JP2010190211A - Jointed body and fluid device - Google Patents

Jointed body and fluid device Download PDF

Info

Publication number
JP2010190211A
JP2010190211A JP2010014472A JP2010014472A JP2010190211A JP 2010190211 A JP2010190211 A JP 2010190211A JP 2010014472 A JP2010014472 A JP 2010014472A JP 2010014472 A JP2010014472 A JP 2010014472A JP 2010190211 A JP2010190211 A JP 2010190211A
Authority
JP
Japan
Prior art keywords
pump chamber
bonding
linear expansion
fluid device
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010014472A
Other languages
Japanese (ja)
Other versions
JP5402673B2 (en
Inventor
Kosuke Narita
幸輔 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010014472A priority Critical patent/JP5402673B2/en
Publication of JP2010190211A publication Critical patent/JP2010190211A/en
Application granted granted Critical
Publication of JP5402673B2 publication Critical patent/JP5402673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jointed body constituted by jointing a plurality of members with different linear expansion coefficients to each other, having enhanced rigidity as a whole and preventing peeling with respect to thermal stress even if the jointed body is small and thin, and a fluid device. <P>SOLUTION: A piezoelectric pump 101 applies pressure to fluid within a pump chamber 52 by using bending vibration of a piezoelectric vibrator 65 to discharge fluid. The piezoelectric pump 101 includes a highly rigid plate 60C, a jointing layer 60A and a pump chamber body 70. The highly rigid plate 60C is made of stainless steel. The jointing layer 60A and pump body 70 is made of PET. The jointing layer 60A is formed on a main face of the highly rigid plate 60C. The linear expansion coefficient of each of the jointing layer 60A and the pump chamber body 70 is set larger than that of the highly rigid plate 60C. The pump chamber body 70 has lower rigidity compared to the highly rigid plate 60C, and is jointed to the jointing layer 60A in the position where at least part of an outer end of the pump chamber body 70 is made to abut on an inner side from the end of the jointing layer 60A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、線膨張係数の相違する複数の部材を接合してなる接合体、および、例えば線膨張係数の相違する複数の部材を接合してポンプ室を構成した圧電ポンプ等の流体機器に関する。   The present invention relates to a joined body formed by joining a plurality of members having different linear expansion coefficients, and a fluid device such as a piezoelectric pump in which a plurality of members having different linear expansion coefficients are joined to form a pump chamber.

圧電ポンプは、圧電振動子を利用してダイヤフラムを振動させてポンプ室内の流体を吐出する。一般に圧電ポンプは小型・薄型に構成できるとともに低消費電力であることから、燃料電池の燃料輸送用ポンプなどとして利用可能である(例えば特許文献1参照。)。   The piezoelectric pump uses a piezoelectric vibrator to vibrate the diaphragm and discharges fluid in the pump chamber. In general, a piezoelectric pump can be configured to be small and thin and has low power consumption. Therefore, it can be used as a fuel transportation pump for a fuel cell (see, for example, Patent Document 1).

WO2008/007634号公報WO2008 / 007634 Publication

従来の圧電ポンプは、圧電素子を除くポンプ室の構成部材が樹脂などで構成されることがあった。その場合、樹脂は剛性が低いためダイヤフラムの振動に伴う流体圧の変化によって、ポンプ室が微小に変形し、流体の圧力損失が増大して圧電ポンプの吐出性能が損なわれていた。   In the conventional piezoelectric pump, the constituent members of the pump chamber excluding the piezoelectric element may be made of resin or the like. In this case, since the resin has low rigidity, the pump chamber is slightly deformed by the change in fluid pressure accompanying the vibration of the diaphragm, and the pressure loss of the fluid is increased, so that the discharge performance of the piezoelectric pump is impaired.

そこで、ポンプ室を肉厚な部材で構成してポンプ室の剛性を高めることが考えられるが、その場合、小型・薄型であるという圧電ポンプの特性が損なわれる。また、ポンプ室全体を高剛性材料で構成することも考えられるが、樹脂は成形が容易であり、複雑な形状成形を要するポンプ室全体を樹脂以外の材料で構成することはコスト面などから難しい。   Therefore, it is conceivable to increase the rigidity of the pump chamber by configuring the pump chamber with a thick member, but in that case, the characteristics of the piezoelectric pump that are small and thin are impaired. Although it is conceivable that the entire pump chamber is made of a high-rigidity material, resin is easy to mold, and it is difficult to configure the entire pump chamber that requires complicated shape molding from materials other than resin because of cost. .

