JP2008078679A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008078679A
JP2008078679A JP2007286138A JP2007286138A JP2008078679A JP 2008078679 A JP2008078679 A JP 2008078679A JP 2007286138 A JP2007286138 A JP 2007286138A JP 2007286138 A JP2007286138 A JP 2007286138A JP 2008078679 A JP2008078679 A JP 2008078679A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor
semiconductor element
resin
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007286138A
Other languages
Japanese (ja)
Inventor
Naohiko Hirano
尚彦 平野
Takanori Tejima
孝紀 手嶋
Kuniaki Masamitsu
真光  邦明
Kenji Yagi
賢次 八木
Yoshimi Nakase
中瀬  好美
Yasutsugu Okura
康嗣 大倉
Kazuhito Nomura
和仁 野村
Yutaka Fukuda
豊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007286138A priority Critical patent/JP2008078679A/en
Publication of JP2008078679A publication Critical patent/JP2008078679A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of preventing a device from being damaged, when a large thermal stress is applied to the semiconductor device which enables the system to improve the long-term reliability. <P>SOLUTION: The semiconductor device 1 is provided with a semiconductor chip 2 and a pair of heat sinks 3, 4 that perform radiation from both surfaces of the chip 2 and is configured to establish the relation t2/t1≥5, if the thickness dimension of the chip 2 is t1 and the thickness dimension of at least one heat sink 3 between a pair of the heat sinks 3, 4 is t2 in substantially the entire device which is molded with resin 7. That the device is not damaged is confirmed by a prototype and experiment, even if a large thermal stress is applied to the device 1 of the configuration. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱素子と、この発熱素子の両面に接合された一対の放熱板とを備えて成る半導体装置に関する。   The present invention relates to a semiconductor device including a heating element and a pair of heat sinks bonded to both surfaces of the heating element.

例えば高耐圧・大電流用の半導体チップ(発熱素子)は、使用時の発熱が大きいため、チップからの放熱性を向上させるための構成が必要になる。この構成の一例として、チップの両面に一対の放熱板を例えば半田層を介して接合する構成が、従来より、考えられており、この構成によれば、チップの両面から放熱できるので、放熱性が向上する。そして、上記した両面放熱型の半導体装置は、全体が樹脂でモールドされている。尚、一対の放熱板の各外面は、放熱性を良くするために、露出されるように構成されている。   For example, a semiconductor chip (heat generating element) for high withstand voltage and large current generates a large amount of heat during use, and thus requires a configuration for improving heat dissipation from the chip. As an example of this configuration, a configuration in which a pair of heat radiating plates is joined to both sides of a chip via, for example, a solder layer has been conventionally considered. According to this configuration, heat can be radiated from both sides of the chip. Will improve. The entire double-sided heat dissipation type semiconductor device is molded with resin. Each outer surface of the pair of heat radiating plates is configured to be exposed in order to improve heat dissipation.

上記構成の半導体装置においては、半導体チップ、ヒートシンク、樹脂の熱膨脹係数の差が大きいため、これら3つの部材の接触部にかなり大きな熱応力が作用し、この熱応力によって、半導体チップが破壊されてしまうことがある。この傾向は、半導体装置に加わる熱サイクルの温度差が大きいほど顕著である。   In the semiconductor device having the above configuration, since the difference in thermal expansion coefficient between the semiconductor chip, the heat sink, and the resin is large, a considerably large thermal stress acts on the contact portion of these three members, and the semiconductor chip is destroyed by this thermal stress. It may end up. This tendency becomes more prominent as the temperature difference of the thermal cycle applied to the semiconductor device is larger.

そこで、本発明の目的は、大きな熱応力が作用したとしても、素子破壊を防止することができ、半導体装置の長期的信頼性を向上させることができる半導体装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor device that can prevent element destruction even when a large thermal stress is applied and can improve the long-term reliability of the semiconductor device.

請求項1の発明では、半導体素子と金属体とを接合する接合層における歪み成分が1%以下となるように、前記半導体素子の厚さを200μm以下とすると共に、モールド樹脂により装置全体を拘束保持するように構成したので、耐冷熱サイクル性や耐クリープ性等の耐久性を向上させることができる。   According to the first aspect of the present invention, the thickness of the semiconductor element is set to 200 μm or less so that the strain component in the bonding layer for bonding the semiconductor element and the metal body is 1% or less, and the entire apparatus is restrained by the mold resin. Since it comprised so that it might hold | maintain, durability, such as cold-heat cycle resistance and creep resistance, can be improved.

また、請求項2の発明のように、半導体素子表面のせん断応力が35MPa以下となるように、前記半導体素子の厚さを200μm以下とすると共に、前記モールド樹脂により装置全体を拘束保持するように構成することが好ましい。   Further, as in the invention of claim 2, the thickness of the semiconductor element is set to 200 μm or less so that the shear stress on the surface of the semiconductor element is 35 MPa or less, and the entire apparatus is restrained and held by the mold resin. It is preferable to configure.

また、請求項3の発明のように、金属体の厚みを1.0mm以上とすることも好ましい構成である。   In addition, as in the invention of claim 3, it is also preferable that the thickness of the metal body is 1.0 mm or more.

請求項8の発明によれば、接合層をSn系はんだで構成したので、接合の強度が高くなると共に、接合層における歪み成分を低減できる。また、請求項9の発明のように、半導体素子のデバイス構造をトレンチゲートタイプとすることが好ましい。   According to invention of Claim 8, since the joining layer was comprised with Sn type solder, while the intensity | strength of joining becomes high, the distortion component in a joining layer can be reduced. Further, as in the invention of claim 9, it is preferable that the device structure of the semiconductor element is a trench gate type.

以下、本発明の第1の実施例について、図1ないし図4を参照しながら説明する。まず、図1は、本実施例の半導体装置の概略構成を示す断面図である。この図1に示すように、本実施例の半導体装置1は、半導体チップ(発熱素子、半導体素子)2と、下側ヒートシンク(放熱板、第1の金属体)3と、上側ヒートシンク(放熱板、第2の金属体)4と、ヒートシンクブロック5(第3の金属体)とを備えて構成されている。   A first embodiment of the present invention will be described below with reference to FIGS. First, FIG. 1 is a cross-sectional view showing a schematic configuration of the semiconductor device of this embodiment. As shown in FIG. 1, a semiconductor device 1 according to the present embodiment includes a semiconductor chip (heating element, semiconductor element) 2, a lower heat sink (heat sink, first metal body) 3, and an upper heat sink (heat sink). , Second metal body) 4 and a heat sink block 5 (third metal body).

この構成の場合、半導体チップ2の下面と下側ヒートシンク3の上面との間は、接合部材である例えば半田(接合層)6によって接合されている。そして、半導体チップ2の上面とヒートシンクブロック5の下面との間も、半田(接合層)6によって接合されている。更に、ヒートシンクブロック5の上面と上側ヒートシンク4の下面との間も、半田(接合層)6によって接合されている。これにより、上記構成においては、半導体チップ2の両面からヒートシンク3、4(即ち、一対の放熱板)を介して放熱される構成となっている。   In the case of this configuration, the lower surface of the semiconductor chip 2 and the upper surface of the lower heat sink 3 are joined by, for example, solder (joining layer) 6 which is a joining member. The upper surface of the semiconductor chip 2 and the lower surface of the heat sink block 5 are also bonded by solder (bonding layer) 6. Further, the upper surface of the heat sink block 5 and the lower surface of the upper heat sink 4 are also bonded by solder (bonding layer) 6. Thereby, in the said structure, it becomes the structure which is thermally radiated from both surfaces of the semiconductor chip 2 via the heat sinks 3 and 4 (namely, a pair of heat sink).

尚、上記半導体チップ2は、例えばIGBTやサイリスタ等のパワー半導体素子から構成されている。この場合、半導体チップ2のデバイス構造を、トレンチゲートタイプとすることが好ましい。もちろん、他のタイプのデバイス構造を用いるように構成しても良い。   The semiconductor chip 2 is composed of a power semiconductor element such as an IGBT or a thyristor. In this case, the device structure of the semiconductor chip 2 is preferably a trench gate type. Of course, other types of device structures may be used.

上記半導体チップ2の形状は、本実施例の場合、図2(a)に示すように、例えば矩形状の薄板状である。また、下側ヒートシンク3、上側ヒートシンク4及びヒートシンクブロック5は、例えばCuやAl等の熱伝導性及び電気伝導性の良い金属で構成されている。この構成の場合、下側ヒートシンク3及び上側ヒートシンク4は、半導体チップ2の各主電極(例えばコレクタ電極やエミッタ電極等)に半田6を介して電気的にも接続されている。   In the case of this embodiment, the shape of the semiconductor chip 2 is, for example, a rectangular thin plate as shown in FIG. The lower heat sink 3, the upper heat sink 4 and the heat sink block 5 are made of a metal having good thermal conductivity and electrical conductivity, such as Cu and Al. In the case of this configuration, the lower heat sink 3 and the upper heat sink 4 are also electrically connected to each main electrode (for example, a collector electrode or an emitter electrode) of the semiconductor chip 2 via the solder 6.

また、下側ヒートシンク3は、図2(a)に示すように、全体として例えばほぼ長方形状の板材であり、端子部3aが後方へ向けて延びるように突設されている。また、ヒートシンクブロック5は、図2(a)に示すように、半導体チップ2よりも1回り小さい程度の大きさの矩形状の板材である。更に、上側ヒートシンク4は、図2(d)に示すように、全体として例えばほぼ長方形状の板材で構成されており、端子部4aが後方へ向けて延びるように突設されている。尚、下側ヒートシンク3の端子部3aと、上側ヒートシンク4の端子部4aは、互いの位置がずれるように、即ち、対向しないように構成されている。   Further, as shown in FIG. 2A, the lower heat sink 3 is, for example, a substantially rectangular plate material as a whole, and protrudes so that the terminal portion 3a extends rearward. Further, the heat sink block 5 is a rectangular plate having a size that is slightly smaller than the semiconductor chip 2 as shown in FIG. Further, as shown in FIG. 2 (d), the upper heat sink 4 is formed of, for example, a substantially rectangular plate material as a whole, and protrudes so that the terminal portion 4a extends rearward. The terminal portion 3a of the lower heat sink 3 and the terminal portion 4a of the upper heat sink 4 are configured so that their positions are shifted, that is, not opposed to each other.

