method, etc.), and (1) solution methods. However, none of them are satisfactory as manufacturing methods that can intentionally control the growth location and growth direction of organic single crystals. The only method that can be considered is to use a single crystal of an organic compound as a seed crystal.

しかしなか、ら1.この方法においても、所望の成長面
を持つ結晶を得て、所望の成長場所に配置することは実
際上困難であった。また、たとえ上記のことが可能であ
っても、種子結晶の溶解、溶融などが非常に精密かつ制
限された結晶成長条件設定の要因となっていた。
However, among others, 1. Even with this method, it is practically difficult to obtain a crystal with a desired growth surface and place it at a desired growth location. Furthermore, even if the above is possible, dissolution, melting, etc. of the seed crystals are a factor in setting extremely precise and limited conditions for crystal growth.

一方、無機化合物とりわけ半導体については、ホモ・エ
ピタキシャル成長とへテロ・エピタキシャル成長すなわ
ち異種結晶上に単結晶を成長させるという技術は広く知
られている。
On the other hand, with regard to inorganic compounds, particularly semiconductors, homo-epitaxial growth and hetero-epitaxial growth, that is, techniques of growing a single crystal on a heterogeneous crystal, are widely known.

しかしながら、半導体のへテロ・エピタキシャル成長に
用いられる種々の基板結晶、例えば5i1GaAsなど
をそのまま有機化合物の単結晶製造に用いようとしても
、格子定数が違いすぎる、すなわち格子不整合(ミス・
フィツト・ファクター)が大きすぎてヘテロ・エピタキ
シャル成長はおこらないというものであった。
However, even if one tries to use various substrate crystals used for heteroepitaxial growth of semiconductors, such as 5i1GaAs, as they are for manufacturing single crystals of organic compounds, the lattice constants are too different, that is, lattice mismatch (mismatch) occurs.
The fit factor was too large to allow heteroepitaxial growth to occur.

[発明が解決しようとする課題] 本発明は、前記した従来の方法における種子結晶の溶解
、溶融による制限がなく、有機単結晶の成長場所・成長
方位が簡便にかつ意図的に制御できるといった成長方位
制御された有機単結晶の製造方法を提供することを目的
とする。
[Problems to be Solved by the Invention] The present invention provides a growth method in which the growth location and growth direction of an organic single crystal can be easily and intentionally controlled without the limitations of seed crystal melting and melting in the conventional methods described above. An object of the present invention is to provide a method for producing an organic single crystal with controlled orientation.

[課題を解決するための手段] 上記課題を達成するために、本発明は下記の構成を有す
る。
[Means for Solving the Problems] In order to achieve the above problems, the present invention has the following configuration.

「気相、溶液相、または溶融相からの有機化合物単結晶
の製造法において、ポリジアセチレン誘導体単結晶を共
存させ、該ポリジアセチレン誘導体単結晶の結晶面上に
その結晶面の格子定数と整合する有機化合物単結晶の成
長面を選択的に成長させる工程を含むことを特徴とする
成長方位制御された有機単結晶の製造方法。」 本発明者らは、気相、溶液相、または溶融相からの有機
化合物単結晶の製造法において、非昇華性、非溶解性、
非溶融性のポリジアセチレン誘導体単結晶を共存させる
と、該ポリジアセチレン誘導体単結晶の結晶面上にその
結晶面の格子定数と整合する有機化合物単結晶の成長面
を選択的に成長させることができることを見い出し、本
発明に至った。
"In a method for producing a single crystal of an organic compound from a gas phase, a solution phase, or a melt phase, a polydiacetylene derivative single crystal is allowed to coexist, and a polydiacetylene derivative single crystal is formed on the crystal plane of the polydiacetylene derivative single crystal to match the lattice constant of the crystal plane. A method for producing an organic single crystal with controlled growth direction, the method comprising the step of selectively growing a growth surface of an organic compound single crystal." In the method for producing single crystals of organic compounds, non-sublimable, non-soluble,
When a non-melting polydiacetylene derivative single crystal coexists, a growth plane of an organic compound single crystal that matches the lattice constant of the crystal plane can be selectively grown on the crystal plane of the polydiacetylene derivative single crystal. We have discovered this, and have arrived at the present invention.

