JPS6255252B2 - - Google Patents

Info

Publication number
JPS6255252B2
JPS6255252B2 JP8004878A JP8004878A JPS6255252B2 JP S6255252 B2 JPS6255252 B2 JP S6255252B2 JP 8004878 A JP8004878 A JP 8004878A JP 8004878 A JP8004878 A JP 8004878A JP S6255252 B2 JPS6255252 B2 JP S6255252B2
Authority
JP
Japan
Prior art keywords
contact
members
joint
silver
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8004878A
Other languages
Japanese (ja)
Other versions
JPS556746A (en
Inventor
Shigemasa Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8004878A priority Critical patent/JPS556746A/en
Publication of JPS556746A publication Critical patent/JPS556746A/en
Priority to US06/300,532 priority patent/US4493964A/en
Publication of JPS6255252B2 publication Critical patent/JPS6255252B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電気接触子の製造方法に関し、詳し
くは接触子を構成する接点台と接点との接合方法
に関する。 接点台と接点との接合には、 機械的方式…カシメ法、クラツド法 溶着方式…ろう付け法 がある。 前者は接点自身に機械的に強加工を加えるた
め、塑性変形に十分耐えられる展延性に富んだ
Ag―Ni、Ag等の材料が必要となる。この種の材
料は耐摩耗性が悪く、また高温状態では溶融しや
すいため、比較的小型小容量の接触子に限られ
る。 また、後者はろう材と母材による低融点の合金
層が溶融から冷却の過程でボイドを生成し、ボイ
ドが接合面積の20〜30%を占めて、熱に対する特
性の低下ばかりでなく、機械的強さを下げて信頼
性を低くする。また、溶接方式ではフラツクス、
ろう材が使用時にコロイド状になるため、自動
化、省人化を困難にしている。さらに、ろう材に
含まれるカドミウムの蒸発ガスに起因する公害も
電気接触子製造上の重要な問題である。その上、
Ag―Cd系接点ではろう付け性が悪く、これを改
善するために接合面に予め銀張りを必要とするの
でコストアツプになる。 本発明は、上記の従来方法の問題点を解決し、
優れた耐熱性を有し、かつ、廉価な電気接触子の
製造方法を提供することを目的とする。 この目的を達成すべく、本発明による電気接触
子の製造方法は相対する平行面を有する2個の電
極間に接点台と接点とを重ねて挿入し、前記2個
の電極の間にて前記接点台と接点とをこの両部材
が塑性変形しない圧力で加圧しながら前記電極間
に通電することにより前記両部材の融点のうちい
ずれか低い方の融点を越えない温度に加熱した
後、急冷して前記両部材を接合することを特徴と
する。この方法において、接点台と接点とを0.02
Kg/mm2乃至1Kg/mm2の圧力で加圧しながら400℃
乃至900℃まで加熱した後水中で急冷するのが好
ましい。次に本発明による電気接触子の製造方法
の一般的な実施例および具体的な実施例につき図
を参照して説明する。 まず、本発明の一般的な実施例を説明する。 第1図は、接点台と接点の接合に使用される接
合装置の縦断面図である。第1図において、一定
の雰囲気(例えば大気中)のもとでカーボン製の
電極1と2との間に接点台3と接点4とを挿入
し、シリンダ5によつて矢印方向に電極2を動か
して被加圧面において0.02〜1.0Kg/mm2の範囲の
圧力(0.02より小さいと圧力として充分でなく、
1を越えると接点および接点台が塑性変形を起こ
してしまう)で加圧し、同時に電極1と2とに図
示しない電源により給電する(6000〜9000A、交
流・直流いずれでも可)。 しかして、第2図の加熱温度制御曲線図に示す
ように接点台3および接点4を経て電極1と電極
2との間に流れる電流のジユール熱で急速に(好
ましくは10秒以内)400〜900℃に加熱した後、水
中で急冷し接合を終る。 次に、本発明方法の具体的な実施例について説
明する。 実施例 1 接点台3として銅を、接点4として銀―カドミ
ウムをそれぞれ用い、上記の方法によつて両者を
接合させた。雰囲気は大気中とした。接点台3お
よび接点4に対する加圧力は被加圧面において
0.4Kg/mm2とした。また、電極1,2間の通電
(交流9000A)により3秒間で接点台材(銅)お
よび接点材(銀―カドミウム合金)の融点を越え
ないように650℃まで加熱した。冷却水としては
通常の水道水(水温15℃)を使用した。第3図は
かくして得られた電気接触子の断面の150倍の顕
微鏡写真である。第3図において、銅の接点台3
と銀―カドミウム合金の接点4とは直接接合し、
両者の接合部間には耐熱性の低いろう材あるいは
接合材相互が融合して形成される合金層は認めら
れず、理想的な接合状態であることがわかる。 第4図は、上記の接合部をX線マイクロアナラ
イザーによつて分析した結果を概略的に示す線図
である。この第4図において特性線Cuは接点台
3の成分である銅の拡散濃度の変化を示し、特性
線Agは接点の主成分である銀の拡散濃度の変化
を示す。第4図から明らかなように特性線Cuと
Agの交差する点が両接合材の接合の境界面であ
り、接点台3の銅は接点4の銀の中へ4.1μmの
深さまで拡散し、接点4の銀は接点台3の銅の中
へ1.6μmの深さまで拡散する。そして分析装置
の感度等の理由からそれぞれの成分の拡散濃度が
30%以上の領域を拡散層と定義すると、この拡散
層の厚さは第4図に図示するとおり1.8μmとな
る。 接点台3と接点4とは前記したように両接合部
材が相互に拡散することにより接合されるので、
接合部には拡散層が生成されるだけで両接合部材
を融合した合金層は生成されないのである。この
ように接点台3と接点4の接合部に拡散層が生成
された場合、その接合部の耐熱温度は接合部に合
金層が形成される場合と異なり、両接合部材の融
点より低くなることはなく、何れか低い方の融点
で決まる。この実施例のように銅の接点台と銀―
カドミウム合金の接点とを接合した場合であれば
銅(100重量%)の融点は1083℃であり、銀(87
重量%)―カドミウム(13重量%)合金の融点は
約900℃であるので、この場合の接合部の耐熱温
度は900℃となる。 これが接合部に銅と銀の合金層が形成される場
合は、最も大きく低下すると、約780℃となる。 実施例 2 接点台3として黄銅を、接点4として銀と酸化
カドミウムとの焼結品とをそれぞれ用い、両者を
実施例1と同様にして接合した。第5図は、かく
して得られた電気接触子のしや断試験後の断面の
62倍の顕微鏡写真である。 この写真から、この実施例においても接合が実
施例1と同様に両接合部材の融点より低い温度で
行なわれたので、接合部に合金層が生成されてお
らず、両接合部材の相互の拡散によつて接合が行
なわれていることが理解できる。そして、しや断
時のアークにより高熱を受けたにもかかわらず、
接点台3と接点4との境界となる接合部は相互の
剥離を示す空洞がなく、安定した接合状態を示し
ている。 次に本発明による接合法により接合可能の接点
台材料と接点材料との組合せの代表例を次表に示
す。〇印は接合可能をあらわす。 本発明によれば接点台と接点とを重ね合わせて
加圧しながら、両部材の融点を越えないように通
The present invention relates to a method of manufacturing an electric contact, and more particularly to a method of joining a contact base and a contact that constitute a contact. There are two methods for joining the contact block and contacts: mechanical methods: caulking method, cladding method, and welding method: brazing method. The former is highly malleable and can withstand plastic deformation because the contact itself undergoes strong mechanical processing.