また、上記構成の場合、下側ヒートシンク3の上面と上側ヒートシンク4の下面との間の距離は、例えば1〜2mm程度になるように構成されている。図1及び図2においては、上記距離をかなり拡大して示している。   In the case of the above configuration, the distance between the upper surface of the lower heat sink 3 and the lower surface of the upper heat sink 4 is configured to be, for example, about 1 to 2 mm. In FIG. 1 and FIG. 2, the above distance is shown in a considerably enlarged manner.

更に、図1に示すように、一対のヒートシンク3、4の隙間、並びに、チップ2及びヒートシンクブロック5の周囲部分には、樹脂(例えばエポキシ樹脂)7が充填封止されている。この場合、ヒートシンク3、4等を樹脂7でモールドするに当たっては、上下型からなる成形型(図示しない)を使用している。尚、樹脂7とヒートシンク3、4との密着力、樹脂7と半導体チップ2との密着力、並びに、樹脂7とヒートシンクブロック5との密着力を強くするために、上記樹脂7をモールドする前に、コーティング樹脂である例えばポリアミド樹脂(図示しない)をヒートシンク3、4、ヒートシンクブロック5及びチップ2の表面に塗布しておくことが好ましい。   Further, as shown in FIG. 1, resin (for example, epoxy resin) 7 is filled and sealed in the gap between the pair of heat sinks 3 and 4 and the peripheral portions of the chip 2 and the heat sink block 5. In this case, when the heat sinks 3, 4 and the like are molded with the resin 7, a mold (not shown) composed of upper and lower molds is used. Before the resin 7 is molded in order to increase the adhesion between the resin 7 and the heat sinks 3 and 4, the adhesion between the resin 7 and the semiconductor chip 2, and the adhesion between the resin 7 and the heat sink block 5. In addition, for example, a polyamide resin (not shown) as a coating resin is preferably applied to the surfaces of the heat sinks 3 and 4, the heat sink block 5 and the chip 2.

次に、上記した構成の半導体装置1の製造方法(即ち、製造工程)について、図2を参照して簡単に説明する。まず、図2(a)及び(b)に示すように、下側ヒートシンク3の上面に、半導体チップ2とヒートシンクブロック5を半田付けする工程を実行する。この場合、下側ヒートシンク3の上面に半田箔8を介してチップ2を積層すると共に、このチップ2の上に半田箔8を介してヒートシンクブロック5を積層する。この後、加熱装置(リフロー装置)によって上記半田箔8、8を溶融させてから、硬化させる。   Next, a manufacturing method (that is, a manufacturing process) of the semiconductor device 1 having the above configuration will be briefly described with reference to FIG. First, as shown in FIGS. 2A and 2B, a process of soldering the semiconductor chip 2 and the heat sink block 5 to the upper surface of the lower heat sink 3 is executed. In this case, the chip 2 is laminated on the upper surface of the lower heat sink 3 via the solder foil 8, and the heat sink block 5 is laminated on the chip 2 via the solder foil 8. Thereafter, the solder foils 8 and 8 are melted by a heating device (reflow device) and then cured.

続いて、図2(c)に示すように、チップ2の制御電極(例えばゲートパッド等)とリードフレーム9a、9bとをワイヤーボンディングする工程を実行する。これにより、例えばAlやAu等製のワイヤー10によってチップ2の制御電極とリードフレーム9a、9bとが接続される。   Subsequently, as shown in FIG. 2C, a process of wire bonding the control electrode (eg, gate pad) of the chip 2 and the lead frames 9a and 9b is performed. Thereby, for example, the control electrode of the chip 2 and the lead frames 9a and 9b are connected by the wire 10 made of Al or Au.

次いで、図2(d)及び(e)に示すように、ヒートシンクブロック5の上に上側ヒートシンク4を半田付けする工程を実行する。この場合、図2(d)に示すように、ヒートシンクブロック5の上に半田箔8を介して上側ヒートシンク4を載せる。そして、加熱装置によって上記半田箔8を溶融させてから、硬化させる。   Next, as shown in FIGS. 2D and 2E, a process of soldering the upper heat sink 4 on the heat sink block 5 is executed. In this case, the upper heat sink 4 is placed on the heat sink block 5 via the solder foil 8 as shown in FIG. Then, the solder foil 8 is melted by a heating device and then cured.

このとき、図2(e)に示すように、上側ヒートシンク4の上に例えば重り11を載置することにより、上側ヒートシンク4を下方へ向けて加圧するように構成されている。これと共に、上側ヒートシンク4と下側ヒートシンク3との間に、スペーサ治具(図示しない)を取り付けることにより、上側ヒートシンク4と下側ヒートシンク3との間の距離を設定距離に保持するように構成している。   At this time, as shown in FIG. 2 (e), for example, a weight 11 is placed on the upper heat sink 4 to pressurize the upper heat sink 4 downward. At the same time, a spacer jig (not shown) is attached between the upper heat sink 4 and the lower heat sink 3 so that the distance between the upper heat sink 4 and the lower heat sink 3 is maintained at a set distance. is doing.

この構成の場合、半田箔8が溶融する前の状態では、上側ヒートシンク4と下側ヒートシンク3との距離は、スペーサ治具の設定距離よりも大きくなるように構成されている。そして、半田箔8が溶融すると、重り11の加圧力により、溶融した半田層の部分が薄くなり、上側ヒートシンク4と下側ヒートシンク3との距離がスペーサ治具の設定距離と等しくなる。このとき、半田層は、適度な薄さまで薄くなるように構成されている。そして、溶融した半田層が硬化すれば、チップ2とヒートシンク3、4とヒートシンクブロック5の接合及び電気的接続が完了する。   In the case of this configuration, before the solder foil 8 is melted, the distance between the upper heat sink 4 and the lower heat sink 3 is configured to be larger than the set distance of the spacer jig. When the solder foil 8 is melted, the portion of the melted solder layer is thinned by the pressure applied by the weight 11, and the distance between the upper heat sink 4 and the lower heat sink 3 becomes equal to the set distance of the spacer jig. At this time, the solder layer is configured to be thin to an appropriate thickness. When the molten solder layer is cured, the bonding and electrical connection between the chip 2, the heat sinks 3, 4 and the heat sink block 5 are completed.

この後、ポリアミド樹脂を、ヒートシンク3、4とヒートシンクブロック5とチップ2の表面等に塗布する工程を実行する。この場合、例えばディッピングにより塗布しても良いし、ポリアミド樹脂塗布用のディスペンサのノズルから滴下(または噴霧)することにより塗布しても良い。尚、ポリアミド樹脂は必要に応じて塗布すれば良く、ポリアミド樹脂の塗布を省略しても良い。   Then, the process of apply | coating polyamide resin to the heat sinks 3 and 4, the heat sink block 5, the surface of the chip | tip 2, etc. is performed. In this case, for example, it may be applied by dipping, or may be applied by dropping (or spraying) from a nozzle of a dispenser for applying polyamide resin. The polyamide resin may be applied as necessary, and the polyamide resin may be omitted.

そして、ポリアミド樹脂を塗布した後は、図示しない成形型を使用して、ヒートシンク3、4の隙間及び外周部に樹脂7を充填する工程(モールド工程)を実行する。これにより、図1に示すように、ヒートシンク3、4の隙間及び外周部等に、樹脂7が充填封止される。そして、樹脂7が硬化した後、成形型内から半導体装置1を取り出せば、半導体装置1が完成する。尚、上記構成の場合、下側ヒートシンク3の下面及び上側ヒートシンク4の上面が、それぞれ露出するように樹脂モールドされている。これにより、ヒートシンク3、4の放熱性を高めている。   And after apply | coating a polyamide resin, the process (mold process) of filling the resin 7 in the clearance gap and outer peripheral part of the heat sinks 3 and 4 using the shaping | molding die which is not shown in figure is performed. As a result, as shown in FIG. 1, the resin 7 is filled and sealed in the gaps and the outer periphery of the heat sinks 3 and 4. Then, after the resin 7 is cured, the semiconductor device 1 is completed by taking the semiconductor device 1 out of the mold. In the case of the above configuration, resin molding is performed so that the lower surface of the lower heat sink 3 and the upper surface of the upper heat sink 4 are exposed. Thereby, the heat dissipation of the heat sinks 3 and 4 is improved.

さて、上記構成の半導体装置1においては、半導体チップ2の厚さ寸法をt1とし、下側ヒートシンク3の厚さ寸法をt2としたときに、t2/t1≧5が成立するように構成した。尚、本実施例の場合、上側ヒートシンク4の厚さ寸法もt2としている。   The semiconductor device 1 having the above-described configuration is configured such that t2 / t1 ≧ 5 is established when the thickness dimension of the semiconductor chip 2 is t1 and the thickness dimension of the lower heat sink 3 is t2. In this embodiment, the thickness of the upper heat sink 4 is also t2.

ここで、厚さ寸法t1、t2の条件式、即ち、厚さ比率(t2/t1)を上記したように設定した理由について説明する。本発明者らは、試作や実験等を実行することにより、上記厚さ比率の条件式が成立する構成であれば、半導体チップ2を保持するための圧縮応力を大きくすることができると共に、半導体チップ2の表面のせん断応力を低減することができることを確認した。   Here, the reason why the conditional expression of the thickness dimensions t1 and t2, that is, the thickness ratio (t2 / t1) is set as described above will be described. The inventors of the present invention can increase the compressive stress for holding the semiconductor chip 2 as long as the conditional expression for the thickness ratio is satisfied by performing trial manufacture, experiments, and the like. It was confirmed that the shear stress on the surface of the chip 2 can be reduced.