本発明でいう、単結晶が有用である有機化合物とは、光
学、非線形光学、音響光学などにおいて有用な有機化合
物であれば何でも良いが、有機非線形光学材料を例にと
って説明すると、2−メチル−4−ニトロアニリン(M
NA) 、N−(4−ニトロフェニル)−L−プロリノ
ール(NPP)、N−[2−(5−二トロピリジル)]
−]L−プロリノールPNP) 、2−アセチルアミノ
−4−ニトロ−N、 N−ジメチルアニリン(DAN)
、2−(α−メチルベンジルアミノ)−5−ニトロピリ
ジン(MBANP) 、4−アミノベンゾフェノン(A
BP)、4−メチル−7−ジニチルアミノクマリン、4
′−ジメチルアミノ−N−メチル−4−スチルバゾリウ
ム−メトスルフェート(DMSM)、4−一二トロペン
ジリデンー4−メチルアニリン、4′−ニトロベンジリ
デン−3−アセトアミノ−4−メトキシアニリン(MN
BA)、4−メトキシ−3−メチル−4′−二トロスチ
ルベン(MMNS) 、4−ブロモ−4′−二トロスチ
ルベンなどの2次非線形光学効果を奏するもの、および
ペリレン/テトラシアノエチレン(TCNE)錯体、ペ
リレン/7. 7. 8. 8−テトラシアノキノジメ
タン(TCNQ)錯体などの3次非線形光学効果を奏す
るものなどがある。2次非線形光学効果を奏する有機化
合物の他の例は、“N。
In the present invention, the organic compound whose single crystal is useful may be any organic compound useful in optics, nonlinear optics, acousto-optics, etc., but to explain it using an organic nonlinear optical material as an example, 2-methyl- 4-Nitroaniline (M
NA), N-(4-nitrophenyl)-L-prolinol (NPP), N-[2-(5-nitropyridyl)]
-]L-prolinol PNP), 2-acetylamino-4-nitro-N, N-dimethylaniline (DAN)
, 2-(α-methylbenzylamino)-5-nitropyridine (MBANP), 4-aminobenzophenone (A
BP), 4-methyl-7-dinithylaminocoumarin, 4
'-dimethylamino-N-methyl-4-stilbazolium-methosulfate (DMSM), 4-1 ditropenzylidene-4-methylaniline, 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (MN
BA), those exhibiting a second-order nonlinear optical effect such as 4-methoxy-3-methyl-4'-nitrostilbene (MMNS), and 4-bromo-4'-nitrostilbene, and perylene/tetracyanoethylene (TCNE). ) complex, perylene/7. 7. 8. There are those that exhibit a third-order nonlinear optical effect, such as 8-tetracyanoquinodimethane (TCNQ) complex. Another example of an organic compound that exhibits a second-order nonlinear optical effect is “N.

n1inear 0ptical Propertie
s of Organic Mo1ecules an
d Cr7stals’ed、b7 D、S、Chem
la and J、27ss、 Academic P
ress、 1987. vol、1. Chapte
tII−3,pp227〜296に詳しい。
n1inear 0ptical Property
s of Organic Molecules an
d Cr7stals'ed, b7 D, S, Chem
la and J, 27ss, Academic P
ress, 1987. vol, 1. Chapter
tII-3, pp227-296 for details.

