JPS63238271A - Method for modifying surface by radiation of ion - Google Patents

Method for modifying surface by radiation of ion

Info

Publication number
JPS63238271A
JPS63238271A JP7050487A JP7050487A JPS63238271A JP S63238271 A JPS63238271 A JP S63238271A JP 7050487 A JP7050487 A JP 7050487A JP 7050487 A JP7050487 A JP 7050487A JP S63238271 A JPS63238271 A JP S63238271A
Authority
JP
Japan
Prior art keywords
amorphous layer
irradiation
temperature
ions
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7050487A
Other languages
Japanese (ja)
Other versions
JP2710114B2 (en
Inventor
Yoshimasa Nihei
二瓶 好正
Masanori Owari
尾張 真則
Kaoru Miura
薫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP62070504A priority Critical patent/JP2710114B2/en
Publication of JPS63238271A publication Critical patent/JPS63238271A/en
Application granted granted Critical
Publication of JP2710114B2 publication Critical patent/JP2710114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily form an amorphous layer on the surface of a compd. base material such as GaAs by radiating ions of a specified gas accelerated at a specified low temp. and a specified low acceleration voltage on the surface of the base material. CONSTITUTION:Ions of a rare gas such as Ar, He, Ne or Xe or other gas such as N as an ion source are accelerated at a low temp. of <=20 deg.C, especially -100-20 deg.C and a low acceleration voltage of <=2,000V, especially 50-2,000V and the accelerated ions are radiated on the surface of a base material such as GaAs. An amorphous layer of a prescribed thickness can easily be formed without requiring a heat annealing stage after the radiation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイオン照射による表面改質方法、就中、表面に
アモルファス層を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for modifying a surface by ion irradiation, and particularly to a method for forming an amorphous layer on the surface.

(従来の技術) イオン照射を用いる材料表面の改質技術は、電子産業に
おける半導体デバイス製作をはじめとして、鉄鋼材料の
耐久性向上、ポリマーの接着性向上や導電化等において
、材料表面の高機能化に伴いその重要性は益々高くなっ
ている。特に半導体デバイス製作において、結晶基板表
面にアモルファス層を形成してついでこのアモルファス
層のみを選択的にエツチング除去して微細加工を行う場
合には、基板表面のアモルファス層形成は、半導体デバ
イスの高密度化、高集積化に伴い高精度化が要求され、
アモルファス層厚の高精度の制御が期待されている。
(Conventional technology) Material surface modification technology using ion irradiation is used to improve the functionality of material surfaces, including the production of semiconductor devices in the electronics industry, improving the durability of steel materials, and improving the adhesiveness and conductivity of polymers. Its importance is increasing as the world ages. Particularly in the production of semiconductor devices, when microfabrication is performed by forming an amorphous layer on the surface of a crystalline substrate and then selectively etching and removing only this amorphous layer, the formation of the amorphous layer on the surface of the substrate is difficult due to the high density of the semiconductor device. As technology and integration become more sophisticated, higher precision is required.
High precision control of the amorphous layer thickness is expected.

従来、基材表面にアモルファス層を形成する場合、一般
に数十〜数百kVの高加速電圧イオンを用い、通常、イ
オン照射を受ける基材の温度は室温より高い温度でイオ
ン照射が行われている。しかし、この様な比較的高い温
度における高エネルギーのイオン照射手段では、アモル
ファス層厚の制御精度は高々〜1000超微度であり、
また、形成されたアモルファス層の下方まで結晶構造が
相当程度乱されるという照射損傷の問題が生ずる。
Conventionally, when forming an amorphous layer on the surface of a substrate, ions with a high acceleration voltage of several tens to hundreds of kV are generally used, and the ion irradiation is usually performed at a temperature of the substrate receiving ion irradiation higher than room temperature. There is. However, with such high-energy ion irradiation means at relatively high temperatures, the control accuracy of the amorphous layer thickness is at most ~1000 ultra-fine,
Further, there arises the problem of irradiation damage in which the crystal structure is disturbed to a considerable extent even below the formed amorphous layer.