具体的には、厚さ比率を変えた半導体装置1を試作し、各試作品の素子圧縮応力を測定し、図3に示すグラフを得た。この図3のグラフにおいて、横軸は厚さ比率を示し、縦軸は素子圧縮応力比を示し、プロットが実際に試作した半導体装置1を示している。ここで、素子圧縮応力比は、厚さ比率が3.75の半導体装置1の素子圧縮応力を1.00と定義した場合の数値である。   Specifically, the semiconductor device 1 having a different thickness ratio was prototyped, the element compressive stress of each prototype was measured, and the graph shown in FIG. 3 was obtained. In the graph of FIG. 3, the horizontal axis indicates the thickness ratio, the vertical axis indicates the element compressive stress ratio, and the plot indicates the actually manufactured semiconductor device 1. Here, the element compressive stress ratio is a numerical value when the element compressive stress of the semiconductor device 1 having a thickness ratio of 3.75 is defined as 1.00.

この厚さ比率が3.75(即ち、素子圧縮応力比が1.00)の半導体装置1に対して温度差の大きい熱サイクルを作用させると、半導体チップ2が割れてしまうことを確認している。そして、厚さ比率が2.5(即ち、素子圧縮応力比が0.98)の半導体装置1に対して温度差の大きい熱サイクルを作用させたときも、半導体チップ2が割れてしまうことを確認している。   It was confirmed that when the thermal cycle having a large temperature difference is applied to the semiconductor device 1 having the thickness ratio of 3.75 (that is, the element compressive stress ratio is 1.00), the semiconductor chip 2 is cracked. Yes. Even when a thermal cycle having a large temperature difference is applied to the semiconductor device 1 having a thickness ratio of 2.5 (that is, the element compressive stress ratio is 0.98), the semiconductor chip 2 is cracked. I have confirmed.

これに対して、厚さ比率が7.00(即ち、素子圧縮応力比が1.09)と厚さ比率が15.00(即ち、素子圧縮応力比が1.13)の半導体装置1に対して温度差の大きい熱サイクルを作用させた場合、両者の半導体チップ2が割れないことを確認している。即ち、厚さ比率ひいては素子圧縮応力比が大きいほど、半導体チップ2が割れ難くなることを確認している。   On the other hand, for the semiconductor device 1 having a thickness ratio of 7.00 (ie, the element compressive stress ratio is 1.09) and a thickness ratio of 15.00 (ie, the element compressive stress ratio is 1.13). When a thermal cycle with a large temperature difference is applied, it is confirmed that both semiconductor chips 2 are not broken. That is, it has been confirmed that the semiconductor chip 2 becomes harder to break as the thickness ratio and thus the element compressive stress ratio increases.

従って、図3のグラフから、厚さ比率(t2/t1)を5.00以上に設定すれば、素子圧縮応力を十分大きく保持することができ、その半導体装置1に対して大きな熱応力が作用しても、素子破壊の発生を防止できることがわかる。これによって、半導体装置1の長期的信頼性を向上させることができる。   Therefore, from the graph of FIG. 3, if the thickness ratio (t2 / t1) is set to 5.00 or more, the element compressive stress can be kept sufficiently large, and a large thermal stress acts on the semiconductor device 1. However, it can be understood that the occurrence of element breakdown can be prevented. Thereby, the long-term reliability of the semiconductor device 1 can be improved.

また、厚さ比率を変えた半導体装置1の各試作品の素子表面のせん断応力を、シミュレーションによって計算し、図4に示すグラフを得た。この図4のグラフにおいて、横軸は厚さ比率を示し、縦軸は素子表面のせん断応力比を示し、プロットが実際に試作した半導体装置1を示している。ここで、せん断応力比は、厚さ比率が3.75の半導体装置1のせん断応力を1.00と定義した場合の数値である。   Further, the shear stress of the element surface of each prototype of the semiconductor device 1 with the thickness ratio changed was calculated by simulation, and the graph shown in FIG. 4 was obtained. In the graph of FIG. 4, the horizontal axis indicates the thickness ratio, the vertical axis indicates the shear stress ratio of the element surface, and the plot indicates the actually manufactured semiconductor device 1. Here, the shear stress ratio is a numerical value when the shear stress of the semiconductor device 1 having a thickness ratio of 3.75 is defined as 1.00.

この厚さ比率が3.75(即ち、せん断応力比が1.00)の半導体装置1に対して温度差の大きい熱サイクルを作用させると、半導体チップ2の表面付近の樹脂が剥離してしまうことを確認している。そして、厚さ比率が2.5(即ち、せん断応力比が1.02)の半導体装置1に対して温度差の大きい熱サイクルを作用させたときも、半導体チップ2の表面付近の樹脂が剥離してしまうことを確認している。   When a thermal cycle having a large temperature difference is applied to the semiconductor device 1 having the thickness ratio of 3.75 (that is, the shear stress ratio is 1.00), the resin near the surface of the semiconductor chip 2 is peeled off. I have confirmed that. Even when a thermal cycle having a large temperature difference is applied to the semiconductor device 1 having a thickness ratio of 2.5 (that is, the shear stress ratio is 1.02), the resin near the surface of the semiconductor chip 2 is peeled off. I have confirmed that it will.

これに対して、厚さ比率が7.00(即ち、せん断応力比が0.6)と厚さ比率が15.00(即ち、せん断応力比が0.15)の半導体装置1に対して温度差の大きい熱サイクルを作用させた場合、両者の半導体チップ2の表面付近の樹脂が剥離しないことを確認している。即ち、厚さ比率が大きいほど(即ち、せん断応力比が小さいほど)、半導体チップ2表面の樹脂が剥離し難くなることを確認している。   On the other hand, the temperature of the semiconductor device 1 having a thickness ratio of 7.00 (that is, the shear stress ratio is 0.6) and a thickness ratio of 15.00 (that is, the shear stress ratio is 0.15). It is confirmed that when a thermal cycle with a large difference is applied, the resin in the vicinity of the surfaces of the two semiconductor chips 2 does not peel off. That is, it has been confirmed that the resin on the surface of the semiconductor chip 2 becomes difficult to peel off as the thickness ratio increases (that is, as the shear stress ratio decreases).

従って、図4のグラフから、厚さ比率(t2/t1)を5.00以上に設定すれば、せん断応力を十分低減することができ、その半導体装置1に対して大きな熱応力が作用しても、素子表面の樹脂の剥離を防止できることがわかる。これによって、半導体装置1の長期的信頼性を向上させることができる。   Therefore, from the graph of FIG. 4, if the thickness ratio (t2 / t1) is set to 5.00 or more, the shear stress can be sufficiently reduced, and a large thermal stress acts on the semiconductor device 1. It can also be seen that the resin surface can be prevented from peeling off. Thereby, the long-term reliability of the semiconductor device 1 can be improved.

尚、上記実施例の場合、厚さ比率を大きくすれば、良い効果が得られることはわかっているが、厚さ比率をあまり大きくすることは困難である。というのは、厚さ比率を大きくする方法は、2つあり、1つの方法は半導体チップ2の厚み寸法t1を薄くすることであり、他の1つの方法はヒートシンク3、4の厚み寸法t2を厚くすることである。   In the case of the above embodiment, it is known that a good effect can be obtained by increasing the thickness ratio, but it is difficult to increase the thickness ratio too much. This is because there are two methods for increasing the thickness ratio, one method is to reduce the thickness dimension t1 of the semiconductor chip 2, and the other method is to reduce the thickness dimension t2 of the heat sinks 3 and 4. It is to make it thicker.

しかし、半導体チップ2の厚み寸法t1を薄くする場合、0.1mm程度が加工限界であり、ヒートシンク3、4の厚み寸法t2を1.0mm程度に固定すると、厚さ比率は15が限界となる。一方、ヒートシンク3、4の厚み寸法t2を厚くする場合には、半導体装置1の全体の厚み寸法が厚くなってしまうので、実用上(製品上)の制約がある。従って、厚さ比率は15程度が限界であり、チップの加工のし易さ及び実用上の制約から見ると、ベストの厚さ比率は7〜8程度となる。   However, when the thickness dimension t1 of the semiconductor chip 2 is reduced, the processing limit is about 0.1 mm. When the thickness dimension t2 of the heat sinks 3 and 4 is fixed to about 1.0 mm, the thickness ratio is limited to 15. . On the other hand, when the thickness dimension t2 of the heat sinks 3 and 4 is increased, the overall thickness dimension of the semiconductor device 1 is increased, so there is a practical (product) limitation. Accordingly, the thickness ratio is limited to about 15, and the best thickness ratio is about 7 to 8 from the viewpoint of ease of chip processing and practical restrictions.

また、上記実施例においては、ヒートシンク3、4の材料として、ヤング率が常温で100GPa以上の金属や合金等の材料を使用することが好ましい。上記100GPa以上のヤング率の材料は、硬く、十分な剛性があることから、十分な大きさの圧縮応力を得ることが可能になるためである。尚、圧縮応力を大きくするためには、材料の剛性が大きいほど良い。   Moreover, in the said Example, it is preferable to use materials, such as a metal and an alloy, whose Young's modulus is 100 GPa or more at normal temperature as a material of the heat sinks 3 and 4. FIG. This is because the material having a Young's modulus of 100 GPa or more is hard and has sufficient rigidity, so that a sufficiently large compressive stress can be obtained. In order to increase the compressive stress, the higher the rigidity of the material, the better.

そして、上記ヤング率の条件を満たすヒートシンク3、4の材料としては、例えばCu、Cu系合金、Al、Al系合金等があり、これらの金属や合金を使用すれば良い。   And as a material of the heat sinks 3 and 4 which satisfy | fill the said Young's modulus, there exist Cu, Cu type alloy, Al, Al type alloy etc., for example, What is necessary is just to use these metals and alloys.