ポリジアセチレン誘導体単結晶は、種々の格子定数を持
つため、目的の有機化合物単結晶の方位制御成長に好適
なものを容易に選択することができるという特徴を有す
る。さらに、非昇華性、非溶解性、非溶融性であるから
、目的の範囲の使用に際しての制限は殆どない。このよ
うなポリジアセチレン誘導体単結晶の性質を利用するこ
とにより、本発明は達成された。更に、ポリジアセチレ
ン誘導体単結晶の多くは1次元性あるいは2次元性の構
造を持ち、このことに由来して襞間によって平滑かつ新
鮮な結晶面を容易に得ることができるという特長を持つ
。ポリジアセチレン誘導体単結晶は、発明の製造方法を
実施する際に、その製造条件下で、非昇華性または非溶
解性または非溶融性のうち少なくとも1つの性質を有す
るものが好ましく用いられる。ポリジアセチレン誘導体
単結晶としては、数多く知られており(例えば、Ila
ns−Joacbim Cantow  Ed、、’P
o17diacet71enes’Springer−
Verlag、 1984) 、例えば、ポリ [2,
4−ヘキサジイン−1,6−シオールビス(p−1ルエ
ンスルホナート)] (PTS)、ポリ(ヘキサ−2,
4−ジイン−1,6−ジイル ビスフェニルカルバメー
ト)(HDU)、ポリ (ドデカ−5゜7−ジイン−1
,12−ジイル ビスフェニルカルバメート)(TCD
U)、ポリ[1,6−ジ(カルバゾリル)−2,4−ヘ
キサジイン]  (DCH)などがある。その格子定数
は、既述の参考文献のp、124〜125に記述されて
いる。
Since polydiacetylene derivative single crystals have various lattice constants, they are characterized in that one suitable for orientation-controlled growth of a desired organic compound single crystal can be easily selected. Furthermore, since it is non-sublimable, non-soluble, and non-melting, there are almost no restrictions on its use within the intended range. The present invention has been achieved by utilizing the properties of such polydiacetylene derivative single crystals. Furthermore, many single crystals of polydiacetylene derivatives have a one-dimensional or two-dimensional structure, and as a result of this, they have the advantage that smooth and fresh crystal faces can be easily obtained between the folds. The polydiacetylene derivative single crystal preferably has at least one of non-sublimation, non-dissolution, and non-melting properties under the production conditions when carrying out the production method of the invention. Many polydiacetylene derivative single crystals are known (for example, Ila
ns-Joacbim Cantow Ed,,'P
o17diacet71enes'Springer-
Verlag, 1984), e.g. poly[2,
4-hexadiyne-1,6-thiolbis(p-1 luenesulfonate)] (PTS), poly(hexa-2,
4-diyne-1,6-diyl bisphenylcarbamate) (HDU), poly(dodeca-5゜7-diyne-1)
,12-diyl bisphenylcarbamate) (TCD
U), poly[1,6-di(carbazolyl)-2,4-hexadiyne] (DCH), and the like. Its lattice constants are described on pages 124-125 of the reference cited above.

有機化合物のバルク単結晶を得る目的には、溶融法の一
種であるブリッジマン法や溶液結晶法においてポリジア
セチレン誘導体単結晶を、種子結晶の如く使用しても良
いし、薄膜単結晶を得る目的には、基板結晶あるいは種
子結晶として使用しても良い。
For the purpose of obtaining bulk single crystals of organic compounds, polydiacetylene derivative single crystals may be used as seed crystals in the Bridgman method, which is a type of melting method, or the solution crystal method, or for the purpose of obtaining thin film single crystals. may be used as a substrate crystal or seed crystal.

以上のとおり、有機化合物の目的の結晶成長面に対して
、格子整合の条件を満足するようにポリジアセチレン誘
導体単結晶の結晶面から適切なものを選べば、有機単結
晶の有効な成長方位制御が達成できる。
As described above, if an appropriate crystal plane of a polydiacetylene derivative single crystal is selected so as to satisfy the lattice matching condition for the desired crystal growth plane of an organic compound, it is possible to effectively control the growth direction of an organic single crystal. can be achieved.

[実施例] 以下、ポリ[2,4−ヘキサジイン−1,6−シオール
ービス(p−トルエンスルホナート)]  (PTS)
単結晶(001)襞間面上でのMNBA単結晶成長に関
する実施例を用いて説明するが、本発明はこれらの例に
よってなんら限定されることはない。
[Example] Hereinafter, poly[2,4-hexadiyne-1,6-thiolubis(p-toluenesulfonate)] (PTS)
Although the present invention will be described using examples related to MNBA single crystal growth on single crystal (001) interfold planes, the present invention is not limited in any way by these examples.