一方、半導体デバイス、特に、〜100人程度0極薄層
、〜1000人程度の超微細加工を必要とするVLSI
、超々LS l三次元rc等の製作においては、アモル
ファス層厚の制御精度は可及的高められることが望まれ
る。
On the other hand, semiconductor devices, especially VLSI, which require ~100 ultra-thin layers and ~1000 ultra-fine processing.
, ultra-super LSI, three-dimensional RC, etc., it is desired that the control accuracy of the amorphous layer thickness be as high as possible.

また、照射損傷回復の為にイオン照射後に通常、400
〜800℃の熱アニールが行われているが、この熱アニ
ールにおける高温加熱は、基材ならびにヘテロ界面の変
質、不純物原子の拡散などの問題が生じるばかりでなく
、プロセスの低温化が必須となるVLSIデバイスでは
致命的な欠陥となりかねないものである。
In addition, in order to recover from irradiation damage, 400
Thermal annealing is performed at ~800°C, but the high-temperature heating in this thermal annealing not only causes problems such as alteration of the base material and heterointerface, and diffusion of impurity atoms, but also requires lowering the process temperature. This can be a fatal defect in VLSI devices.

(発明が解決しようとする問題点) 本発明は、イオン照射による表面改質の一つの代表的態
様であるアモルファス層形成において、所望の厚さのア
モルファス層が高精度で容易に形成せられ、かつ、前記
の照射損傷が少なく、イオン照射後に熱アニールを必要
としないアモルファス層形成による表面改質方法を提供
する。
(Problems to be Solved by the Invention) The present invention provides a method for easily forming an amorphous layer with a desired thickness with high precision in forming an amorphous layer, which is one typical aspect of surface modification by ion irradiation. In addition, the present invention provides a surface modification method by forming an amorphous layer that causes less radiation damage and does not require thermal annealing after ion irradiation.

(問題点を解決するための手段) 本発明者は、畝上の意図のもとに、イオン照射によるア
モルファス層形成及び照射損傷について研究した結果、
これらとイオン照射を受ける基材温度及び加速電圧との
間の関連について新規な知見を見いだし本発明を提案す
るに至ったものである。即ち、本発明は、イオン照射を
、20℃以下の低温領域において、2000V以下の低
加速電圧で加速されたイオンを用いて行うことを特徴と
するイオン照射による表面改質方法である。
(Means for Solving the Problems) As a result of research on amorphous layer formation and irradiation damage caused by ion irradiation with the intention of creating a ridge, the present inventor found that:
We have discovered new knowledge regarding the relationship between these, the temperature of the substrate subjected to ion irradiation, and the acceleration voltage, and have come to propose the present invention. That is, the present invention is a surface modification method by ion irradiation, characterized in that ion irradiation is performed in a low temperature region of 20° C. or lower using ions accelerated at a low acceleration voltage of 2000 V or lower.

本発明者は、基材の結晶表面にイオン照射を行うと表層
のアモルファス化が起こるが、同時に基材温度に依存し
て照射中あるいは照射後に再結晶化も起こることを知っ
た。さらに、ある温度以上では再結晶化速度が大きく加
速電圧依存性は殆どみられず、この再結晶化がアモルフ
ァス層厚の支配的要因であるが、ある温度以下では再結
晶化速度が小さく加速電圧依存性が生じるという新規な
現象を見いだした。
The present inventors have found that when the crystalline surface of a base material is irradiated with ions, the surface layer becomes amorphous, but at the same time, recrystallization also occurs during or after irradiation depending on the base material temperature. Furthermore, above a certain temperature, the recrystallization rate is large and there is almost no dependence on the accelerating voltage, and this recrystallization is the dominant factor in the amorphous layer thickness, but below a certain temperature, the recrystallization rate is small and the accelerating voltage We discovered a novel phenomenon of dependence.

