JPS6274033A - Fiber reinforced metallic molding - Google Patents

Fiber reinforced metallic molding

Info

Publication number
JPS6274033A
JPS6274033A JP21528085A JP21528085A JPS6274033A JP S6274033 A JPS6274033 A JP S6274033A JP 21528085 A JP21528085 A JP 21528085A JP 21528085 A JP21528085 A JP 21528085A JP S6274033 A JPS6274033 A JP S6274033A
Authority
JP
Japan
Prior art keywords
mats
molding
fiber
metallic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21528085A
Other languages
Japanese (ja)
Inventor
Hideo Otsu
大津 日出男
Kenichi Akutagawa
芥川 憲一
Jun Hasegawa
順 長谷川
Hiroshi Otsuki
浩 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21528085A priority Critical patent/JPS6274033A/en
Publication of JPS6274033A publication Critical patent/JPS6274033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To provide the titled metallic molding having a small coefft. of thermal expansion in the face direction of cloth mats consisting of continuous fibers and having excellent conductivity and heat conductivity in the lamination direction by molding the cloth mats in the lamination direction thereof then embedding reinforcing materials consisting of metallic members which can form conductive paths for heat and electricity therein. CONSTITUTION:The cloth mat 2 formed by alternately weaving rovings bundled with many pieces of connecting fibers consisting of carbon fibers having 5-10mum average size is cut to a rectangular shape and the cut mats are laminated to form a fiber layer 5. The metallic members 4 consisting of copper sized 1.0mm are penetrated from projections 4a into the fiber layer 5 to form a reinforcing material to be made into a preform. The preform is put into a metallic mold held at about 800 deg.C and a melt of copper at about 1,300 deg.C is poured into the mold, then >=500kg/cm<2> pressure is exerted to the molten metal to made high-pressure casting. As a result, the fiber reinforced metallic molding 1 satisfactorily bound with the carbon fibers constituting the mats 2 is obtd. The volymetric content of the carbon fibers in the molding 1 is 30%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化金属成形体に関し、特に半導体素子の
支持電極等の電極材料として用いられて有効なものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fiber-reinforced metal molded body, and is particularly effective when used as an electrode material such as a supporting electrode of a semiconductor element.

〔従来の技術〕[Conventional technology]

従来、例えば半導体素子とその支持電極は、それぞれシ
リコンおよび銅より構成されているために、両者の熱膨
張係数が4xlO−b/’c、17x10−’/lとシ
リコンに対して銅は4倍以上であり、単にはんだにより
接合したのでは、半導体素子の廃熱の繰り返しによる熱
衝撃疲労により接合はんだ部に亀裂が発生し、導電性が
低下するとともに熱伝導率も低下するために半導体素子
の放熱が阻害され半導体素子の破損の原因ともなってい
た。
Conventionally, for example, semiconductor elements and their supporting electrodes have been made of silicon and copper, respectively, so the thermal expansion coefficients of both are 4xlO-b/'c and 17x10-'/l, which is four times that of silicon. As mentioned above, if the semiconductor elements are simply joined by soldering, cracks will occur in the joined solder parts due to thermal shock fatigue due to repeated waste heat of the semiconductor elements, and the electrical conductivity and thermal conductivity will decrease. Heat dissipation was inhibited and this caused damage to semiconductor elements.

これに対して特開昭57−185942号公報には、短
繊維状の炭素繊維を胴中に分散させた炭素繊維強化銅系
複合材を用い熱膨張係数の小さい支持電極を用いる方法
が開示されている。
On the other hand, JP-A-57-185942 discloses a method using a carbon fiber-reinforced copper-based composite material in which short carbon fibers are dispersed in the body, and a supporting electrode with a small coefficient of thermal expansion. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の方法にあっては、短繊維状の炭
素繊維は成形時に圧縮力に抗してスプリングバック現象
をおこすために十分に高い繊維含有率を有する繊維強化
金属を製作することができず、従って熱膨張係数を十分
低下させることができないという問題があった。
However, with the above conventional method, it is not possible to produce fiber-reinforced metal with a sufficiently high fiber content because short carbon fibers resist compressive force during molding and cause a springback phenomenon. Therefore, there was a problem that the coefficient of thermal expansion could not be lowered sufficiently.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は上記問題を解決するために、連続繊維を
交互にほぼ一定の角度をなして織り成したクロスマット
を積層した繊維層と、成形後に該クロスマットの積層方
向に熱および電気の伝導パスを形成し得る金属部材とか
らなる強化材と、該強化材中に充填されたマトリックス
金属とからなる繊維強化金属成形体を採用するものであ
る。
Therefore, in order to solve the above problems, the present invention has developed a fiber layer in which cross mats made of continuous fibers are alternately woven at a substantially constant angle, and a fiber layer that conducts heat and electricity in the lamination direction of the cross mats after molding. This method employs a fiber-reinforced metal molded body made of a reinforcing material made of a metal member capable of forming a path, and a matrix metal filled in the reinforcing material.