また、上記実施例において、半導体チップ2とヒートシンク3、4及びヒートシンクブロック5とを接合する半田6の具体的材料としては、例えばSn−Pb系、Sn−Ag系、Sn−Sb系、Sn−Cu系などの2元系、或いは、多元系組成から適宜選択すれば良い。更に、モールド用の樹脂7としては、エポキシ系などの適正な素材の中から適宜選択すれば良い。   Moreover, in the said Example, as a specific material of the solder 6 which joins the semiconductor chip 2, and the heat sinks 3 and 4 and the heat sink block 5, it is Sn-Pb type | system | group, Sn-Ag type | system | group, Sn-Sb type | system | group, Sn--, for example. What is necessary is just to select suitably from binary type | system | groups, such as Cu type | system | groups, or a multi-component system composition. Furthermore, the molding resin 7 may be appropriately selected from appropriate materials such as epoxy.

尚、上記実施例においては、下側ヒートシンク3及び上側ヒートシンク4の両方の厚み寸法をt2としたが、これに限られるものではなく、下側ヒートシンク3の厚み寸法だけをt2とし、上側ヒートシンク4の厚み寸法をt2と異なる寸法にしても良いし、反対に、上側ヒートシンク4の厚み寸法だけをt2とし、下側ヒートシンク3の厚み寸法をt2と異なる寸法にしても良い。   In the above-described embodiment, the thickness dimension of both the lower heat sink 3 and the upper heat sink 4 is t2, but the present invention is not limited to this. Only the thickness dimension of the lower heat sink 3 is t2, and the upper heat sink 4 The thickness dimension of the lower heat sink 3 may be different from t2, while the thickness dimension of the lower heat sink 3 may be different from t2.

図5ないし図7は、本発明の第2の実施例を示す図である。この第2の実施例は、第1の実施例の半導体装置1において、ヒートシンク3、4の熱膨張係数をα1とし、樹脂7の熱膨張係数をα2としたときに、0.5α1≦α2≦1.5α1が成立するように構成したものである。   5 to 7 are views showing a second embodiment of the present invention. In the second embodiment, when the thermal expansion coefficient of the heat sinks 3 and 4 is α1 and the thermal expansion coefficient of the resin 7 is α2 in the semiconductor device 1 of the first embodiment, 0.5α1 ≦ α2 ≦ The configuration is such that 1.5α1 is established.

本発明者らは、試作や実験等を実行することにより、上記熱膨張係数の条件式が成立するように構成した半導体装置1であれば、半導体チップ(発熱素子)2の表面の端部に対する引張り応力及び半導体チップ2の表面のせん断応力を低減できることを確認した。以下、実験結果等に基づいて、上記熱膨張係数の条件式が有効であることを具体的に説明する。   If the semiconductor device 1 is configured such that the conditional expression of the thermal expansion coefficient is established by executing a trial manufacture, an experiment, or the like, the present inventors are directed to the end of the surface of the semiconductor chip (heating element) 2. It was confirmed that the tensile stress and the shear stress on the surface of the semiconductor chip 2 can be reduced. Hereinafter, it will be specifically described that the conditional expression for the thermal expansion coefficient is effective based on experimental results and the like.

まず、樹脂7の熱膨張係数α2を変えた半導体装置1の各試作品の半導体チップ2の表面の端部における引張り力、即ち、Z方向の応力を、シミュレーションによって計算し、図5に示すグラフを得た。この図5のグラフにおいて、横軸は樹脂7の熱膨張係数α2を示し、縦軸はZ方向の応力を示し、プロットが実際に試作した半導体装置1を示している。尚、Z方向は、半導体チップ2に直交する方向、即ち、図1における上下方向である。また、半導体装置1の各試作品のヒートシンク3、4は例えばCuで形成されており、Cuの熱膨張係数α1は17ppmである。   First, the tensile force at the end of the surface of the semiconductor chip 2 of each prototype of the semiconductor device 1 in which the thermal expansion coefficient α2 of the resin 7 is changed, that is, the stress in the Z direction is calculated by simulation, and the graph shown in FIG. Got. In the graph of FIG. 5, the horizontal axis indicates the thermal expansion coefficient α2 of the resin 7, the vertical axis indicates the stress in the Z direction, and the plot indicates the actually manufactured semiconductor device 1. The Z direction is a direction orthogonal to the semiconductor chip 2, that is, the vertical direction in FIG. Further, the heat sinks 3 and 4 of each prototype of the semiconductor device 1 are made of Cu, for example, and the thermal expansion coefficient α1 of Cu is 17 ppm.

上記図5から、樹脂7の熱膨張係数α2が大きくなるほど、Z方向の応力、即ち、半導体チップ2の表面の端部の引張り力が小さくなり、半導体チップ2を強固に保持できることがわかる。   From FIG. 5, it can be seen that as the thermal expansion coefficient α2 of the resin 7 increases, the stress in the Z direction, that is, the tensile force at the end of the surface of the semiconductor chip 2 decreases, and the semiconductor chip 2 can be held firmly.

次に、樹脂7の熱膨張係数α2を変えた半導体装置1の各試作品の半導体チップ2の表面におけるせん断応力を、シミュレーションによって計算し、図6に示すグラフを得た。この図6のグラフにおいて、横軸は樹脂7の熱膨張係数α2を示し、縦軸はせん断応力を示し、プロットが実際に試作した半導体装置1を示している。   Next, the shear stress on the surface of the semiconductor chip 2 of each prototype of the semiconductor device 1 in which the thermal expansion coefficient α2 of the resin 7 was changed was calculated by simulation, and the graph shown in FIG. 6 was obtained. In the graph of FIG. 6, the horizontal axis indicates the thermal expansion coefficient α2 of the resin 7, the vertical axis indicates the shear stress, and the plot indicates the actually manufactured semiconductor device 1.

この場合、せん断応力は、0に近いほど好ましく、その絶対値が大きくなると、良くないことがわかっている。そして、上記図6に示す5個の試作品については、大きな熱応力を作用させても、樹脂7の剥離等の発生は確認しておらず、熱膨張係数α2が25ppmであっても、そのときのせん断応力が問題ないことを確認している。   In this case, the shear stress is preferably closer to 0, and it has been found that the absolute value of the shear stress is not good. For the five prototypes shown in FIG. 6, even if a large thermal stress is applied, the occurrence of peeling of the resin 7 has not been confirmed, and even if the thermal expansion coefficient α2 is 25 ppm, It is confirmed that there is no problem with the shear stress.

ここで、樹脂7の熱膨張係数α2をヒートシンク3、4の熱膨張係数α1で表現し、これを横軸とし、更に、縦軸を、Z方向の応力(即ち、半田の降伏応力)と、せん断応力の絶対値として、図7に示す2つのグラフ(曲線)A及びBを得た。この場合、曲線AがZ方向の応力と樹脂7の熱膨張係数との関係を示し、曲線Bがせん断応力と樹脂7の熱膨張係数との関係を示している。   Here, the thermal expansion coefficient α2 of the resin 7 is expressed by the thermal expansion coefficient α1 of the heat sinks 3 and 4, and this is the horizontal axis, and the vertical axis is the stress in the Z direction (that is, the yield stress of the solder), Two graphs (curves) A and B shown in FIG. 7 were obtained as absolute values of the shear stress. In this case, the curve A shows the relationship between the stress in the Z direction and the thermal expansion coefficient of the resin 7, and the curve B shows the relationship between the shear stress and the thermal expansion coefficient of the resin 7.

この図7において、Z方向の応力の上限値は、35〜40MPa程度であり、Z方向の応力は上記上限値よりも小さくしなければならない。従って、樹脂7の熱膨張係数α2を、0.5α1以上としなければならない。また、せん断応力の上限値は、50MPa程度であり、せん断応力は上記上限値よりも小さくしなければならない。従って、樹脂7の熱膨張係数α2を、1.5α1以下としなければならない。   In FIG. 7, the upper limit value of the stress in the Z direction is about 35 to 40 MPa, and the stress in the Z direction must be smaller than the upper limit value. Therefore, the thermal expansion coefficient α2 of the resin 7 must be 0.5α1 or more. Moreover, the upper limit of the shear stress is about 50 MPa, and the shear stress must be smaller than the upper limit. Therefore, the thermal expansion coefficient α2 of the resin 7 must be 1.5α1 or less.

この結果、前記した熱膨張係数の条件式、即ち、0.5α1≦α2≦1.5α1が得られる。そして、この熱膨張係数の条件式が成立する構成の半導体装置1であれば、大きな熱応力が作用したとしても、半導体チップ2が割れるようなことはなく、長期的信頼性を向上させることができる。   As a result, the conditional expression for the thermal expansion coefficient, that is, 0.5α1 ≦ α2 ≦ 1.5α1 is obtained. And if it is the semiconductor device 1 of the structure with which the conditional expression of this thermal expansion coefficient is materialized, even if a big thermal stress acts, the semiconductor chip 2 will not be cracked and long-term reliability can be improved. it can.

尚、Z方向の応力の上限値が35〜40MPa程度である理由は、半導体チップ2とヒートシンク3、4を接合する半田(例えばSn−Pb系の半田)の引張り強度が35〜40MPa程度であり、これを越えると半田接合の耐久信頼性を確保することができないためである。このことは、文献(例えば高信頼度マイクロソルダリング技術、工業調査会)に記載されている。   The reason why the upper limit value of the stress in the Z direction is about 35 to 40 MPa is that the tensile strength of the solder (for example, Sn-Pb solder) that joins the semiconductor chip 2 and the heat sinks 3 and 4 is about 35 to 40 MPa. If this is exceeded, the durability reliability of the solder joint cannot be ensured. This is described in the literature (for example, high reliability micro soldering technology, industrial research committee).

また、せん断応力の上限値が50MPa程度である理由は、Cuのフレームと一般的なモールド樹脂との密着強度は、50MPa程度であり、これを越えるようなせん断応力が加わった場合、樹脂の剥離が発生するためである。このことは、本出願人の実験によって確認した。   The reason why the upper limit of the shear stress is about 50 MPa is that the adhesion strength between the Cu frame and a general mold resin is about 50 MPa. When shear stress exceeding this is applied, the resin is peeled off. This is because of this. This was confirmed by the applicant's experiment.