本発明における20℃以下の条件は、上記知見に基づく
ものであり、形成されるアモルファス層の厚寸を高精度
で制御するうえで重要である。即ち、照射温度が20℃
を超える場合は、イオン照射中あるいは照射後に再結晶
化現象がみられ、加速電圧を操作しても高精度で所望の
厚さのアモルファス層を得ることが困難となる。アモル
ファス層厚に加速電圧依存性がみられ、好適に使用でき
るのは照射温度20℃以下好ましくは一100〜20℃
の温度範囲である。なお基板温度を一100℃より低い
温度に冷却することは基板の汚染、冷却装置の複雑化、
処理能力の低下等の為に実用上有益ではない。従って、
本発明は、20℃以下好ましくは一100〜20℃、更
に好ましくは一80〜0℃の範囲からイオンの種類、加
速電圧、ドーズ量などを考慮して適当な庄屋温度を選べ
ばよい。
The condition of 20° C. or lower in the present invention is based on the above knowledge, and is important for controlling the thickness of the amorphous layer to be formed with high precision. That is, the irradiation temperature is 20℃
If it exceeds 20%, a recrystallization phenomenon will occur during or after ion irradiation, and it will be difficult to obtain an amorphous layer with a desired thickness with high precision even if the accelerating voltage is manipulated. The amorphous layer thickness shows acceleration voltage dependence, and can be suitably used at an irradiation temperature of 20°C or lower, preferably -100 to 20°C.
temperature range. Note that cooling the substrate temperature to a temperature lower than -100°C may contaminate the substrate, complicate the cooling system,
This is not practically useful due to a decrease in processing capacity. Therefore,
In the present invention, an appropriate temperature may be selected from a range of 20°C or lower, preferably -100 to 20°C, more preferably -80 to 0°C, taking into account the type of ion, accelerating voltage, dose amount, etc.

また、本発明における照射イオンの加速電圧2000V
以下の条件は、従来一般の加速電圧数十〜数百kVに比
較して相当に小さいものであるが、照射残存損傷の軽減
の観点から照射温度20℃以下の条件と共に重要である
。加速電圧が2000Vを超える場合は、照射損傷の軽
減が不十分であり、イオン照射後の熱アニール工程の省
略が困難となる。さらにまた、アモルファス層厚の良好
な制御の点からも照射イオンはある程度低エネルギーで
あることが望ましく、また、過度に低エネルギーである
場合には、アモルファス層の形成が困難となるため、所
望のアモルファス層厚を高精度で形成させるためには5
0〜2000Vの低加速電圧で行うことが望ましい。即
ち所望とするアモルファス層厚の具体的数値と照射残存
損傷の許容程度を考慮して、2000V以下好ましくは
50〜2000V、更に好ましくは100〜1500V
の範囲内の適宜の加速電圧を採用し低温照射を行えばよ
い。
Further, the acceleration voltage of irradiated ions in the present invention is 2000V.
The following conditions are considerably smaller than conventional acceleration voltages of several tens to hundreds of kV, but are important along with the condition of an irradiation temperature of 20° C. or less from the viewpoint of reducing residual damage from irradiation. When the accelerating voltage exceeds 2000 V, irradiation damage is insufficiently reduced and it becomes difficult to omit the thermal annealing step after ion irradiation. Furthermore, from the point of view of good control of the amorphous layer thickness, it is desirable that the irradiated ions have a certain degree of low energy, and if the energy is too low, it will be difficult to form an amorphous layer. In order to form the amorphous layer thickness with high precision, 5
It is desirable to use a low acceleration voltage of 0 to 2000V. That is, considering the specific value of the desired amorphous layer thickness and the allowable degree of residual damage from irradiation, the voltage is 2000 V or less, preferably 50 to 2000 V, and more preferably 100 to 1500 V.
Low-temperature irradiation may be performed by employing an appropriate acceleration voltage within the range of .

上記の照射温度と低加速電圧の好ましい範囲内において
は、一般に照射温度が低いほどアモルファス層厚の加速
電圧依存性が高くなり、また加速電圧が小さいほどアモ
ルファス層厚は小さくなる。
Within the preferable ranges of the irradiation temperature and low accelerating voltage described above, in general, the lower the irradiation temperature, the higher the dependence of the amorphous layer thickness on the accelerating voltage, and the lower the accelerating voltage, the smaller the amorphous layer thickness.