〔作 用〕[For production]

上記手段によれば、連続繊維を交互にほぼ一定の角度を
なして織りなしたクロスマットを積層しているために、
積層方向と直角方向すなわちクロスマットの面方向には
、熱膨張係数が小さい繊維の影響が顕著にあられれ面方
向に熱膨張係数が十分小さくなるとともに、成形後に熱
および電気の伝導パスを形成し得る金属部材を予め強化
材中に埋設しているので、クロスマントの積層方向に電
気伝導性、熱伝導性にすぐれた繊維強化金属成形体が得
られる。
According to the above means, since the cross mats made of continuous fibers alternately woven at a substantially constant angle are laminated,
In the direction perpendicular to the lamination direction, that is, in the plane direction of the crossmat, the influence of fibers with a small coefficient of thermal expansion is noticeable, and the coefficient of thermal expansion in the plane direction becomes sufficiently small, and a conductive path for heat and electricity is formed after molding. Since the metal member to be obtained is embedded in the reinforcing material in advance, a fiber-reinforced metal molded body with excellent electrical conductivity and thermal conductivity in the lamination direction of the cross mantle can be obtained.

〔実施例〕 以下本発明を図に示す実施例に基づいて詳細に説明する
。第1図は本発明の繊維強化金属成形体1の構成を説明
する斜視図で、2はマトリックス金属である銅3中に分
散されたクロスマントであり、4は本発明の熱および電
気の伝導パスを形成し得る金属部材である。それ等の形
状を更に詳細に説明するために、その製造方法とともに
第2図に基づいて以下説明する。第2図は本発明の繊維
強化金属成形体1の製造に使用する強化材となる予成形
体を示す分解斜視図で、5は平均径5〜10μの炭素繊
維よりなる連続繊維を多数本収束したロービングを交互
に直角に織りなしたクロスマット2を矩形に裁断し積層
した繊維層であり、4は本発明の熱および電気の伝導パ
スを形成し得る金属部材で、太さ1.0mm、繊維強化
金属としたときの高さに相当する長さを有する銅よりな
るくぎ状突起4aを一端で銅プレー1−4bに溶接また
は嵌挿固定し突起4aの他端は先端部が尖っている。こ
の金属部材4を繊維部5に突起4aを貫入させることに
より予成形体となる本発明の強化材を形成した。なおこ
こで突起4aの総断面積はプレート4bの面積の10〜
20%である。この総断面積は多すぎると突き差す際に
クロスマット1が変形するし、少なすぎると本発明の目
的とする熱および電気の伝導パスを形成する効果が得ら
れない。
[Example] The present invention will be described in detail below based on an example shown in the drawings. FIG. 1 is a perspective view illustrating the structure of a fiber-reinforced metal molded body 1 of the present invention, in which 2 is a cross mant dispersed in copper 3, which is a matrix metal, and 4 is a thermal and electrical conductor of the present invention. It is a metal member that can form a path. In order to explain these shapes in more detail, the manufacturing method thereof will be explained below based on FIG. 2. FIG. 2 is an exploded perspective view showing a preformed body that serves as a reinforcing material used in manufacturing the fiber-reinforced metal molded body 1 of the present invention, where 5 is a convergence of many continuous fibers made of carbon fibers with an average diameter of 5 to 10μ. It is a fiber layer in which a cross mat 2 made of woven rovings alternately woven at right angles is cut into a rectangular shape and laminated. 4 is a metal member that can form the heat and electricity conduction path of the present invention, and has a thickness of 1.0 mm and a fiber layer. A nail-shaped protrusion 4a made of copper having a length corresponding to the height of the reinforcing metal is welded or fitted onto the copper plate 1-4b at one end, and the other end of the protrusion 4a has a sharp tip. By penetrating the protrusions 4a into the fiber portions 5 of this metal member 4, a reinforcing material of the present invention serving as a preform was formed. Note that the total cross-sectional area of the projections 4a is 10 to 10 times the area of the plate 4b.
It is 20%. If this total cross-sectional area is too large, the cross mat 1 will be deformed when thrusting, and if it is too small, the effect of forming heat and electricity conduction paths, which is the objective of the present invention, will not be achieved.