尚、上記実施例において、ヒートシンク3、4を例えばCuやCu系合金で形成した場合(この場合、ヒートシンク3、4の熱膨張係数α1は17ppm程度となる)には、樹脂7の熱膨張係数α2を10ppm以上に設定することが好ましいことを、本発明者らは実験等で確認している。   In the above embodiment, when the heat sinks 3 and 4 are made of, for example, Cu or a Cu-based alloy (in this case, the thermal expansion coefficient α1 of the heat sinks 3 and 4 is about 17 ppm), the thermal expansion coefficient of the resin 7 is used. The present inventors have confirmed through experiments and the like that α2 is preferably set to 10 ppm or more.

また、ヒートシンク3、4を例えばCu系焼結合金やCu系複合材で形成した場合(この場合、ヒートシンク3、4の熱膨張係数α1は8ppm程度となる)には、樹脂7の熱膨張係数α2を6ppm以上に設定することが好ましいことを、本発明者らは実験等で確認している。   When the heat sinks 3 and 4 are formed of, for example, a Cu-based sintered alloy or a Cu-based composite material (in this case, the thermal expansion coefficient α1 of the heat sinks 3 and 4 is about 8 ppm), the thermal expansion coefficient of the resin 7 The present inventors have confirmed through experiments and the like that α2 is preferably set to 6 ppm or more.

更に、上記実施例においては、樹脂7として、ヤング率が10GPa以上のものを使用した。これは、全体の応力のバランスを考慮すると、半導体装置1のほぼ全体をモールドして保護する樹脂7のヤング率が10GPa以上あることが好ましいためである。   Furthermore, in the said Example, the thing with a Young's modulus of 10 GPa or more was used as the resin 7. This is because the Young's modulus of the resin 7 that molds and protects almost the entire semiconductor device 1 is preferably 10 GPa or more in consideration of the balance of the overall stress.

尚、上記第2の実施例では、第1の実施例の半導体装置1において、ヒートシンク3、4の熱膨張係数をα1と、樹脂7の熱膨張係数をα2との間に前記条件式が成立するように構成したが、これに限られるものではなく、厚さ比率(t2/t1)が5未満の構成の半導体装置において、前記熱膨張係数の条件式が成立するように構成しても良く、この構成の場合も、ほぼ同じ作用効果を得ることができる。   In the second embodiment, in the semiconductor device 1 of the first embodiment, the conditional expression is established between the thermal expansion coefficient α1 of the heat sinks 3 and 4 and the thermal expansion coefficient α2 of the resin 7. However, the present invention is not limited to this, and a semiconductor device having a thickness ratio (t2 / t1) of less than 5 may be configured so that the conditional expression for the thermal expansion coefficient is satisfied. Even in this configuration, substantially the same operational effects can be obtained.

図8は、本発明の第3の実施例を示す図である。この第3の実施例は、第1の実施例または第2の実施例の半導体装置1において、半導体チップ2の裏面の面粗度をRaとしたときに、Ra≦500nmが成立するように構成したものである。   FIG. 8 is a diagram showing a third embodiment of the present invention. The third embodiment is configured so that Ra ≦ 500 nm is established when the surface roughness of the back surface of the semiconductor chip 2 is Ra in the semiconductor device 1 of the first embodiment or the second embodiment. It is a thing.

このように、半導体チップ2の裏面の面粗度Raを設定すると、素子破壊に対する強度を向上させることができ、大きな熱応力が作用したときに、半導体チップ2が割れることを確実に防止できる。   Thus, when the surface roughness Ra of the back surface of the semiconductor chip 2 is set, the strength against element destruction can be improved, and the semiconductor chip 2 can be reliably prevented from cracking when a large thermal stress is applied.

ここで、本発明者らは、上記面粗度Raを変えた半導体装置1の各試作品に、熱応力を作用させたときに、半導体チップ2に割れがどの程度の割合で発生したかを調べ、その結果を図8に示した。この図8において、横軸は、半導体チップ2の裏面の面粗度Raを示し、縦軸は、半導体チップ2の割れ発生率を示している。   Here, the present inventors have determined how much cracking has occurred in the semiconductor chip 2 when thermal stress is applied to each prototype of the semiconductor device 1 with the surface roughness Ra changed. The results are shown in FIG. In FIG. 8, the horizontal axis indicates the surface roughness Ra of the back surface of the semiconductor chip 2, and the vertical axis indicates the crack occurrence rate of the semiconductor chip 2.

この図8から、面粗度Raを500nm以下に設定すると、半導体チップ2の強度が高くなり、半導体チップ2がほとんど割れないことがわかる。尚、面粗度Raを2000nmに設定する場合は、一般的な小さいチップの場合である。   FIG. 8 shows that when the surface roughness Ra is set to 500 nm or less, the strength of the semiconductor chip 2 increases and the semiconductor chip 2 hardly breaks. The case where the surface roughness Ra is set to 2000 nm is a case of a general small chip.

尚、上記第3の実施例においては、第1の実施例または第2の実施例の半導体装置1において、半導体チップ2の裏面の面粗度Raを500nm以下としたが、これに限られるものではなく、第1の実施例の厚さ比率(t2/t1)が5未満の構成の半導体装置や、第2の実施例の熱膨張係数の条件式が成立しないような構成の半導体装置等において、半導体チップ2の裏面の面粗度Raを500nm以下とするように構成しても良い。このような構成の場合も、ほぼ同じ作用効果を得ることができる。   In the third embodiment, the surface roughness Ra of the back surface of the semiconductor chip 2 is set to 500 nm or less in the semiconductor device 1 of the first embodiment or the second embodiment. However, the present invention is not limited to this. Instead, in a semiconductor device having a thickness ratio (t2 / t1) of less than 5 in the first embodiment, a semiconductor device having a configuration in which the conditional expression for the thermal expansion coefficient in the second embodiment is not satisfied, or the like The surface roughness Ra of the back surface of the semiconductor chip 2 may be 500 nm or less. Even in such a configuration, substantially the same operational effects can be obtained.

図9及び図10は、本発明の第4の実施例を示す図である。この第4の実施例は、第1の実施例の半導体装置1において、ヒートシンク3、4の厚み寸法(t2)を例えば1.5mm程度に固定し、半導体チップ2の厚み寸法(t1)を変化させるように構成したものである。そして、第2の実施例では、半導体チップ2の厚み寸法を薄く設定することにより、半導体チップ2の端部部分2a(図9参照)で樹脂7が剥離する事態を防止するようにしている。   9 and 10 are diagrams showing a fourth embodiment of the present invention. In the fourth embodiment, in the semiconductor device 1 of the first embodiment, the thickness dimension (t2) of the heat sinks 3 and 4 is fixed to about 1.5 mm, for example, and the thickness dimension (t1) of the semiconductor chip 2 is changed. It is comprised so that it may make it. In the second embodiment, the thickness of the semiconductor chip 2 is set to be thin, thereby preventing the resin 7 from being peeled off at the end portion 2a (see FIG. 9) of the semiconductor chip 2.

具体的には、第4の実施例の場合、半導体チップ2の厚み寸法を変えた半導体装置1の各試作品の素子表面のせん断応力を、シミュレーションによって計算し、図10に示すグラフを得た。この図10のグラフにおいて、横軸は半導体チップ2の厚み寸法を示し、縦軸は素子表面のせん断応力比を示し、プロットが実際に試作した半導体装置1を示している。ここで、せん断応力比は、半導体チップ2の厚み寸法が400μm(第1の実施例の厚さ比率(t2/t2)に換算すると、3.75)の半導体装置1のせん断応力を1.00と定義した場合の数値である。   Specifically, in the case of the fourth embodiment, the shear stress of the element surface of each prototype of the semiconductor device 1 in which the thickness dimension of the semiconductor chip 2 was changed was calculated by simulation, and the graph shown in FIG. 10 was obtained. . In the graph of FIG. 10, the horizontal axis indicates the thickness dimension of the semiconductor chip 2, the vertical axis indicates the shear stress ratio of the element surface, and the plot indicates the actually manufactured semiconductor device 1. Here, the shear stress ratio of the semiconductor device 1 in which the thickness dimension of the semiconductor chip 2 is 400 μm (3.75 when converted to the thickness ratio (t2 / t2) of the first embodiment) is 1.00. It is a numerical value when defined as

この半導体チップ2の厚み寸法が400μm(即ち、せん断応力比が1.00)の半導体装置1に対して温度差の大きい熱サイクルを作用させると、半導体チップ2の表面端部部分2a付近の樹脂が剥離してしまうことを、本発明者らは確認している。   When a thermal cycle having a large temperature difference is applied to the semiconductor device 1 having a thickness dimension of 400 μm (that is, a shear stress ratio of 1.00), the resin in the vicinity of the surface end portion 2 a of the semiconductor chip 2. The present inventors have confirmed that is peeled off.

これに対して、半導体チップ2の厚み寸法が200μm(厚さ比率が7.00で、せん断応力比が0.6)の半導体装置1になると、この半導体装置1に対して温度差の大きい熱サイクルを作用させた場合、樹脂剥離の寿命が10倍以上延びることを、本発明者らは確認している。そして、半導体チップ2の厚み寸法が100μm(厚さ比率が15.00で、せん断応力比が0.15)の半導体装置1に対して温度差の大きい熱サイクルを作用させた場合も、樹脂が剥離しないことを確認している。   On the other hand, when the semiconductor device 1 has a semiconductor chip 2 having a thickness dimension of 200 μm (a thickness ratio of 7.00 and a shear stress ratio of 0.6), heat having a large temperature difference with respect to the semiconductor device 1 is obtained. The present inventors have confirmed that when the cycle is applied, the life of the resin peeling is extended by 10 times or more. Even when a thermal cycle having a large temperature difference is applied to the semiconductor device 1 having the thickness dimension of the semiconductor chip 2 of 100 μm (the thickness ratio is 15.00 and the shear stress ratio is 0.15), the resin It is confirmed that it does not peel.

従って、半導体チップ2の厚み寸法が薄くなるほど(厚さ比率が大きいほど、即ち、せん断応力比が小さいほど)、半導体チップ2表面の樹脂が剥離し難くなることがわかる。   Therefore, it can be understood that the resin on the surface of the semiconductor chip 2 becomes harder to peel off as the thickness dimension of the semiconductor chip 2 becomes thinner (the thickness ratio is larger, that is, the shear stress ratio is smaller).