これらの知見をもとに、イオン種ばかアモルファス層を
形成させる基材の種類を考慮して具体的な照射温度と加
速電圧を適宜決定採用すればよい。
Based on these findings, specific irradiation temperatures and accelerating voltages may be determined and adopted as appropriate, taking into consideration the type of base material on which the amorphous layer is to be formed.

イオン源となるガスとしては、イオン照射を行う際に、
従来一般に使用されているものなどが任意に用いられる
。例えば、アルゴン、ヘリウム、ネオン、キセノンなど
の希ガスや窒素等が好ましいがその他酸素、塩素、フッ
素、フルオロカーボン等の様々なガスが特に制限なく使
用できる。さらに、二種類以上のガスを混合して使用す
ることも可能である。
When performing ion irradiation, gases that serve as ion sources include:
Any conventionally commonly used one can be used. For example, rare gases such as argon, helium, neon, and xenon, nitrogen, and the like are preferred, but various other gases such as oxygen, chlorine, fluorine, and fluorocarbons can be used without particular limitation. Furthermore, it is also possible to use a mixture of two or more types of gas.

また、本発明において表面改質の対象となる基材も特に
制限されず、電子産業における半導体デバイス製作に通
常使用されるGaAs+GaP+ InP+ InAs
Furthermore, the base material to be surface-modified in the present invention is not particularly limited, and may include GaAs+GaP+ InP+ InAs, which is commonly used in the production of semiconductor devices in the electronic industry.
.

InSb、 A j! GaAs、 GaAsP + 
3) 、 Sing、 5iJ1系物質等の半導体材料
の他、磁気バブル素子用ガーネットや光集積回路用Li
Nb0+などにも適用される。
InSb, A j! GaAs, GaAsP +
3) In addition to semiconductor materials such as Sing and 5iJ1-based materials, garnet for magnetic bubble elements and Li for optical integrated circuits
It is also applied to Nb0+ etc.

本発明を実施するためのイオン照射装置としては、本発
明において規定する加速電圧を印加することができ、表
面改質の対象となる基材温度を規定温度に良好に制御す
ることが出来るものであればよく、従来のイオン照射装
置を適宜改良して用いることが出来る。
The ion irradiation device for carrying out the present invention is one that can apply the accelerating voltage specified in the present invention and can satisfactorily control the temperature of the substrate to be surface modified to the specified temperature. Any existing ion irradiation device may be used, and a conventional ion irradiation device can be appropriately modified and used.

(作 用) 従来一般にイオン照射が行われていた温度すなわち室温
より高い温度においては、イオン照射中あるいは照射後
に再結晶化が進行し、アモルファス層厚の加速電圧依存
性が著しく小さいのに対して、本発明で規定する低温領
域においてはアモルファス層厚の良好な加速電圧依存性
がみられる。
(Function) At the temperature at which ion irradiation was conventionally performed, that is, higher than room temperature, recrystallization progresses during or after ion irradiation, and the dependence of the amorphous layer thickness on accelerating voltage is extremely small. In the low temperature region defined by the present invention, a good dependence of the amorphous layer thickness on the accelerating voltage is observed.

この理由についてはイオン照射中基材温度を低温に保つ
ことにより、原子の熱運動か抑えられ再結晶化速度が十
分に小さく保たれるためであると推測される。また、照
射イオンのエネルギーの大小によってアモルファス層厚
が左右されるのは、照射イオンと基材との相互作用の程
度がエネルギーに依存し、より高いエネルギーでは深く
進入しアモルファス化するための考えられる。更に、照
射イオンのエネルギーが過度に大きいと基材内部のアモ
ルファスと結晶との界面における凹凸が大きくなり、ア
モルファス層の下にも損傷が深(まで達しやすいのに対
して、低エネルギーにおいては、平坦な界面が形成され
ると推測されるため、低エネルギーの照射イオンの場合
照射残存損傷が小さいものと考えられる。
The reason for this is presumed to be that by keeping the substrate temperature low during ion irradiation, the thermal movement of atoms is suppressed and the recrystallization rate is kept sufficiently low. In addition, the reason why the amorphous layer thickness is affected by the energy of the irradiated ions is that the degree of interaction between the irradiated ions and the base material depends on the energy, and at higher energies, they penetrate deeper and become amorphous. . Furthermore, if the energy of the irradiated ions is excessively high, the unevenness at the interface between the amorphous and crystal inside the base material becomes large, and the damage tends to reach deep below the amorphous layer, whereas at low energy, Since it is assumed that a flat interface is formed, it is thought that the residual damage caused by irradiation is small in the case of low-energy irradiation ions.