次にこの予成形体を約800℃に保持した金型内に入れ
、約1300℃の溶湯を注ぎ込み、すみやかにパンチで
500kg/cm”以上の圧力をかけ高圧鋳造すること
によりクロスマット2を構成する炭素繊維とぬれ性よく
結合され繊維強化金属成形体1が形成される。なお、こ
の成形体における炭素繊維の体積含有率V「は30%で
ある。
Next, this preformed body is placed in a mold maintained at about 800°C, molten metal at about 1300°C is poured into it, and the cloth mat 2 is formed by high-pressure casting by immediately applying a pressure of 500 kg/cm or more with a punch. The fiber-reinforced metal molded body 1 is formed by bonding with the carbon fibers with good wettability.The volume content V'' of the carbon fibers in this molded body is 30%.

この時クロスマット2を貫通していた突起4aおよびプ
レート4bは、マトリックス金属の銅に溶融結合されマ
トリックスの一部となってしまうが、その溶融状態は表
面部のみでおこるため形状は十分保持され繊維強化金属
lとなった後もマトリックスを貫通する伝導パスを形成
している。
At this time, the protrusions 4a and plates 4b that penetrated the cross mat 2 are melted and bonded to the copper matrix metal and become part of the matrix, but the shape is not sufficiently maintained because the melting occurs only on the surface. Even after it becomes a fiber-reinforced metal, it forms a conductive path that penetrates the matrix.

次に本発明の伝導パスの効果についてクロスマント2′
を積層した繊維強化金属の微細構造とともに説明すると
、このような繊維強化金属においては、第3図の如くク
ロスマット2がマトリックス金属3中に積層埋設されて
いるが、断面を考えた場合、繊維が非常に密であり熱お
よび電気をほとんど通さないロービング部(以下A部)
と熱および電気を良く通すマトリックスだけのB部とか
ら成り、複合材全体では熱および電気はこのB部を通し
て流れると考えられる。しかしながらこの成形体の炭素
繊維の含有率はかなり大きいのでクロスマット1がかな
りの部分で密着しており、この密着部は繊維がさらに高
含有率になっており、熱および電気をほとんど通さない
。よっであるロービングからなるB部を通過した熱およ
び電気は次のロービング部からなる8部を1ffi遇す
る時にこの密着部分Aを必ずill遇しなければならず
、厚み方向の伝導パスがない場合、熱および電気の流れ
は非常に阻害され抵抗は大きくなる。本発明の伝導パス
は、このようなりロスマント2を積層した強化材特有の
積層方向の熱伝導率、導電率を改善することができる。
Next, we will discuss the effect of the conduction path of the present invention using Crossman 2'.
To explain this along with the fine structure of the laminated fiber-reinforced metal, in such a fiber-reinforced metal, the cross mat 2 is laminated and buried in the matrix metal 3 as shown in Fig. 3, but when considering the cross section, the fiber The roving part (hereinafter referred to as part A) is very dense and hardly conducts heat and electricity.
and part B, which is only a matrix that conducts heat and electricity well, and it is thought that heat and electricity flow through part B in the composite as a whole. However, since the content of carbon fiber in this molded body is quite large, the cloth mat 1 is in close contact with the molded body in a considerable part, and this close contact area has an even higher content of fibers and hardly conducts heat and electricity. Therefore, when the heat and electricity that passed through part B, which is made up of a certain roving, are applied to the next eight parts, which are made up of roving, they must be exposed to this close contact part A, and if there is no conduction path in the thickness direction. , the flow of heat and electricity is greatly inhibited and the resistance becomes large. The conduction path of the present invention can improve the thermal conductivity and electrical conductivity in the lamination direction, which are unique to the reinforcing material in which Rossmant 2 is laminated.

第1表は、本発明の伝導パスを形成させた繊維強化金属
成形体1を用いて第4図の如く、シリコン半導体チップ
6とはんだ7を用いて接合したものと、導電パスを設け
ない比較例で、半導体チップ6への通電の0N−OFF
を繰り返した場合の半導体チップの寿命を示したもので
、伝導パスによる放熱効果が半導体チップ6の寿命を延
長させている。
Table 1 shows a comparison between a silicon semiconductor chip 6 and a solder 7 bonded using the fiber-reinforced metal molded body 1 with conductive paths of the present invention formed thereon, as shown in FIG. In the example, 0N-OFF of energization to the semiconductor chip 6
This shows the life of the semiconductor chip when the process is repeated, and the heat dissipation effect by the conduction path extends the life of the semiconductor chip 6.