そこで、ポンプ室を樹脂部材と樹脂よりも高剛性である高剛性材料との貼り合わせで構成することにより、ポンプ室を高剛性にすることが考えられる。しかしながら、材質の異なる樹脂部材と高剛性材料とを貼り合わせると、線膨張係数の相違によって異素材貼り合わせ面が剥がれやすくなる問題が生じる。具体的には、異素材貼り合わせ面に、例えば熱応力がかかると剥離が生じてしまう。このような剥離の問題は、線膨張係数が異なる2種類の部材を接合した構成の接合体や流体機器であっても同様に生じる。   Therefore, it is conceivable to make the pump chamber highly rigid by forming the pump chamber by bonding a resin member and a highly rigid material having higher rigidity than the resin. However, when a resin member and a high-rigidity material having different materials are bonded together, there arises a problem that the different material bonding surface is easily peeled off due to a difference in linear expansion coefficient. Specifically, peeling occurs when, for example, thermal stress is applied to the bonded surface of different materials. Such a problem of peeling similarly occurs even in a joined body or a fluid device having a configuration in which two types of members having different linear expansion coefficients are joined.

そこで本発明は、線膨張係数の異なる複数の部材を接合してなる接合体の全体としての剛性を高めると共に、小型・薄型であっても熱応力に対する剥離が生じにくくした接合体の提供と、流体機器の提供とを目的とする。   Therefore, the present invention provides a joined body that enhances the rigidity of the whole joined body formed by joining a plurality of members having different linear expansion coefficients, and is less likely to be peeled off against thermal stress even in a small and thin shape. The purpose is to provide fluid equipment.

本発明は、第1の接合部材と第2の接合部材とを接合した接合体である。第2の接合部材は、第1の接合部材よりも高剛性である。また、第2の接合部材は接合層が主面に形成されている。接合層は第2の接合部材の線膨張係数と異なる線膨張係数を有する。第1の接合部材は、第2の接合部材の線膨張係数と異なる線膨張係数を有し、外側端の少なくとも一部が接合層の端よりも内側に当たる位置で接合層に接合する。
特には、接合層の線膨張係数および第1の接合部材の線膨張係数が第2の接合部材の線膨張係数よりも大きいことが好ましい。
また本発明は、流体機器本体と剛性板とを接合して流体機器を構成し、流体機器内の流体に圧力をかけて流体を吐出する流体機器である。流体機器は接合体に相当し、流体機器本体は第1の接合部材に相当し、剛性板は第2の接合部材に相当する。
The present invention is a joined body in which a first joining member and a second joining member are joined. The second joining member is more rigid than the first joining member. The second bonding member has a bonding layer formed on the main surface. The bonding layer has a linear expansion coefficient different from that of the second bonding member. The first bonding member has a linear expansion coefficient different from that of the second bonding member, and is bonded to the bonding layer at a position where at least a part of the outer end is inward of the end of the bonding layer.
In particular, the linear expansion coefficient of the bonding layer and the linear expansion coefficient of the first bonding member are preferably larger than the linear expansion coefficient of the second bonding member.
In addition, the present invention is a fluid device in which a fluid device body and a rigid plate are joined to form a fluid device, and pressure is applied to the fluid in the fluid device to discharge the fluid. The fluid device corresponds to a joined body, the fluid device body corresponds to a first joining member, and the rigid plate corresponds to a second joining member.

この構造では、第1の接合部材と第2の接合部材とを貼り合わせることにより、接合体を肉厚にすること無く接合体の剛性を高められる。また、圧電ポンプ等の流体機器であれば、流体の吐出性能を改善できる。   In this structure, by bonding the first bonding member and the second bonding member, the rigidity of the bonded body can be increased without increasing the thickness of the bonded body. Moreover, if it is fluid apparatuses, such as a piezoelectric pump, the fluid discharge performance can be improved.