実施例1 大きな2次非線形光学効果を有する有機材料の4゛−二
トロペンジリデン−3−アセトアミノ−4−メトキシア
ニリン(MNBA)の微結晶5.0gを、100m1の
ジメチルホルムアミド中に溶解し、PTSの単結晶(単
斜晶系P21/c、格子定数a=14.993人、b=
4.910人、c=14.936人、β=118.14
°)の(001)襞間面上に展開し、カバー・グラスで
上から挟んで、室温でスロー・エバポレーションによっ
て結晶化させた。十数時間後には結晶が成長するという
極めて急速な結晶成長条件であったが、PTS上に均一
に、しかも透明な黄色結晶が得られた。このMNBA結
晶を基板PTS単結晶から剥離し、偏光顕微鏡のクロス
・ニコル下で観察することにより単結晶であることがわ
かった。
Example 1 5.0 g of microcrystals of 4'-nitropenzylidene-3-acetamino-4-methoxyaniline (MNBA), an organic material with a large second-order nonlinear optical effect, were dissolved in 100 ml of dimethylformamide, and PTS Single crystal (monoclinic P21/c, lattice constant a=14.993, b=
4.910 people, c=14.936 people, β=118.14
The mixture was spread on the (001) interfold plane of 30°C, sandwiched between cover glasses, and crystallized by slow evaporation at room temperature. Although the crystal growth conditions were extremely rapid, with crystals growing after more than ten hours, uniform and transparent yellow crystals were obtained on the PTS. This MNBA crystal was peeled off from the PTS single crystal substrate and observed under a crossed Nicol microscope using a polarizing microscope, and it was found to be a single crystal.

同様な結晶成長を繰返した結果、常に単結晶が得られる
ことが確認された。次に、これらの単結晶をX線回折に
よって調べたところ、常にMNBA単結晶の(001)
面がPTS (001)襞間面上に成長していることが
わかった。
As a result of repeating similar crystal growth, it was confirmed that single crystals were always obtained. Next, when these single crystals were examined by X-ray diffraction, the (001) of MNBA single crystals was always observed.
It was found that the plane grew on the PTS (001) interfold plane.

MNBA単結晶の(OO1)面とPTS (001)面
のミス・フィツト・ファクターを算出したところ、a−
a=(aはPTSの、a′はMNBAの結晶軸方位)方
位では、−11,8%、b−b′方位では−9,3%で
あり、共にヘテロ・エピタキシャル成長が可能な限界値
とされる15%より小さな値となることが確認できた。
When we calculated the misfit factor between the (OO1) plane and the PTS (001) plane of the MNBA single crystal, we found that a-
In the a=(a is the crystal axis direction of PTS, a' is the crystal axis direction of MNBA), it is -11.8%, and in the b-b' direction, it is -9.3%, both of which are the limit values that allow heteroepitaxial growth. It was confirmed that the value was smaller than 15%.

実施例2 MNBA数十m数十m力バー・グラスの上に置き、その
上からPTS単結晶の(001)襞間面を重ねて、その
ままホット・プレートで200℃に加熱して189℃付
近に融点を持つMNBAを溶融し、0.1℃/時間未満
の降温速度で徐冷した。室温に冷却後、PTS上に透明
な黄色結晶が得られた。実施例1と同様に、MNBA結
晶を基板PTS単結晶から剥離し、偏光顕微鏡のクロス
・ニコル下で観察することにより、単結晶であることが
わかった。繰返し同様な結晶成長をさせた結果、上述の
方法によれば常に単結晶が得られることが確認された。
Example 2 Place several tens of meters of MNBA on a bar glass, overlay the (001) interfold plane of PTS single crystal on top of it, and heat it as it is to 200°C on a hot plate to around 189°C. MNBA, which has a melting point of , was melted and slowly cooled at a cooling rate of less than 0.1° C./hour. After cooling to room temperature, transparent yellow crystals were obtained on the PTS. As in Example 1, the MNBA crystal was peeled from the PTS single crystal substrate and observed under a crossed Nicol microscope using a polarizing microscope, and it was found to be a single crystal. As a result of repeating similar crystal growth, it was confirmed that single crystals were always obtained by the above method.