尚、上記各実施例では、ヒートシンク3、4と半導体チップ2とヒートシンクブロック5とを接合する接合部材として半田箔8を用いたが、これに代えて、半田ペースト等を用いるように構成しても良い。   In each of the above embodiments, the solder foil 8 is used as a bonding member for bonding the heat sinks 3 and 4, the semiconductor chip 2, and the heat sink block 5, but instead of this, a solder paste or the like is used. Also good.

更に、上記各実施例においては、ヒートシンク3、4間に半導体チップ(放熱素子)2を1個挟むように構成したが、これに限られるものではなく、2個以上のチップ(または2種類以上のチップ)を挟むように構成しても良い。   Further, in each of the embodiments described above, one semiconductor chip (heat dissipating element) 2 is sandwiched between the heat sinks 3 and 4. However, the present invention is not limited to this, and two or more chips (or two or more types) are used. The chip) may be sandwiched.

次に、本発明者らが、先の出願(特願2001−225963)を行った後の研究結果について、図11ないし図16を参照して説明する。まず、上述した各実施例の半導体装置1の冷熱サイクル等に対する耐久性を向上させるためには、半導体チップ(半導体素子)2とヒートシンク(金属体)3、4、5との接合部における歪みを低減する、または、半導体チップ2の表面のせん断応力を低減すれば、よいことがわかった。   Next, the research results after the present inventors filed the previous application (Japanese Patent Application No. 2001-225963) will be described with reference to FIGS. First, in order to improve the durability of the semiconductor device 1 of each of the above-described embodiments with respect to the thermal cycle or the like, the distortion at the junction between the semiconductor chip (semiconductor element) 2 and the heat sinks (metal bodies) 3, 4, 5 is reduced. It has been found that it is better to reduce or to reduce the shear stress on the surface of the semiconductor chip 2.

そして、接合部の歪みを低減して素子破壊を防止する対策としては、(1)半導体チップ2に圧縮応力を加え、圧縮による変位を保持し、引張り応力を発生させないことと、(2)半導体チップ2の圧縮変位を容易にさせるために、半導体チップ2の剛性を低減させること等があることがわかった。以下、これらの条件を数値的に規定しながら、半導体装置1の耐久性が高くなることを具体的に説明する。   As measures for reducing the distortion of the joint portion and preventing element destruction, (1) applying compressive stress to the semiconductor chip 2 to maintain displacement due to compression, and not generating tensile stress, and (2) semiconductor It has been found that the rigidity of the semiconductor chip 2 may be reduced in order to facilitate the compressive displacement of the chip 2. Hereinafter, it will be specifically described that the durability of the semiconductor device 1 is enhanced while numerically defining these conditions.

本発明者らによれば、半導体装置1の耐久性を高くするのに必要な要件が、次の4つにまとめられることがわかった。   According to the present inventors, it has been found that the requirements necessary for increasing the durability of the semiconductor device 1 can be summarized into the following four.

(a)半導体素子(半導体チップ2)を構成するシリコンは、圧縮応力が600MPa以上かかっても破壊しないが、引張り応力が100MPa程度かかるだけで破壊してしまうことが知られているので、製造工程内においても、または、使用環境下においても、常に圧縮応力が半導体素子に加わるように構成することである。   (A) Silicon constituting the semiconductor element (semiconductor chip 2) does not break even when the compressive stress is 600 MPa or more, but it is known that the silicon element breaks only when the tensile stress is about 100 MPa. Even in the interior or in the environment of use, the semiconductor device is configured so that compressive stress is always applied.

(b)半導体素子への圧縮応力の発生源は、金属体と半導体素子(シリコン)との熱膨張係数の差に起因する熱応力である。そして、半導体素子に圧縮応力を加えるためには、熱応力を半導体素子へ確実に伝達し、且つ、圧縮状態を保持するように構成することである。このため、金属体と半導体素子との接合材としては、圧縮応力の伝達の観点から、従来周知のPb−Sn系はんだと比較して高強度であると共に、圧縮応力の保持の観点から、従来周知のPb−Sn系はんだと比較して耐クリープ性に優れたはんだを用いる必要がある。   (B) The source of compressive stress applied to the semiconductor element is thermal stress resulting from the difference in thermal expansion coefficient between the metal body and the semiconductor element (silicon). In order to apply a compressive stress to the semiconductor element, the thermal stress is surely transmitted to the semiconductor element and the compressed state is maintained. For this reason, as a bonding material between the metal body and the semiconductor element, from the viewpoint of transmission of compressive stress, it has higher strength than the conventionally known Pb-Sn solder, and from the viewpoint of maintaining compressive stress, It is necessary to use a solder excellent in creep resistance as compared with a known Pb—Sn solder.

(c)半導体素子の圧縮応力を高め、変位を容易にし、且つ、圧縮応力に対する半導体素子からの反発力を低減するためには、半導体素子の厚さを薄くする必要がある。   (C) In order to increase the compressive stress of the semiconductor element, facilitate displacement, and reduce the repulsive force from the semiconductor element against the compressive stress, it is necessary to reduce the thickness of the semiconductor element.

(d)半導体素子へ効果的に圧縮応力を加え、圧縮応力を保持するための別の構成として、半導体素子と金属体を樹脂によりモールドする構成がある。この構成の場合、モールド用の樹脂の熱膨張係数を、金属体の熱膨張係数に対して、同等またはそれ以上とすることにより、圧縮応力状態を保持することができる。   (D) As another configuration for effectively applying compressive stress to the semiconductor element and maintaining the compressive stress, there is a configuration in which the semiconductor element and the metal body are molded with resin. In the case of this configuration, the compressive stress state can be maintained by setting the thermal expansion coefficient of the molding resin to be equal to or higher than the thermal expansion coefficient of the metal body.

以下、上記各要件の作用効果(及び実験データ等)について順に説明する。   Hereinafter, the operational effects (and experimental data, etc.) of the above requirements will be described in order.

まず、図11は、半導体素子に圧縮応力が加わる過程を説明する図である。半導体素子の表面及び裏面と金属体を接合する場合、半導体素子、金属体及び接合材(はんだ)を所定の温度まで上昇させて、接合材を溶融、硬化させるリフロー行程が一般的に採用される。この場合、接合材が溶融後、冷却されると、接合が完了するが、この過程において、圧縮応力が発生する。   First, FIG. 11 is a diagram illustrating a process in which compressive stress is applied to a semiconductor element. When joining the front and back surfaces of a semiconductor element to a metal body, a reflow process is generally employed in which the semiconductor element, the metal body, and the bonding material (solder) are raised to a predetermined temperature to melt and harden the bonding material. . In this case, when the bonding material is melted and cooled, the bonding is completed. In this process, a compressive stress is generated.

例えば、半導体素子がシリコン、金属体がCuである場合、両者の熱膨張係数の差はかなり大きい。そして、一般的に熱膨張係数差が大きいほど、圧縮応力が高くなるが、接合材や金属体の降伏、塑性変形があるため、圧縮応力は線形には増加しない。尚、主な材料の熱膨張係数を下記の表1に示す。   For example, when the semiconductor element is silicon and the metal body is Cu, the difference in thermal expansion coefficient between them is quite large. In general, the larger the difference in thermal expansion coefficient, the higher the compressive stress. However, the compressive stress does not increase linearly because of the yielding and plastic deformation of the bonding material and metal body. The thermal expansion coefficients of main materials are shown in Table 1 below.

Figure 2008078679
そして、冷却後、放置を行うと、接合材のクリープにより圧縮応力が緩和していく。緩和が進展すると、最終的には半導体素子の内部応力はゼロになってしまう。この状態で、半導体素子の発熱や雰囲気温度の上昇が起こると、半導体素子に引張り応力が加わることになり、半導体素子の破壊を起こすおそれがある。
Figure 2008078679
And if it is allowed to stand after cooling, the compressive stress is relaxed by the creep of the bonding material. As the relaxation progresses, the internal stress of the semiconductor element eventually becomes zero. If the semiconductor element generates heat or the ambient temperature rises in this state, tensile stress is applied to the semiconductor element, which may cause destruction of the semiconductor element.

上記圧縮応力の緩和の挙動は、主に接合材のクリープ特性に起因する。そこで、以下、接合材の強度と緩和について説明する。主な接合材の強度を、下記の表2に示す。   The behavior of relaxation of the compressive stress is mainly caused by the creep characteristics of the bonding material. Therefore, the strength and relaxation of the bonding material will be described below. The strength of main bonding materials is shown in Table 2 below.

Figure 2008078679
一般的に、SnをベースとするSn系はんだは、Pbベースのはんだに比べて、機械的強度が高いことが知られている。このため、接合材としてSn系はんだを使用することが好ましく、これにより、冷却過程で生ずる熱応力を半導体素子へ確実に加えることができ、素子に対して圧縮応力を生じさせることができる。尚、Sn系はんだは、種類が多く、さまざまな組成のものが提案されているが、2元系、3元系を問わず、Pb系はんだと比較して、破断強度や降伏応力等が高いはんだを選定すれば良い。
Figure 2008078679
In general, Sn-based solder based on Sn is known to have higher mechanical strength than Pb-based solder. For this reason, it is preferable to use an Sn-based solder as the bonding material, whereby the thermal stress generated in the cooling process can be reliably applied to the semiconductor element, and a compressive stress can be generated on the element. There are many types of Sn-based solders and various compositions have been proposed, but they have higher fracture strength, yield stress, etc. than Pb-based solders, regardless of whether they are binary or ternary. Select a solder.