Ag--Materials such as Ni and Ag are required. This type of material has poor wear resistance and tends to melt at high temperatures, so it is limited to relatively small and small capacity contacts. In addition, in the latter case, the low melting point alloy layer of the brazing material and the base metal generates voids during the process of melting and cooling, and the voids occupy 20 to 30% of the joint area, which not only deteriorates the thermal properties but also causes mechanical problems. lowers the strength of the target and lowers its reliability. In addition, in the welding method, flux,
The brazing filler metal becomes colloidal during use, making it difficult to automate and save labor. Furthermore, pollution caused by evaporated gas of cadmium contained in the brazing filler metal is also an important problem in the production of electrical contacts. On top of that,
Ag-Cd contacts have poor brazing properties, and to improve this, the joint surfaces must be coated with silver in advance, which increases costs. The present invention solves the problems of the above conventional method,
It is an object of the present invention to provide a method for manufacturing an electrical contact that has excellent heat resistance and is inexpensive. In order to achieve this object, the method for manufacturing an electrical contact according to the present invention involves inserting a contact base and a contact point between two electrodes having parallel surfaces facing each other, and inserting the contact base and the contact point between the two electrodes. The contact base and the contact are heated to a temperature that does not exceed the lower of the melting points of the two members by applying electricity between the electrodes while applying pressure to prevent plastic deformation of both members, and then rapidly cooled. The method is characterized in that the two members are joined together. In this method, the contact block and the contact are 0.02
400℃ while applying pressure of Kg/mm 2 to 1Kg/mm 2
Preferably, it is heated to 900°C and then rapidly cooled in water. Next, general and specific examples of the method for manufacturing an electric contact according to the present invention will be described with reference to the drawings. First, a general embodiment of the present invention will be described. FIG. 1 is a longitudinal cross-sectional view of a bonding device used for bonding a contact base and a contact. In FIG. 1, a contact base 3 and a contact 4 are inserted between carbon electrodes 1 and 2 under a certain atmosphere (for example, in the atmosphere), and a cylinder 5 is used to push the electrode 2 in the direction of the arrow. Pressure in the range of 0.02 to 1.0 Kg/mm 2 on the pressurized surface when moving (less than 0.02 is not sufficient pressure;
If the pressure exceeds 1, the contacts and the contact base will undergo plastic deformation), and at the same time, power is supplied to electrodes 1 and 2 from a power source (not shown) (6000 to 9000 A, either AC or DC is acceptable). As shown in the heating temperature control curve diagram in FIG. After heating to 900℃, it is rapidly cooled in water to complete the bonding. Next, specific examples of the method of the present invention will be described. Example 1 Copper was used as the contact base 3, and silver-cadmium was used as the contact 4, and the two were joined by the method described above. The atmosphere was atmospheric. The pressure applied to the contact block 3 and the contact 4 is applied to the pressurized surface.