また、第2の接合部材の線膨張係数と異なる線膨張係数を有する第1の接合部材は、同様に第2の接合部材の線膨張係数と異なり、且つ、熱が加わった際の伸縮方向が第1の接合部材と同方向になる線膨張係数を有する接合層に接合するので、両者の界面に作用する熱応力は、第1の接合部材と第2の接合部材とを直接接続する場合にその貼り合わせ面に作用する熱応力よりも抑制される。一方、接合層と第2の接合部材との貼り合わせ面のうち第1の接合部材の接合箇所に対面する領域には、第1の接合部材を第2の接合部材に直接接続する場合と略同等の熱応力が作用する。しかしながら、第1の接合部材の外側端を接合層の端よりも内側に当たる位置で接合層に接合しているので、第1の接合部材を第2の接合部材に直接接続する場合よりも異素材貼り合わせ面の剥離は生じにくい。   Further, the first bonding member having a linear expansion coefficient different from the linear expansion coefficient of the second bonding member is similarly different from the linear expansion coefficient of the second bonding member, and the expansion / contraction direction when heat is applied is also different. Since it joins to the joining layer which has the linear expansion coefficient which becomes the same direction as the 1st joining member, when the 1st joining member and the 2nd joining member are directly connected, the thermal stress which acts on the interface of both is connected. The thermal stress acting on the bonding surface is suppressed. On the other hand, in the region facing the bonding portion of the first bonding member in the bonding surface of the bonding layer and the second bonding member, the first bonding member is substantially connected to the second bonding member. Equivalent thermal stress acts. However, since the outer end of the first bonding member is bonded to the bonding layer at a position that is inward of the end of the bonding layer, a different material is used than when the first bonding member is directly connected to the second bonding member. Peeling of the bonded surface is unlikely to occur.

図1は、その作用を説明する図である。図1(A)に示す比較構成例は、接合層3Aと第2の接合部材2Aとの異素材貼り合わせ面の端が第1の接合部材1Aの外側端と重なる位置にある構成である。この場合、異素材貼り合わせ面の端に、第1の接合部材1Aに対面する領域に作用する力が集中し、そこから異素材貼り合わせ面に沿って剥離が進む危険性が高い。一方、図1(B)に示す本構成例では、接合層3Bと第2の接合部材2Bとの異素材貼り合わせ面の端が第1の接合部材1Bの外側端から離れた構成である。この場合、異素材貼り合わせ面における端は、第1の接合部材1Bに対面する領域よりも外側に離れる。すると、第1の接合部材1Bに対面する領域に作用する力はその領域の全面に分散し、したがって異素材貼り合わせ面の剥離が進行しにくい。   FIG. 1 is a diagram for explaining the operation. The comparative configuration example shown in FIG. 1A is a configuration in which the end of the different material bonding surface of the bonding layer 3A and the second bonding member 2A overlaps the outer end of the first bonding member 1A. In this case, the force acting on the region facing the first bonding member 1A is concentrated on the edge of the different material bonding surface, and there is a high risk that the separation proceeds along the different material bonding surface. On the other hand, in this configuration example shown in FIG. 1B, the end of the different material bonding surface of the bonding layer 3B and the second bonding member 2B is separated from the outer end of the first bonding member 1B. In this case, the end of the different material bonding surface is separated outward from the region facing the first bonding member 1B. Then, the force acting on the region facing the first bonding member 1B is dispersed over the entire region, and therefore, the separation of the bonded surface of the different materials hardly proceeds.

本発明の第1の接合部材は外側端が段形状であると好適であり、第1の接合部材の接合層に接合する主面とは逆側の主面における外側端が、第1の接合部材の接合層に接合する主面における外側端よりも内側に位置するとよい。これは、例えば、ポンプ室本体の外側端が段差形状となった構造である。これにより、ポンプ室本体の最外側端が実質的に肉薄になるため、熱応力が抑制され、異素材貼り合わせ面の剥離をより抑制できる。   The first joining member of the present invention preferably has a stepped outer end, and the outer end of the main surface opposite to the main surface to be joined to the joining layer of the first joining member is the first joining. It is good to be located inside the outer end of the main surface joined to the joining layer of the member. This is, for example, a structure in which the outer end of the pump chamber body has a stepped shape. Thereby, since the outermost end of the pump chamber body becomes substantially thin, thermal stress is suppressed, and peeling of the bonded surface of the different materials can be further suppressed.

本発明の接合層と第1の接合部材とは同等の線膨張係数を有すると好適である。これにより、熱応力を大幅に抑制でき、異素材貼り合わせ面の剥離をより抑制できる。   It is preferable that the bonding layer of the present invention and the first bonding member have the same linear expansion coefficient. Thereby, a thermal stress can be suppressed significantly and peeling of a different material pasting surface can be controlled more.