このようにして、半導体素子に圧縮応力を加えることができたとしても、緩和してしまうと、半導体素子の破壊につながってしまう。そこで、次に、半導体素子の圧縮状態を保持するための要件について考察する。材料に応力が加わると、材料は応力を緩和する方向に変位していく。この挙動がクリープと呼ばれ、Pbでは顕著である。ここで、主な接合材の緩和速度を、下記の表3に示す。   Even if a compressive stress can be applied to the semiconductor element in this manner, if it is relaxed, the semiconductor element will be destroyed. Then, next, the requirements for maintaining the compressed state of the semiconductor element will be considered. When stress is applied to the material, the material is displaced in a direction to relax the stress. This behavior is called creep and is remarkable in Pb. Here, the relaxation rates of the main bonding materials are shown in Table 3 below.

Figure 2008078679
上記表から、Pbはんだに比べて、Snはんだは、クリープによる歪み速度が遅く、素子の圧縮応力の保持に有効であることがわかる。
Figure 2008078679
From the above table, it can be seen that Sn solder has a slower strain rate due to creep than Pb solder and is effective in maintaining the compressive stress of the device.

また、図12は、Pb系はんだとSn系はんだを使用した場合の半導体素子中央部の圧縮応力値の経時変化(接合後、常温にて放置した場合)を比較したグラフである。この図12から、接合材をSn系はんだとすることにより、圧縮応力を増加させると共に、その状態を維持することができることがわかる。   FIG. 12 is a graph comparing the change over time in the compressive stress value at the center of the semiconductor element when Pb-based solder and Sn-based solder are used (when left at room temperature after bonding). From FIG. 12, it can be seen that by using Sn solder as the bonding material, the compressive stress can be increased and the state can be maintained.

次に、上述した方法とは別の方法で、素子の圧縮応力を増加させると共に、緩和挙動を抑制することも可能であり、以下、この方法について述べる。素子への圧縮応力は、半導体素子と金属体との熱膨張係数差のような材料物性値以外では、各部の剛性によっても左右されることがわかった。   Next, it is possible to increase the compressive stress of the element and suppress the relaxation behavior by a method different from the method described above, and this method will be described below. It was found that the compressive stress on the element depends on the rigidity of each part except for the material property value such as the difference in thermal expansion coefficient between the semiconductor element and the metal body.

例えば、接合部が塑性や降伏をしないと仮定した場合、金属体に対して相対的に半導体素子の厚さを薄くしていくと、半導体素子はより変位しやすくなり、圧縮応力は増加していく。図13は、半導体素子に加わる圧縮応力をシミュレーションにより計算した結果、即ち、応力分布を示す図であり、図13(a)は半導体素子の厚さが0.4mmの場合であり、図13(b)は半導体素子の厚さが0.2mmの場合である。この図13から、半導体素子の暑さを薄くすることにより、圧縮応力を増加させ得ることがわかる。   For example, if it is assumed that the joint is not plastic or yielded, the semiconductor element becomes more easily displaced and the compressive stress increases as the thickness of the semiconductor element is reduced relative to the metal body. Go. FIG. 13 is a diagram showing a result of calculation of compressive stress applied to the semiconductor element, that is, a stress distribution. FIG. 13A shows a case where the thickness of the semiconductor element is 0.4 mm, and FIG. b) is the case where the thickness of the semiconductor element is 0.2 mm. FIG. 13 shows that compressive stress can be increased by reducing the heat of the semiconductor element.

この結果は、半導体素子の厚さを薄くし、半導体素子の剛性を低減すれば、素子は金属体とともに変位する傾向がより強くなることを意味する。従って、半導体素子の厚さを薄くすると、半導体素子は金属体に「なじむ」ように振舞うため、半導体素子の表面及び裏面のせん断応力が低下し、且つ、半導体装置の耐久性に関わる接合部の歪み成分が縮小することを期待できる。   This result means that if the thickness of the semiconductor element is reduced and the rigidity of the semiconductor element is reduced, the element tends to be displaced with the metal body. Therefore, when the thickness of the semiconductor element is reduced, the semiconductor element behaves so as to “adhere” to the metal body, so that the shear stress on the front surface and the back surface of the semiconductor element is reduced, and the junction portion related to the durability of the semiconductor device is reduced. It can be expected that the distortion component is reduced.

図14は、半導体素子の厚さとせん断塑性歪みとの関係を実測して得たグラフである。この図14から、半導体素子の厚さを薄くすると、接合部のせん断歪みが低下することがわかり、特に、素子厚さを250μm以下とすると、せん断方向の塑性歪み値が1%以下となることがわかる。そして、この場合、冷熱衝撃試験に代表される耐久性能が向上することがわかる。   FIG. 14 is a graph obtained by actually measuring the relationship between the thickness of the semiconductor element and the shear plastic strain. From FIG. 14, it can be seen that when the thickness of the semiconductor element is reduced, the shear strain of the joint portion is reduced. In particular, when the element thickness is 250 μm or less, the plastic strain value in the shear direction is 1% or less. I understand. And in this case, it turns out that the durability performance represented by the thermal shock test improves.

次に、モールド樹脂と圧縮応力(耐久性能)との関係について説明する。基本的に、モールド樹脂は、金属体の熱膨張係数と同等の熱膨張係数を有することが好ましい。例えば、金属体としてCuを使用した場合、モールド樹脂の熱膨張係数が11〜20ppm程度であれば、十分な耐久性能が得られることを実験等で確認している。   Next, the relationship between mold resin and compressive stress (durability) will be described. Basically, the mold resin preferably has a thermal expansion coefficient equivalent to that of the metal body. For example, when Cu is used as the metal body, it has been confirmed through experiments and the like that sufficient durability can be obtained if the thermal expansion coefficient of the mold resin is about 11 to 20 ppm.

図15は、モールド樹脂の熱膨張係数と、半導体素子に対するZ方向の応力との関係をシミュレーションにより評価した結果を示す特性図である。この図15から、樹脂の熱膨張係数を大きくすれば、Z方向も含め、圧縮応力を増加させ得ることがわかる。尚、樹脂の熱膨張係数を25ppm以上とすると、シミュレーション上では、Cuとの界面におけるせん断応力が高くなり、樹脂と金属体との剥離を生じさせるおそれがあることがわかっている。ただし、樹脂の影響は、それほど大きくないため、副次的なパラメータであると推定される。   FIG. 15 is a characteristic diagram showing the result of evaluating the relationship between the thermal expansion coefficient of the mold resin and the stress in the Z direction on the semiconductor element by simulation. From FIG. 15, it can be seen that if the thermal expansion coefficient of the resin is increased, the compressive stress including the Z direction can be increased. In addition, when the thermal expansion coefficient of the resin is 25 ppm or more, it is known from the simulation that the shear stress at the interface with Cu is increased and the resin and the metal body may be separated. However, since the influence of the resin is not so great, it is estimated that it is a secondary parameter.

さて、以上説明した各要件に基づいて、半導体装置を試作し、耐久性評価を実施した結果を、図16に示す。この図16においては、縦方向に半導体素子の厚さをとり、横方向に金属体の厚さをとっている。また、「ばつ印」はすべての試作品の半導体素子が割れたものであり、「三角印」は一部の試作品の半導体素子が割れたものであり、「丸印」はすべての試作品の半導体素子が割れなかったものである。図16上の直線は、前記した比(t2/t1)が5の場合を示している。従って、上記比(t2/t1)が5以下であれば、十分な耐久性が得られることがわかる。   Now, FIG. 16 shows the result of trial manufacture of a semiconductor device based on each requirement described above and the evaluation of durability. In FIG. 16, the thickness of the semiconductor element is taken in the vertical direction, and the thickness of the metal body is taken in the horizontal direction. Also, “Batsu-in” means that all the prototype semiconductor elements are broken, “Triangle” means that some of the prototype semiconductor elements are broken, and “Maru” means all prototypes. The semiconductor element was not broken. The straight line in FIG. 16 shows the case where the ratio (t2 / t1) is 5. Therefore, it can be seen that if the ratio (t2 / t1) is 5 or less, sufficient durability can be obtained.

尚、金属体の厚さに関しては、放熱性の観点からは、厚いほど優れていることが容易にわかるが、一般的なフレーム材として入手可能なものの厚さは、2.5mm程度までであり、実際には、1.0〜2.0mm程度のものが量産に適している。   In addition, regarding the thickness of the metal body, from the viewpoint of heat dissipation, it can be easily understood that the thickness is better, but the thickness of what is available as a general frame material is up to about 2.5 mm. Actually, a material having a thickness of about 1.0 to 2.0 mm is suitable for mass production.

本発明の第1の実施例を示す半導体装置の縦断面図1 is a longitudinal sectional view of a semiconductor device showing a first embodiment of the present invention; 半導体装置の製造工程を示す図The figure which shows the manufacturing process of a semiconductor device 厚さ比率と圧縮応力比との関係を示す特性図Characteristic diagram showing the relationship between thickness ratio and compressive stress ratio 厚さ比率とせん断応力比との関係を示す特性図Characteristic diagram showing the relationship between thickness ratio and shear stress ratio 本発明の第2の実施例を示すものであり、樹脂の熱膨張係数とZ方向の応力との関係を示す特性図The characteristic view which shows the 2nd Example of this invention and shows the relationship between the thermal expansion coefficient of resin, and the stress of a Z direction. 樹脂の熱膨張係数とせん断応力との関係を示す特性図Characteristic diagram showing the relationship between thermal expansion coefficient of resin and shear stress 熱膨張係数とZ方向の応力及びせん断応力の絶対値との関係を示す特性図Characteristic diagram showing the relationship between the coefficient of thermal expansion and the absolute values of stress and shear stress in the Z direction 本発明の第3の実施例を示すものであり、半導体チップの裏面の面粗度と割れ発生率との関係を示す特性図The characteristic diagram which shows the 3rd Example of this invention and shows the relationship between the surface roughness of the back surface of a semiconductor chip, and a crack generation rate. 本発明の第4の実施例を示す半導体装置の部分縦断面図Partial vertical sectional view of a semiconductor device showing a fourth embodiment of the present invention. 半導体チップの厚み寸法とせん断応力比との関係を示す特性図Characteristic diagram showing the relationship between the thickness dimension of semiconductor chips and the shear stress ratio 半導体素子への圧縮応力発生過程と圧縮応力緩和過程を説明する図Diagram explaining compressive stress generation process and compressive stress relaxation process to semiconductor device 半導体素子にかかる圧縮応力の経時変化を示す特性図Characteristic diagram showing time-dependent change in compressive stress applied to semiconductor elements (a)は厚さ0.4mmの半導体素子に加わる圧縮応力の分布を示す図、(b)は厚さ0.2mmの半導体素子に加わる圧縮応力の分布を示す図(A) is a diagram showing a distribution of compressive stress applied to a semiconductor element having a thickness of 0.4 mm, and (b) is a diagram showing a distribution of compressive stress applied to a semiconductor element having a thickness of 0.2 mm. 半導体素子の厚さと接合部のせん断塑性歪みとの関係を示す特性図Characteristic diagram showing the relationship between the thickness of the semiconductor element and the shear plastic strain at the joint 樹脂の熱膨張係数と半導体素子に加わるZ方向の応力との関係を示す特性図Characteristic diagram showing the relationship between the thermal expansion coefficient of the resin and the stress in the Z direction applied to the semiconductor element 半導体素子の厚さと金属体の厚さと耐久評価結果との関係を示す図The figure which shows the relationship between the thickness of a semiconductor element, the thickness of a metal body, and the endurance evaluation result