(実施例) 以下いくつかの実施例を挙げ本発明の効果を具体的に示
すが、本発明はこれらの実施例に限定されず、本発明の
主旨を逸脱しない範囲で適宜変更できるものである。
(Examples) Several examples will be given below to concretely demonstrate the effects of the present invention, but the present invention is not limited to these examples and can be modified as appropriate without departing from the gist of the present invention. .

本実施例において、イオン照射用チャンバには、イオン
銃、試料台、真空計が設置され、イオン銃は電源に、ま
た、試料台はマニピュレーターに接続されておりイオン
銃に対してその位置及び角度を自由に変えることが出来
る。また、チャンバはガス配管を通してガス源に、排気
管を通して真空ポンプに各々連通している。さらに、試
料台は冷却源(温度コントローラー)に接続されている
In this example, an ion gun, a sample stage, and a vacuum gauge are installed in the ion irradiation chamber. The ion gun is connected to a power source, and the sample stage is connected to a manipulator, and their positions and angles with respect to the ion gun are connected. can be changed freely. The chamber also communicates with a gas source through a gas pipe and with a vacuum pump through an exhaust pipe. Furthermore, the sample stage is connected to a cooling source (temperature controller).

この冷却源は試料台上におかれた試料の温度を低く一定
に保つことにより、イオン照射によるアモルファス化を
高精度に制御するためのものである。
This cooling source is used to control the amorphization caused by ion irradiation with high precision by keeping the temperature of the sample placed on the sample stage low and constant.

電源より、チャンバに取り付けたイオン銃に電圧を印加
すると、イオンが発生する。用いたガスに基づくイオン
が(例えば、アルゴンガスを用いた場合にはAr”が、
ネオンガスを用いた場合にはNe’)が、試料台上の基
材に照射され、基材表面にアモルファス層が形成される
0本実施例においては、I X 10−’Torrのガ
ス圧において、0.01〜1μA /(!IIの電源密
度でアモルファス層厚が飽和するまでイオン照射を行い
アモルファス層を形成させた。また、アモルファス層厚
はX線光電子回折装置及び走査型電子顕微鏡装置を用い
て決定し、照射残存損傷については、ケミカルエツチン
グによりアモルファス層を除去した後、フォトルミネセ
ンス法により下記の4段階で評価を行った。
When a voltage is applied from a power source to an ion gun attached to a chamber, ions are generated. Ions based on the gas used (for example, Ar'' when using argon gas,
When neon gas is used, Ne') is irradiated onto the substrate on the sample stage to form an amorphous layer on the surface of the substrate. In this example, at a gas pressure of I x 10-'Torr, Ion irradiation was performed until the amorphous layer thickness was saturated at a power density of 0.01 to 1 μA/(!II to form an amorphous layer. The amorphous layer thickness was determined using an X-ray photoelectron diffraction device and a scanning electron microscope device. After the amorphous layer was removed by chemical etching, the residual damage caused by irradiation was evaluated using the photoluminescence method in the following four stages.

◎・・・損傷がみられない ○・・・損傷が僅かである △・・・多少損傷がみられる ×・・・かなりの損傷がみられる 実施例1及び比較例1 基材としてGaAs、ガス種としてArを用い、基材温
度を100.40.20.O,−30及び−100℃と
し、各基材温度において加速電圧をs、 o o 。
◎... No damage observed ○... Slight damage △... Some damage observed ×... Significant damage observed Example 1 and Comparative Example 1 GaAs, gas as base material Using Ar as a seed, the substrate temperature was set to 100.40.20. O, -30 and -100°C, and the acceleration voltages were s, oo at each substrate temperature.

■から100Vまで段階的に変化させて行った。The voltage was changed stepwise from (2) to 100V.