(以下余白) 第  1  表 また第2表は、本発明の繊維強化金属成形体1を予成形
体を用いて上記実施例で説明した高圧鋳造法と公知の拡
散接合法で同じ繊維含有率のものを作製したものの特性
を測定した結果を説明するもので高圧鋳造法のほうが拡
散結合法よりも、熱伝導率、導電率、界面の剥離特性に
優れていることが明らかであり、また生産性も高い。な
お拡散接合法とは、強化材繊維の表面に、イオンブレー
ティング、真空蒸着、メッキ等によりマトリックス金属
を付着させた後、この繊維を積層圧縮して成形する方法
である。
(Margins below) Tables 1 and 2 show that the fiber-reinforced metal molded body 1 of the present invention was produced using the high-pressure casting method explained in the above example and the well-known diffusion bonding method using a preformed body with the same fiber content. It explains the results of measuring the properties of manufactured products, and it is clear that the high-pressure casting method is superior to the diffusion bonding method in terms of thermal conductivity, electrical conductivity, and interfacial peeling characteristics, and it also improves productivity. It's also expensive. Note that the diffusion bonding method is a method in which a matrix metal is attached to the surface of reinforcing fibers by ion blasting, vacuum deposition, plating, etc., and then the fibers are laminated and compressed to form the reinforcing material.

また本発明において成形後に伝導パスを形成し得る金属
部材4としては、種々のものが可能であり、例えば第5
図に示す如く、予めクロスマット2に銅よりなる連続繊
維8を一方向、あるいは二方向に織り込んでおいて、こ
れを積層しても、この銅繊維が上下に連通伝導パスを形
成させることができ上記実施例と同様の効果を奏する。
Furthermore, in the present invention, various metal members 4 that can form a conductive path after molding are possible, such as the fifth metal member 4.
As shown in the figure, even if continuous fibers 8 made of copper are woven into the cloth mat 2 in one or two directions in advance and then laminated, the copper fibers will not form a continuous conductive path vertically. The same effect as the above embodiment can be obtained.

さらに第6図の如く銅箔9をクロスマット2の間に交互
に介装させて予成形体を形成させてもよい。
Furthermore, as shown in FIG. 6, copper foils 9 may be alternately interposed between the cross mats 2 to form a preform.

上記実施例において伝導パスを形成し得る金属部材およ
び繊維強化金属のマトリックス金属として銅を用いたが
、もちろん銅に限定されることなく導電性、熱伝導性に
優れた銀等の金属でもよ、前記金属部材4と前記マトリ
ックス金属2が異種であってもかまわない。
In the above embodiments, copper was used as the matrix metal of the metal member and the fiber-reinforced metal that can form conductive paths, but of course, it is not limited to copper, and metals such as silver with excellent electrical conductivity and thermal conductivity may also be used. The metal member 4 and the matrix metal 2 may be of different types.

また本発明においてクロスマット2を構成する炭素繊維
の体積含有率<vr>は、シリコンの熱膨張率4 X 
I O−”/”Cニ対して1OxlO−’/℃以下であ
れば、はんだ層に亀裂を生ゼしめない効果があり、この
範囲の熱膨張率を達成するためにVr30%以上が好適
であるが、Vf50%以上の繊維強化金属は成形困難で
ある。また上記実施例においてクロスマット2は交互に
直角に織りなされていたが直角に限定されるものではな
い。
Further, in the present invention, the volume content <vr> of the carbon fibers constituting the cloth mat 2 is equal to the thermal expansion coefficient of silicon 4
Vr of 30% or more is preferable to achieve a thermal expansion coefficient in this range because if it is less than 1OxlO-'/℃ compared to IO-''/''C, it has the effect of preventing cracks from forming in the solder layer. However, fiber-reinforced metals with a Vf of 50% or more are difficult to form. Further, in the above embodiments, the cross mats 2 are woven alternately at right angles, but the weave is not limited to right angles.

さらに本発明においてクロスマット2は連続炭素繊維で
構成されていたが、SiC繊維等の連続セラミック繊維
であってもよい。
Further, in the present invention, the cross mat 2 is made of continuous carbon fibers, but it may be made of continuous ceramic fibers such as SiC fibers.