符号の説明Explanation of symbols

1は半導体装置、2は半導体チップ(発熱素子、半導体素子)、3は下側ヒートシンク(放熱板、第1の金属体)、4は上側ヒートシンク(放熱板、第2の金属体)、5はヒートシンクブロック(第3の金属体)、6は半田(接合層)、7は樹脂を示す。   1 is a semiconductor device, 2 is a semiconductor chip (heating element, semiconductor element), 3 is a lower heat sink (heat sink, first metal body), 4 is an upper heat sink (heat sink, second metal body), 5 is A heat sink block (third metal body), 6 is solder (bonding layer), and 7 is resin.

Claims (11)

半導体素子と、この半導体素子の裏面に接合され電極と放熱を兼ねる第1の金属体と、前記半導体素子の表面側に接合され電極と放熱を兼ねる第2の金属体とを備え、前記一対の放熱板の一面が露出するように装置のほぼ全体を樹脂でモールドした半導体装置において、
前記半導体素子と前記金属体とを接合する接合層における塑性歪み率が1%以下となるように、前記半導体素子の厚さを200μm以下とすると共に、
前記モールド樹脂により装置全体を拘束保持するように構成したことを特徴とする半導体装置。
A semiconductor element; a first metal body joined to the back surface of the semiconductor element that serves as heat radiation; and a second metal body joined to the surface side of the semiconductor element that serves as heat radiation. In a semiconductor device in which almost the entire device is molded with resin so that one surface of the heat sink is exposed,
While the thickness of the semiconductor element is 200 μm or less so that the plastic strain rate in the bonding layer that joins the semiconductor element and the metal body is 1% or less,
A semiconductor device characterized in that the entire device is restrained and held by the mold resin.
半導体素子と、この半導体素子の裏面に接合され電極と放熱を兼ねる第1の金属体と、前記半導体素子の表面側に接合され電極と放熱を兼ねる第2の金属体とを備え、前記一対の放熱板の一面が露出するように装置のほぼ全体を樹脂でモールドした半導体装置において、
前記半導体素子表面のせん断応力が35MPa以下となるように、前記半導体素子の厚さを200μm以下とすると共に、
前記モールド樹脂により装置全体を拘束保持するように構成したことを特徴とする半導体装置。
A semiconductor element; a first metal body joined to the back surface of the semiconductor element that serves as heat radiation; and a second metal body joined to the surface side of the semiconductor element that serves as heat radiation. In a semiconductor device in which almost the entire device is molded with resin so that one surface of the heat sink is exposed,
While the thickness of the semiconductor element is 200 μm or less so that the shear stress of the semiconductor element surface is 35 MPa or less,
A semiconductor device characterized in that the entire device is restrained and held by the mold resin.
前記第1の金属体及び前記第2の金属体の厚みを1.0mm以上としたことを特徴とする請求項1または2記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the first metal body and the second metal body have a thickness of 1.0 mm or more. 前記半導体素子の厚さ寸法をt1とし、前記第1の金属体及び前記第2の金属体のの厚さ寸法をt2としたときに、
t2/t1≧5
が成立するように構成したことを特徴とする請求項1ないし3のいずれかに記載の半導体装置。
When the thickness dimension of the semiconductor element is t1, and the thickness dimension of the first metal body and the second metal body is t2,
t2 / t1 ≧ 5
4. The semiconductor device according to claim 1, wherein:
前記金属体の熱膨張係数をα1とし、前記樹脂の熱膨張係数をα2としたときに、
0.5α1≦α2≦1.5α1
が成立するように構成したことを特徴とする請求項1ないし3のいずれかに記載の半導体装置。
When the thermal expansion coefficient of the metal body is α1, and the thermal expansion coefficient of the resin is α2,
0.5α1 ≦ α2 ≦ 1.5α1
The semiconductor device according to claim 1, wherein the semiconductor device is configured so that
前記半導体素子の裏面の面粗度をRaとしたときに、
Ra≦500nm
が成立するように構成したことを特徴とする請求項1ないし3のいずれかに記載の半導体装置。
When the surface roughness of the back surface of the semiconductor element is Ra,
Ra ≦ 500nm
The semiconductor device according to claim 1, wherein the semiconductor device is configured so that
前記半導体素子の表面と前記第2の金属体との間に接合された第3の金属体を備えたことを特徴とする請求項1ないし6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, further comprising a third metal body joined between the surface of the semiconductor element and the second metal body. 前記接合層をSn系はんだで構成したことを特徴とする請求項1ないし7のいずれかに記載の半導体装置。   8. The semiconductor device according to claim 1, wherein the bonding layer is made of Sn-based solder. 前記半導体素子のデバイス構造を、トレンチゲートタイプとしたことを特徴とする請求項1ないし8のいずれかに記載の半導体装置。   9. The semiconductor device according to claim 1, wherein a device structure of the semiconductor element is a trench gate type. 前記一対の放熱板は、その一面が前記樹脂から露出するようにモールドされていることを特徴とする請求項1ないし9のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the pair of heat sinks are molded so that one surface thereof is exposed from the resin. 前記半導体素子と前記第1の金属体とは、接合層により直接接合されていることを特徴とする請求項1ないし10のいずれかに記載の半導体装置。   11. The semiconductor device according to claim 1, wherein the semiconductor element and the first metal body are directly bonded by a bonding layer.
JP2007286138A 2001-07-26 2007-11-02 Semiconductor device Pending JP2008078679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286138A JP2008078679A (en) 2001-07-26 2007-11-02 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001225963 2001-07-26
JP2007286138A JP2008078679A (en) 2001-07-26 2007-11-02 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005008264A Division JP4376798B2 (en) 2001-07-26 2005-01-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008078679A true JP2008078679A (en) 2008-04-03

Family

ID=39350345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286138A Pending JP2008078679A (en) 2001-07-26 2007-11-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008078679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190211A (en) * 2009-01-26 2010-09-02 Murata Mfg Co Ltd Jointed body and fluid device
JP2014502786A (en) * 2010-12-15 2014-02-03 シュルンベルジェ ホールディングス リミテッド Downhole tool thermal device
WO2016203705A1 (en) * 2015-06-18 2016-12-22 株式会社デンソー Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165348A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Wiring board of semiconductor device
JPS63142640A (en) * 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPH07235672A (en) * 1994-02-21 1995-09-05 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
JPH1174230A (en) * 1997-08-29 1999-03-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film semiconductor device
JP2001094005A (en) * 1999-09-22 2001-04-06 Oki Electric Ind Co Ltd Semiconductor device and method for producing it
JP2001156219A (en) * 1999-11-24 2001-06-08 Denso Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165348A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Wiring board of semiconductor device
JPS63142640A (en) * 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPH07235672A (en) * 1994-02-21 1995-09-05 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
JPH1174230A (en) * 1997-08-29 1999-03-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film semiconductor device
JP2001094005A (en) * 1999-09-22 2001-04-06 Oki Electric Ind Co Ltd Semiconductor device and method for producing it
JP2001156219A (en) * 1999-11-24 2001-06-08 Denso Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190211A (en) * 2009-01-26 2010-09-02 Murata Mfg Co Ltd Jointed body and fluid device
JP2014502786A (en) * 2010-12-15 2014-02-03 シュルンベルジェ ホールディングス リミテッド Downhole tool thermal device
WO2016203705A1 (en) * 2015-06-18 2016-12-22 株式会社デンソー Semiconductor device
JP2017011026A (en) * 2015-06-18 2017-01-12 株式会社デンソー Semiconductor device

Similar Documents

Publication Publication Date Title
JP2003110064A (en) Semiconductor device
JP4319591B2 (en) Semiconductor power module
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
US7400002B2 (en) MOSFET package
JP5975911B2 (en) Semiconductor device
JP4260263B2 (en) Semiconductor device
CN107615464B (en) Method for manufacturing power semiconductor device and power semiconductor device
CN104756250B (en) Semiconductor device
JP3988735B2 (en) Semiconductor device and manufacturing method thereof
JP2021197445A (en) Power module and manufacturing method of power module
JP2006190850A (en) Semiconductor device and its manufatcuring method
JP2019153699A (en) Semiconductor device and manufacturing method of the same
JP2008078679A (en) Semiconductor device
JP4376798B2 (en) Semiconductor device
JP2005129886A (en) Semiconductor device and its manufacturing method
JP2018029149A (en) Power semiconductor device and manufacturing method thereof
JP2017191826A (en) Semiconductor device and manufacturing method of the same
JP2003133329A (en) Semiconductor device
JP5444299B2 (en) Semiconductor device
JP7072624B1 (en) Power semiconductor devices and methods for manufacturing power semiconductor devices
JP2006179732A (en) Semiconductor power module
JP2000150742A (en) Heat conductive sheet and manufacture thereof and semiconductor device
JP2023512826A (en) free solder foil
JP7179550B2 (en) Ceramic circuit board and semiconductor device using the same
JP2003068959A (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228