It was set to 0.4Kg/ mm2 . In addition, the contact base material (copper) and the contact material (silver-cadmium alloy) were heated to 650° C. by applying current (9000 A current) between the electrodes 1 and 2 for 3 seconds without exceeding their melting points. Ordinary tap water (water temperature 15°C) was used as cooling water. FIG. 3 is a micrograph of the cross section of the electrical contact thus obtained, magnified 150 times. In Figure 3, the copper contact block 3
and the silver-cadmium alloy contact 4 are directly joined,
No alloy layer formed by fusion of low heat-resistant brazing filler metal or bonding materials was observed between the two joints, indicating that the joint state was ideal. FIG. 4 is a diagram schematically showing the results of analyzing the above-mentioned joint using an X-ray microanalyzer. In FIG. 4, the characteristic line Cu shows the change in the diffusion concentration of copper, which is a component of the contact base 3, and the characteristic line Ag shows the change in the diffusion concentration of silver, which is the main component of the contact. As is clear from Figure 4, the characteristic line Cu and
The point where the Ag intersects is the bonding interface between both bonding materials, and the copper of contact block 3 diffuses into the silver of contact 4 to a depth of 4.1 μm, and the silver of contact 4 diffuses into the copper of contact block 3. diffuses to a depth of 1.6 μm. Furthermore, due to the sensitivity of the analyzer, etc., the diffusion concentration of each component is
If a region of 30% or more is defined as a diffusion layer, the thickness of this diffusion layer is 1.8 μm as shown in FIG. Since the contact base 3 and the contact 4 are joined by mutual diffusion of both joining members as described above,
Only a diffusion layer is generated at the bonded portion, and an alloy layer that fuses both bonding members is not generated. When a diffusion layer is generated at the joint between the contact base 3 and the contact 4 in this way, the heat resistance temperature of the joint is lower than the melting point of both joining members, unlike when an alloy layer is formed at the joint. It is determined by the melting point, whichever is lower. As in this example, copper contact base and silver
When bonded with a cadmium alloy contact, the melting point of copper (100% by weight) is 1083℃, and the melting point of silver (87%
Since the melting point of the cadmium (13% by weight) alloy is approximately 900°C, the heat resistant temperature of the joint in this case is 900°C. When a copper-silver alloy layer is formed at the joint, the temperature decreases the most to about 780°C. Example 2 Brass was used as the contact base 3, and a sintered product of silver and cadmium oxide was used as the contact 4, and both were joined in the same manner as in Example 1. Figure 5 shows the cross section of the electrical contact obtained in this way after the shear breakage test.
This is a 62x micrograph. From this photograph, it can be seen that in this example as well, as in Example 1, the joining was carried out at a temperature lower than the melting point of both joining members, so no alloy layer was formed at the joint, and mutual diffusion of both joining members occurred. It can be seen that the bonding is performed by . And, despite receiving high heat from the arc during the burnout,
The joint portion serving as the boundary between the contact base 3 and the contact point 4 has no cavity indicating mutual peeling, indicating a stable joint state. Next, the following table shows typical examples of combinations of contact base materials and contact materials that can be joined by the joining method according to the present invention. The mark 〇 indicates that it is possible to join. According to the present invention, the contact base and the contact are placed one on top of the other and pressurized, while making sure that the melting point of both members is not exceeded.