本発明の繊維強化金属成形体1は、半導体チップ6の支
持電極として好適に用いられるが、この他にも、セラミ
ックヒータの電極等にもを効に使用できる。
The fiber-reinforced metal molded body 1 of the present invention is suitably used as a support electrode for a semiconductor chip 6, but can also be effectively used as an electrode for a ceramic heater.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、連続繊維よりな
るクロスマットを積層するとともに、このクロスマット
の積層方向に、成形後熱および電気の伝導パスを形成し
得る金属部材を埋設しているので、クロスマントの面方
向に熱膨張係数が小さく、かつ積層方向に導電性、熱伝
導性に優れた繊維強化金属成形体が提供できる。
As explained above, in the present invention, cross mats made of continuous fibers are laminated, and metal members that can form conductive paths for heat and electricity after molding are embedded in the lamination direction of the cross mats. It is possible to provide a fiber-reinforced metal molded body that has a small coefficient of thermal expansion in the plane direction of the cross mantle and has excellent electrical conductivity and thermal conductivity in the lamination direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化金属成形体の構成を説明する
斜視図、第2図はその予成形体の構成を説明する分解斜
視図、第3図は本発明の繊維強化金属成形体の微、線構
造を説明する模式図。 第4図はこの成形体を半導体チップの支持電極として使
用した応用例の構造を示す断面模式図、第5図および第
6図は本発明の他の実施例を説明する模式図である。 2・・・クロスマット、3・・・マトリックス金属、4
a・・・突起部。 第1図 第2図
FIG. 1 is a perspective view illustrating the structure of the fiber-reinforced metal molded body of the present invention, FIG. 2 is an exploded perspective view illustrating the structure of the preformed body, and FIG. 3 is a perspective view of the fiber-reinforced metal molded body of the present invention. A schematic diagram illustrating the fine line structure. FIG. 4 is a schematic cross-sectional view showing the structure of an applied example in which this molded body is used as a support electrode for a semiconductor chip, and FIGS. 5 and 6 are schematic views illustrating other embodiments of the present invention. 2...Cross mat, 3...Matrix metal, 4
a... Protrusion. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  連続繊維を交互にほぼ一定の角度をなして織り成した
クロスマットを積層した繊維層と、成形後に該クロスマ
ットの積層方向に熱および電気の伝導パスを形成し得る
金属部材とからなる強化材と、該強化材中に充填された
マトリックス金属とからなる繊維強化金属成形体。
A reinforcing material consisting of a fiber layer made by laminating cross mats made of continuous fibers woven alternately at a substantially constant angle, and a metal member that can form a heat and electricity conduction path in the lamination direction of the cross mats after molding. and a matrix metal filled in the reinforcing material.
JP21528085A 1985-09-27 1985-09-27 Fiber reinforced metallic molding Pending JPS6274033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21528085A JPS6274033A (en) 1985-09-27 1985-09-27 Fiber reinforced metallic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21528085A JPS6274033A (en) 1985-09-27 1985-09-27 Fiber reinforced metallic molding

Publications (1)

Publication Number Publication Date
JPS6274033A true JPS6274033A (en) 1987-04-04

Family

ID=16669700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21528085A Pending JPS6274033A (en) 1985-09-27 1985-09-27 Fiber reinforced metallic molding

Country Status (1)

Country Link
JP (1) JPS6274033A (en)

Similar Documents

Publication Publication Date Title
US4482912A (en) Stacked structure having matrix-fibered composite layers and a metal layer
US5618189A (en) Solder medium for circuit interconnection
US3509270A (en) Interconnection for printed circuits and method of making same
DE69919763T2 (en) Ceramic heating element
EP1422756A1 (en) Composite structural material, and method of producing the same
JP2003110064A (en) Semiconductor device
KR20170069363A (en) Binder for power module and method for bonding using thereof
US11027360B2 (en) Bonded body and method for manufacturing the same
JPS6274033A (en) Fiber reinforced metallic molding
JPS60169534A (en) Composite cu-c fiber material with cu foil containing non-ferrous metal
JP2023512826A (en) free solder foil
JPS6376757A (en) Manufacture of cooling element of thermal high load
US3284606A (en) Heat sink material and applications thereof
JP3602582B2 (en) Manufacturing method of electrode for resistance welding
JP2008078679A (en) Semiconductor device
KR20200045787A (en) braising material and manufacturing methods thereof, and braising methods thereby
JPH01221873A (en) Conductor rail with contact pin
KR20170100463A (en) Method for bonding power module using binder for power module
JPH022835B2 (en)
JP2007012292A (en) Graphite particle molding and its manufacturing method
JPS6418245A (en) Ceramic substrate having metal pin and its manufacture
JPH03146607A (en) Structure and method for joining-treatment of end part in material
JP2887191B2 (en) Manufacturing method of planar heater
JP2014043635A (en) Composite material, method for manufacturing the composite material, and semiconductor device using the composite material
JPS6255252B2 (en)