この発明によれば、第1の接合部材と第2の接合部材とを貼り合わせることにより、第1の接合部材を肉厚にすること無く接合体の剛性を高められ、圧電ポンプ等の流体機器であれば、小型・薄型のまま圧電ポンプの吐出性能を改善できる。また、第2の接合部材の線膨張係数と異なる線膨張係数を有する第1の接合部材は、同様に第2の接合部材の線膨張係数と異なる線膨張係数を有する接合層を介して第2の接合部材に接合し、第1の接合部材の外側端の少なくとも一部を接合層の端よりも内側に当たる位置で接合層に接合しているので、各部の貼り合わせ面で熱応力による剥離が進行しにくくなる。   According to this invention, by bonding the first joining member and the second joining member, the rigidity of the joined body can be increased without increasing the thickness of the first joining member, and a fluid device such as a piezoelectric pump can be obtained. If so, the discharge performance of the piezoelectric pump can be improved while being small and thin. In addition, the first bonding member having a linear expansion coefficient different from the linear expansion coefficient of the second bonding member is the second through a bonding layer having a linear expansion coefficient different from the linear expansion coefficient of the second bonding member. Since at least a part of the outer end of the first joining member is joined to the joining layer at a position that is inward of the end of the joining layer, peeling due to thermal stress is caused on the bonding surface of each part. It becomes difficult to progress.

本発明の作用例を説明する図である。It is a figure explaining the example of an operation of the present invention. 第1の実施形態に係る圧電ポンプの平面図である。It is a top view of the piezoelectric pump concerning a 1st embodiment. 第1の実施形態に係る圧電ポンプの分解斜視図である。It is a disassembled perspective view of the piezoelectric pump which concerns on 1st Embodiment. 第1の実施形態に係る圧電ポンプの断面図である。It is sectional drawing of the piezoelectric pump which concerns on 1st Embodiment. 熱応力試験によるシミュレーション結果を説明する図である。It is a figure explaining the simulation result by a thermal stress test. 第2の実施形態に係る圧電ポンプの概略構成を説明する図である。It is a figure explaining schematic structure of the piezoelectric pump concerning a 2nd embodiment. 第3の実施形態に係る圧電ポンプの概略構成を説明する図である。It is a figure explaining schematic structure of the piezoelectric pump concerning a 3rd embodiment.

以下に、本願発明の接合体および流体機器の一実施形態として、圧電ポンプを例に本願発明を説明する。本発明の第1の接合部および流体機器本体は後述するポンプ室に相当し、第2の接合部材および剛性板は後述するポンプ室天板に相当する。   Hereinafter, as an embodiment of the joined body and the fluid device of the present invention, the present invention will be described taking a piezoelectric pump as an example. The first joint portion and the fluid device main body of the present invention correspond to a pump chamber described later, and the second joint member and the rigid plate correspond to a pump chamber top plate described later.

《第1の実施形態》
図2は第1の実施形態に係る圧電ポンプ101の平面図であり、図3は圧電ポンプ101の分解斜視図である。
<< First Embodiment >>
FIG. 2 is a plan view of the piezoelectric pump 101 according to the first embodiment, and FIG. 3 is an exploded perspective view of the piezoelectric pump 101.

圧電ポンプ101は、矩形の圧電振動子65と、圧電振動子65を搭載するポンプ室本体70と、ポンプ室本体70を搭載するポンプ室天板60とを備える。ポンプ室本体70は円状のポンプ室52と、ポンプ室52へ流体を供給する流入口51と、ポンプ室から流体を排出する排出口53とを備える。圧電振動子65の2つの電極はコネクタ68に電気的に接続されていて、圧電振動子65は交流電圧の印加によって振動する。   The piezoelectric pump 101 includes a rectangular piezoelectric vibrator 65, a pump chamber main body 70 on which the piezoelectric vibrator 65 is mounted, and a pump chamber top plate 60 on which the pump chamber main body 70 is mounted. The pump chamber body 70 includes a circular pump chamber 52, an inlet 51 that supplies fluid to the pump chamber 52, and an outlet 53 that discharges fluid from the pump chamber. The two electrodes of the piezoelectric vibrator 65 are electrically connected to the connector 68, and the piezoelectric vibrator 65 vibrates when an AC voltage is applied.