【表】 電により加熱することにより直接拡散接合するの
で、次のような効果が得られる。 a フラツクス、ろう材が不要である。 b このためろう材およびフラツクスの供給が不
要であるので、自動化、省人化、量産化が容易
である。 c 接合部に合金層が形成されることがないの
で、接点台または接点のいずれか融点の低い方
の素材と同等の耐熱性が得られ、接合による耐
熱性の低下がない。 d 接合部材の溶融をともなわないので、接合部
にボイドが発生せず、接合部全面を均一に接合
できる。 e ろう材を使用しないので、ろう材の溶融時に
発生する酸化カドミウムの蒸発ガスに対する処
理が要らない。 f ろう材を使用しないのでAg―Cd接点を接合
する場合でも、接合部に予め銀張りしなくても
接合が可能となる。
[Table] Since direct diffusion bonding is performed by heating with electricity, the following effects can be obtained. a Flux and brazing filler metal are not required. b) Therefore, there is no need to supply brazing filler metal or flux, so automation, labor saving, and mass production are easy. c. Since an alloy layer is not formed at the joint, heat resistance equivalent to that of the material of the contact base or the contact, whichever has a lower melting point, is obtained, and there is no decrease in heat resistance due to joining. d) Since the bonding members are not melted, no voids are generated in the bonded area, and the entire surface of the bonded area can be bonded uniformly. e Since no brazing filler metal is used, there is no need to treat the vaporized cadmium oxide gas generated when the brazing filler metal is melted. f Since no brazing filler metal is used, even when bonding Ag-Cd contacts, it is possible to bond without silver-plating the bonded area in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接点台と接点との接合方
法を実施するための接合装置の縦断面図、第2図
は本発明方法における加熱温度制御曲線の線図、
第3図は本発明方法により接合された銅製接点台
と銀―カドミウム合金接点との接合部の断面の
150倍の顕微鏡写真、第4図は同上接合部のX線
マイクロアナライザーによる分析結果を概略的に
示す線図、第5図は本発明方法により接合された
黄銅製接点台と銀―酸化カドミウム焼結品製接点
との接合部のしや断試験後における接合部断面の
62倍の顕微鏡写真である。 1,2…電極、3…接点台、4…接点。
FIG. 1 is a longitudinal sectional view of a bonding device for carrying out the method of bonding a contact block and a contact according to the present invention, and FIG. 2 is a diagram of a heating temperature control curve in the method of the present invention.
Figure 3 shows a cross section of the joint between the copper contact block and the silver-cadmium alloy contact, which were joined by the method of the present invention.
A 150x micrograph, Figure 4 is a diagram schematically showing the analysis results of the above joint using an X-ray microanalyzer, and Figure 5 shows a brass contact base and a silver-cadmium oxide sintered part joined by the method of the present invention. The cross section of the joint after the shear test of the joint with the solid-state contact
This is a 62x magnification micrograph. 1, 2...electrode, 3...contact stand, 4...contact.