結果を第1表に示すが、基材温度100.40℃ではア
モルファス層厚の加速電圧依存性がみられないが、20
℃以下特に0℃以下においては良好な加速電圧依存性が
みられる。つまり、アモルファス層厚が加速電圧の操作
によって高精度に制御されている。
The results are shown in Table 1. At a substrate temperature of 100.40°C, no dependence of the amorphous layer thickness on the accelerating voltage was observed;
Good acceleration voltage dependence is observed below 0°C, especially below 0°C. In other words, the amorphous layer thickness is controlled with high precision by manipulating the accelerating voltage.

(以下余白) 実施例2及び比較例2 基材としてGaAs、ガス種として計を用い、加速電圧
200.800Vで、各加速電圧において基材温度を7
5℃から一100℃まで段階的に変化させて行った。結
果を第2表に示す。
(Left below) Example 2 and Comparative Example 2 GaAs was used as the base material, gas was used as the gas type, and the base material temperature was set to 7 at each acceleration voltage at an acceleration voltage of 200.800V.
The temperature was changed stepwise from 5°C to -100°C. The results are shown in Table 2.

(以下余白) 実施例3 基材としてGaAs、ガス種としてN2を用い、加速電
圧200,800Vで、各加速電圧において基材温度を
0℃から一80℃まで段階的に変化させて行った。結果
を第3表に示す。
(The following is a blank space) Example 3 Using GaAs as the base material and N2 as the gas species, the temperature of the base material was changed stepwise from 0°C to -80°C at each acceleration voltage at an acceleration voltage of 200,800V. The results are shown in Table 3.

(以下余白) 実施例4 基材としてGaAs sガス種としてNeを用い、実施
例3と同様に行った。結果を第4表に示す。
(Left below) Example 4 The same procedure as in Example 3 was carried out using GaAs as the base material and Ne as the s gas species. The results are shown in Table 4.

(以下余白) 実施例5及び比較例3 基材としてS1%ガス種として計を用い、加速電圧20
0,800Vで、各加速電圧において基材温度を75℃
から一80℃まで段階的に変化させて行った。結果を第
5表に示す。
(Left below) Example 5 and Comparative Example 3 A meter was used as the S1% gas species as the base material, and an accelerating voltage of 20
At 0,800V, the substrate temperature was 75℃ at each acceleration voltage.
The temperature was changed stepwise from -80°C. The results are shown in Table 5.

(以下余白) (発明の効果) 本発明は、前記実施例で具体的に示したごとく、所望の
厚さのアモルファス層を高精度で容易に形成して表面改
質を行うことができ、かつ、従来イオン照射による表面
改質の場合の大きな欠点であった照射残存損傷も非常に
少なく、イオン照射後の熱アニール工程をも省略するこ
とが出来る。
(The following is a blank space) (Effects of the Invention) As specifically shown in the above examples, the present invention enables surface modification by easily forming an amorphous layer of a desired thickness with high precision, and The residual damage caused by irradiation, which was a major drawback in conventional surface modification by ion irradiation, is also very small, and the thermal annealing step after ion irradiation can be omitted.

高精度で所望の厚さのアモルファス層を容易に形成し得
ることは、半導体デバイス製作において形成されたアモ
ルファス層を選択的にエツチング除去して微細加工を行
う場合には極めて有意義である。さらに、熱アニール工
程の省略は、単に工程の簡略化のみならず、プロセスの
低温化を必須とするVLS Iの製作プロセスにおいて
は、極めて有益である。
The ability to easily form an amorphous layer of a desired thickness with high precision is extremely significant when microfabrication is performed by selectively etching away an amorphous layer formed in semiconductor device manufacturing. Furthermore, omitting the thermal annealing step not only simplifies the process, but also is extremely beneficial in the VLSI manufacturing process, which requires lowering the process temperature.