しかし、PTS単結晶の(001)剪開面をホット・プ
レート側にしてカバー・グラス側から冷却され結晶化が
起こるようにすると殆どの場合単結晶は得られなかった
However, when the (001) shear plane of the PTS single crystal was placed on the hot plate side and the crystallization was caused by cooling from the cover glass side, no single crystal was obtained in most cases.

次に、先に得られた単結晶をX線回折によって調べたと
ころ、常にMNBA単結晶の(001)面がPTS (
001) 襞間面上に成長していることがわかった。
Next, when the previously obtained single crystal was examined by X-ray diffraction, it was found that the (001) plane of the MNBA single crystal was always PTS (
001) was found to grow on the interfold surface.

したがって、溶融法の場合にはPTS単結晶の(001
)襞間面側からMNBAの結晶化が起こるよう温度条件
設定することが重要であることが示された。
Therefore, in the case of the melting method, the (001
) It was shown that it is important to set temperature conditions so that crystallization of MNBA occurs from the interfold side.

実施例3 MNBA数十mgを、2枚のスライド−グラス間で溶融
し、融液がスライド・グラスの一方の端でPTS単結晶
の(001)襞間面に接触するようにして、襞間プレー
ト状PTS単結晶の裏から真鍮製のヒート・シンクをあ
てがうことにより、PTS単結晶の(001)襞間面側
からMNBAの結晶化が起こるように温度条件の設定を
した。
Example 3 Several tens of mg of MNBA was melted between two slides and a glass, and the melt was brought into contact with the (001) interfold plane of a PTS single crystal at one end of the slide and glass, and the interfold surface was By applying a brass heat sink to the back of the plate-shaped PTS single crystal, temperature conditions were set so that MNBA crystallization occurred from the (001) interfold side of the PTS single crystal.

室温まで徐冷後、スライド・グラス間に透明な黄色結晶
が得られた。実施例1と同様に、MNBA結晶を偏光顕
微鏡のクロス・ニコル下で観察することにより、単結晶
であることがわかった。繰返し同様に結晶成長させた結
果、上述の方法は常に単結晶が得られることが確認され
た。しかし、この場合にはスライド・グラス間に成長し
たMNBA単結晶の広い面は(001)面ではなく、(
010)面であることがX線回折によってわかった。
After slowly cooling to room temperature, transparent yellow crystals were obtained between the slide and the glass. As in Example 1, the MNBA crystal was observed under a crossed Nicols polarizing microscope and was found to be a single crystal. As a result of repeated crystal growth in the same manner, it was confirmed that the above method always yields a single crystal. However, in this case, the wide plane of the MNBA single crystal grown between the slide glass is not the (001) plane, but the (001) plane.
010) plane was found by X-ray diffraction.

この実施例によって、ガラス基板間に再現性良く特定の
成長方位を有する薄膜単結晶が得られることが示された
This example showed that a thin film single crystal having a specific growth direction between glass substrates could be obtained with good reproducibility.

実施例4 真空蒸着機の抵抗加熱ボートの上にMNBA数gを置き
、抵抗加熱ボートの上方的35cmの所にある基板ホー
ルダーに(001)襞間面を持つPTS単結晶を取付け
た。約10−’ Tortの真空度にして約5人/se
eのゆっくりした蒸着速度で蒸着した。約5000人の
堆積膜厚となったところで蒸着を止め、PTS単結単結
晶面開面察した。
Example 4 Several grams of MNBA were placed on a resistance heating boat of a vacuum evaporation machine, and a PTS single crystal with a (001) interfold plane was attached to a substrate holder located 35 cm above the resistance heating boat. Approximately 5 people/se at a vacuum level of approximately 10-' Tort
It was deposited at a slow deposition rate of e. Vapor deposition was stopped when the thickness of the deposited film reached approximately 5000, and the PTS single crystal plane was observed.