Claims (1)

【特許請求の範囲】 1 相対する平行面を有する2個の電極間に接点
台と接点とを重ねて挿入し、前記2個の電極の間
にて前記接点台と接点をこの両部材が塑性変形し
ない圧力で加圧しながら前記電極間に通電するこ
とにより前記両部材の融点のうちいずれか低い方
の融点を越えない温度に加熱した後、急冷して前
記両部材を接合することを特徴とする電気接触子
の製造方法。 2 特許請求の範囲第1項に記載の方法におい
て、接点台と接点とを0.02Kg/mm2乃至1Kg/mm2
圧力で加圧しながら、400℃乃至900℃まで加熱し
た後水中で急冷することを特徴とする電気接触子
の製造方法。
[Claims] 1. A contact base and a contact are inserted between two electrodes having parallel surfaces facing each other, and the contact base and the contact are inserted between the two electrodes so that both members are plastic. The two members are heated to a temperature that does not exceed the lower of the melting points of the two members by applying current between the electrodes while applying a pressure that does not cause deformation, and then rapidly cooled to join the two members. A method of manufacturing an electric contact. 2. In the method described in claim 1, the contact base and the contacts are heated to 400°C to 900°C while pressurized at a pressure of 0.02Kg/mm 2 to 1Kg/mm 2 and then rapidly cooled in water. A method of manufacturing an electric contact, characterized by:
JP8004878A 1978-06-30 1978-06-30 Method of manufacturing electric contactor Granted JPS556746A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8004878A JPS556746A (en) 1978-06-30 1978-06-30 Method of manufacturing electric contactor
US06/300,532 US4493964A (en) 1978-06-30 1981-09-09 Method of joining electrically conductive members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8004878A JPS556746A (en) 1978-06-30 1978-06-30 Method of manufacturing electric contactor

Publications (2)

Publication Number Publication Date
JPS556746A JPS556746A (en) 1980-01-18
JPS6255252B2 true JPS6255252B2 (en) 1987-11-19

Family

ID=13707346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8004878A Granted JPS556746A (en) 1978-06-30 1978-06-30 Method of manufacturing electric contactor

Country Status (1)

Country Link
JP (1) JPS556746A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755013A (en) * 1980-09-18 1982-04-01 Fuji Electric Co Ltd Method of bonding silver contact
EP2242605A4 (en) 2008-02-08 2014-02-26 Fuji Elec Fa Components & Sys Manufacturing method of electric contact and manufacturing equipment of electric contact

Also Published As

Publication number Publication date
JPS556746A (en) 1980-01-18

Similar Documents

Publication Publication Date Title
TW201004003A (en) Thermoelectric conversion module and method of manufacturing the same
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
FI77171B (en) SAETT ATT FOERBINDA ETT FOERBINDNINGSSTYCKE VID EN METALLYTA GENOM LOEDNING.
US4493964A (en) Method of joining electrically conductive members
US2390890A (en) Method of soldering
Mo et al. Mechanism of resistance microwelding of insulated copper wire to phosphor bronze sheet
JPS6255252B2 (en)
JP2004132556A (en) Water-cooled conductor and manufacturing method thereof
JPS6326890Y2 (en)
JPS6238802B2 (en)
JP2002346757A (en) Projection-welding method
JP3119906B2 (en) Joint of carbon material and metal
EP1378308A1 (en) Method for solder connection of coated lead wire to terminal of coil bobbin
US4417119A (en) Liquid joint process
JP3602582B2 (en) Manufacturing method of electrode for resistance welding
JPH02137306A (en) Pressure welding junction terminal
GB1590836A (en) Electrically heated apparatus
US3941971A (en) Resistance brazing of solid copper parts to stranded copper parts with phos-silver
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module
KR860000003B1 (en) Process for manufacturing a conductor
JPS5874289A (en) Resistance welding method and electrode for resistance welding
JP2022146324A (en) Sleeve type electrode and joining method with use of sleeve type electrode
JPH01120718A (en) Electrode and its manufacture
Wang et al. Parallel gap bonding mechanism of joint formation for thin-film metallization
JPS6281268A (en) Soldering method