Claims (6)

【特許請求の範囲】[Claims] (1)イオン照射を20℃以下の低温領域に於て、20
00V以下の低加速電圧で加速されたイオンを用いて行
うことを特徴とする表面改質方法。
(1) Ion irradiation was performed at a low temperature of 20°C or less for 20°C.
A surface modification method characterized in that it is carried out using ions accelerated at a low acceleration voltage of 00V or less.
(2)表面改質が表面にアモルファス層を形成させるこ
とである特許請求の範囲第1項記載の表面改質方法。
(2) The surface modification method according to claim 1, wherein the surface modification is to form an amorphous layer on the surface.
(3)20℃以下の低温領域として、−100〜20℃
の温度範囲で行う特許請求の範囲第1項記載の表面改質
方法。
(3) -100 to 20℃ as a low temperature range of 20℃ or less
The surface modification method according to claim 1, which is carried out at a temperature range of .
(4)低加速電圧として、50〜2000Vの加速電圧
範囲で行う特許請求の範囲第1項記載の表面改質方法。
(4) The surface modification method according to claim 1, which is carried out at a low acceleration voltage in the range of 50 to 2000V.
(5)照射イオンとして、希ガスイオンもしくは窒素イ
オンを用いて行う特許請求の範囲第1項記載の表面改質
方法。
(5) The surface modification method according to claim 1, which is carried out using rare gas ions or nitrogen ions as irradiation ions.
(6)イオン照射を受ける基材として、ガリウムヒ素系
物質を用いて行う特許請求の範囲第1項記載の表面改質
方法。
(6) The surface modification method according to claim 1, which is carried out using a gallium arsenide-based substance as the base material subjected to ion irradiation.
JP62070504A 1987-03-26 1987-03-26 Surface modification method by ion irradiation Expired - Lifetime JP2710114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070504A JP2710114B2 (en) 1987-03-26 1987-03-26 Surface modification method by ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070504A JP2710114B2 (en) 1987-03-26 1987-03-26 Surface modification method by ion irradiation

Publications (2)

Publication Number Publication Date
JPS63238271A true JPS63238271A (en) 1988-10-04
JP2710114B2 JP2710114B2 (en) 1998-02-10

Family

ID=13433426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070504A Expired - Lifetime JP2710114B2 (en) 1987-03-26 1987-03-26 Surface modification method by ion irradiation

Country Status (1)

Country Link
JP (1) JP2710114B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879973A (en) * 1972-01-26 1973-10-26
JPS5656626A (en) * 1979-10-16 1981-05-18 Toshiba Corp Manufacture of 3-5 group compound semiconductor thin film
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879973A (en) * 1972-01-26 1973-10-26
JPS5656626A (en) * 1979-10-16 1981-05-18 Toshiba Corp Manufacture of 3-5 group compound semiconductor thin film
JPS60166298A (en) * 1984-02-10 1985-08-29 Hitachi Ltd Preparation of film

Also Published As

Publication number Publication date
JP2710114B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US9947549B1 (en) Cobalt-containing material removal
US5376223A (en) Plasma etch process
US7887711B2 (en) Method for etching chemically inert metal oxides
CN103035513B (en) The forming method of amorphous carbon film
TW200423185A (en) Method of introducing impurity
CN102955381A (en) Photoresist strip processes for improved device integrity
JP2004179592A (en) Method for plasma doping and device manufactured using the same
JPH0691035B2 (en) Low temperature dry etching method and apparatus
US6077751A (en) Method of rapid thermal processing (RTP) of ion implanted silicon
Moller et al. Plasma-based ion implantation
Min et al. Buried oxide formation by plasma immersion ion implantation
JPS63238271A (en) Method for modifying surface by radiation of ion
JP3078853B2 (en) Oxide film formation method
JP3408311B2 (en) Digital etching method and apparatus
RU2476373C1 (en) Method of making superconducting single-photon detectors
JPH03276719A (en) Digital etching method
WO1997036693A1 (en) Process to modify work functions using ion implantation
JPS61240635A (en) Dry etching method
Liu et al. Recoil implantation of boron into silicon for ultrashallow junction formation: Modeling, fabrication, and characterization
Chu et al. Hydrogen-induced surface blistering of sample chuck materials in hydrogen plasma immersion ion implantation
JP2517012B2 (en) How to diffuse impurities
JPH02230736A (en) Formation and treatment of dielectric film
JPH0516656B2 (en)
JPH03248420A (en) Manufacture of semiconductor device
JP2003282473A (en) Method and apparatus for manufacturing semiconductor device