無数の、はぼ−様の大きさ(数μm〜数十μm)と形状
を持つ微結晶がほぼ同一方向に方位を揃えて生成してい
たが、大きな薄膜単結晶を得ることはできなかった。
Countless microcrystals with a hollow-like size (several μm to several tens of μm) and shape were generated with almost the same orientation, but it was not possible to obtain a large thin film single crystal. .

次に、基板であるPTS単結晶を加熱して温度を約15
0℃に保って上記と同様の条件下にMNBAを蒸着した
。約5000大のMNBA堆積膜厚を有するPTS単結
単結晶面開面察した。PTS単結単結晶面開面上ぼ均一
に黄色の透明膜が生成した。実施例1と同様に、このM
NBA膜を基板PTS単結晶から剥離し、偏光顕微鏡の
クロスニコル下で観察して、単結晶であることがわかっ
た。同様な結晶成長を繰返した結果、上述の方法で常に
単結晶が得られることが確認された。
Next, the PTS single crystal that is the substrate is heated to a temperature of about 15%.
MNBA was deposited under the same conditions as above while maintaining the temperature at 0°C. A PTS single crystal with an MNBA deposited film thickness of about 5000 mm was examined by cutting the surface. A yellow transparent film was formed almost uniformly on the open plane of the PTS single crystal. As in Example 1, this M
The NBA film was peeled off from the PTS single crystal substrate and observed under a crossed Nicol microscope using a polarizing microscope, and it was found to be a single crystal. As a result of repeating similar crystal growth, it was confirmed that a single crystal could always be obtained by the above method.

次に得られた単結晶をX線回折によって調べたところ、
常にMNBA単結晶の(OO1)面がPTS (001
) 襞間面上に成長することがわかった。
Next, the obtained single crystal was examined by X-ray diffraction, and it was found that
The (OO1) plane of the MNBA single crystal is always PTS (001
) was found to grow on the interfold surface.

したがって、気相法によってもMNBA単結晶を方位制
御してPTS単結晶の(001)襞間面上に成長させる
ことができるが、その際基板PTSの温度設定が重要で
あることが示された。
Therefore, although it is possible to control the orientation of MNBA single crystals and grow them on the (001) interfold planes of PTS single crystals using the vapor phase method, it was shown that the temperature setting of the substrate PTS is important in this case. .

[発明の効果] 本発明は、ポリジアセチレン誘導体単結晶を成長基板結
晶あるいは種子結晶の如く用いることにより、有機単結
晶の成長場所・成長方位が簡便かつ意図的に制御できる
といった成長方位制御された有機単結晶の製造方法を提
供することができる。
[Effects of the Invention] The present invention provides a method for controlling growth direction in which the growth location and growth direction of an organic single crystal can be easily and intentionally controlled by using a polydiacetylene derivative single crystal as a growth substrate crystal or a seed crystal. A method for producing an organic single crystal can be provided.

Claims (2)

【特許請求の範囲】[Claims] (1)気相、溶液相、または溶融相からの有機化合物単
結晶の製造法において、ポリジアセチレン誘導体単結晶
を共存させ、該ポリジアセチレン誘導体単結晶の結晶面
上にその結晶面の格子定数と整合する有機化合物単結晶
の成長面を選択的に成長させる工程を含むことを特徴と
する成長方位制御された有機単結晶の製造方法。
(1) In a method for producing an organic compound single crystal from a gas phase, a solution phase, or a melt phase, a polydiacetylene derivative single crystal is allowed to coexist, and the lattice constant of the crystal plane is 1. A method for producing an organic single crystal with controlled growth orientation, comprising the step of selectively growing growth surfaces of a matching organic compound single crystal.
(2)有機化合物が非線形光学材料であることを特徴と
する特許請求の範囲第(1)項記載の成長方位制御され
た有機単結晶の製造方法。
(2) The method for producing an organic single crystal with controlled growth direction according to claim (1), wherein the organic compound is a nonlinear optical material.
JP31572288A 1988-12-14 1988-12-14 Method for producing organic single crystal with controlled growth direction Expired - Lifetime JPH0676280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31572288A JPH0676280B2 (en) 1988-12-14 1988-12-14 Method for producing organic single crystal with controlled growth direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31572288A JPH0676280B2 (en) 1988-12-14 1988-12-14 Method for producing organic single crystal with controlled growth direction

Publications (2)

Publication Number Publication Date
JPH02160697A true JPH02160697A (en) 1990-06-20
JPH0676280B2 JPH0676280B2 (en) 1994-09-28

Family

ID=18068750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31572288A Expired - Lifetime JPH0676280B2 (en) 1988-12-14 1988-12-14 Method for producing organic single crystal with controlled growth direction

Country Status (1)

Country Link
JP (1) JPH0676280B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016658A1 (en) * 1990-04-13 1991-10-31 Toray Industries, Inc. Laminated organic nonlinear optical crystal and production thereof
US5385116A (en) * 1992-03-24 1995-01-31 Sumitomo Electric Industries, Ltd. Method for producing organic crystal film
US5751389A (en) * 1994-09-08 1998-05-12 Sumitomo Chemical Company Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same
US6133973A (en) * 1995-09-08 2000-10-17 Andreatta; Alejandro Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016658A1 (en) * 1990-04-13 1991-10-31 Toray Industries, Inc. Laminated organic nonlinear optical crystal and production thereof
US5385116A (en) * 1992-03-24 1995-01-31 Sumitomo Electric Industries, Ltd. Method for producing organic crystal film
US5751389A (en) * 1994-09-08 1998-05-12 Sumitomo Chemical Company Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same
US6133973A (en) * 1995-09-08 2000-10-17 Andreatta; Alejandro Film containing oriented dye, method of manufacturing the same, and polarizer and liquid crystal display unit utilizing the same

Also Published As

Publication number Publication date
JPH0676280B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US5193020A (en) Method for producing compensator for liquid crystal display
JP2678055B2 (en) Manufacturing method of organic compound thin film
Nakashima et al. Casting of synthetic bilayer membranes on glass and spectral variation of membrane-bound cyanine and merocyanine dyes
EP0573278B1 (en) Method of making compensator for liquid crystal display
Thirunavukkarsu et al. Synthesis, growth, structural, optical, thermal and mechanical properties of bis-benzotriazole trichloroacetic acid single crystals
JPH02160697A (en) Production of organic single crystal regulated in growth direction
US5288426A (en) Nonlinear optical materials
Johnson et al. Kinetics of mesophase transitions in thermotropic copolyesters. 5. A copolyester containing TPA/PHQ/HBA
Arivanandhan et al. Ethyl p-amino benzoate (EPAB): A novel organic non-linear optical material for optical devices
US4927917A (en) Quasi-liquid crystals
JPS61165350A (en) Optically active halocarboxylic acid derivative and liquid crystal containing same
JPH058159B2 (en)
JPH04333002A (en) Polarization film and manufacture thereof
JPH02160220A (en) Preparation of organic thin film single crystal
JPH03153739A (en) Crystalline organic thin film and its production
JP2773881B2 (en) Manufacturing method of organic compound thin film
JPH111593A (en) Thin film of oriented molecule
JPS6236095A (en) Formation of organic thin film crystal
JPH07306421A (en) Ferroelectric liquid crystal element
JP2001139389A (en) Single crystalline thin film and method of producing the same
JPS63287924A (en) Liquid crystal display element
Konishi et al. Giant domain formation in a thin film of bisstyrylanthracene derivatives by a simple melt process
JPH03197399A (en) Production of organic crystal
JPH01258776A (en) Uniaxially stretched polyethylene product
JPH0369599A (en) Method for growing organic nonlinear optical single crystal