図3に示すようにポンプ室本体70は、それぞれがPETシートである流路板62、ポンプ室板63、ダイヤフラム64、弁室板66、および底板67を積層して構成している。ポンプ室天板60の上部には流路板62を配置している。流路板62にはポンプ室52の中央位置から流入口51または排出口53まで流路用溝59を形成している。流路板62の上部にはポンプ室板63を配置している。ポンプ室板63にはほぼ円形のくり抜きによるポンプ室52を形成している。ポンプ室板63の上部にはダイヤフラム64を配置している。ダイヤフラム64の上部にはPZT(チタン酸ジルコン酸鉛)の圧電振動子65を貼着している。ダイヤフラム64の上部には弁室板66を配置している。弁室板66には2つの弁室開口Hを形成し、2つの弁室開口Hの内部に逆止弁54,55をそれぞれ配置している。逆止弁54は流入口51からポンプ室外部へ流体が逆流するのを阻止し、逆止弁55は排出口53からポンプ室内部へ流体が逆流するのを阻止する。弁室板66の上部には底板67を配置している。ポンプ室52の内部には、ポンプ室52との間隙に液体を毛管現象で保持する液体保持用部材56を非固定状態に配置している。液体保持用部材56はポンプ室52よりも小さい円形であり、PETシートの中央に開口57を加工してなる。   As shown in FIG. 3, the pump chamber body 70 is configured by laminating a flow path plate 62, a pump chamber plate 63, a diaphragm 64, a valve chamber plate 66, and a bottom plate 67, each of which is a PET sheet. A flow path plate 62 is disposed on the top of the pump chamber top plate 60. A channel groove 59 is formed in the channel plate 62 from the central position of the pump chamber 52 to the inlet 51 or the outlet 53. A pump chamber plate 63 is disposed above the flow path plate 62. A pump chamber 52 is formed in the pump chamber plate 63 by a substantially circular cut. A diaphragm 64 is disposed above the pump chamber plate 63. A piezoelectric vibrator 65 of PZT (lead zirconate titanate) is attached to the upper part of the diaphragm 64. A valve chamber plate 66 is disposed on the upper part of the diaphragm 64. Two valve chamber openings H are formed in the valve chamber plate 66, and check valves 54 and 55 are arranged inside the two valve chamber openings H, respectively. The check valve 54 prevents the fluid from flowing back from the inlet 51 to the outside of the pump chamber, and the check valve 55 prevents the fluid from flowing back from the discharge port 53 into the pump chamber. A bottom plate 67 is disposed above the valve chamber plate 66. Inside the pump chamber 52, a liquid holding member 56 that holds the liquid in a gap with the pump chamber 52 by capillary action is disposed in an unfixed state. The liquid holding member 56 is circular smaller than the pump chamber 52, and is formed by processing an opening 57 in the center of the PET sheet.

なお、圧電ポンプ101の各部及び全体の寸法は次のようにしている。
ポンプ室52:直径14.5mm×厚さ0.075mm
圧電振動子65:17mm×厚さ0.3mm
液体保持用部材56:直径14.0mm×厚さ0.06mm
ダイヤフラム64:19.4mm×28.8mm×厚さ0.075mm
圧電ポンプ101全体:24mm×33mm×厚さ1.325mm
この圧電ポンプ101を実際に使用する際には、ポンプ室天板60が上面側に、底板67が下面側になるように用いる。そのため、図3においては最下層と最上層とに位置する部品の名称を「ポンプ室天板」および「底板」としている。この圧電ポンプ101を使用するには、交流電圧を印加して圧電振動子65を屈曲振動させてダイヤフラム64をたわませ、これによりポンプ室52の容積拡張/収縮を繰り返させる。すると、ポンプ室52の拡張時に流入口51から流体が流入し、ポンプ室52の収縮時にはポンプ室52内の流体が排出口53から排出される。
The dimensions and overall dimensions of the piezoelectric pump 101 are as follows.
Pump chamber 52: diameter 14.5 mm x thickness 0.075 mm
Piezoelectric vibrator 65: 17 mm x thickness 0.3 mm
Liquid holding member 56: diameter 14.0 mm × thickness 0.06 mm
Diaphragm 64: 19.4 mm × 28.8 mm × thickness 0.075 mm
The entire piezoelectric pump 101: 24 mm × 33 mm × thickness 1.325 mm
When the piezoelectric pump 101 is actually used, the pump chamber top plate 60 is used on the upper surface side and the bottom plate 67 is used on the lower surface side. Therefore, in FIG. 3, the names of the components located in the lowermost layer and the uppermost layer are “pump chamber top plate” and “bottom plate”. In order to use this piezoelectric pump 101, an alternating voltage is applied to cause the piezoelectric vibrator 65 to bend and vibrate to bend the diaphragm 64, thereby repeating the volume expansion / contraction of the pump chamber 52. Then, fluid flows in from the inlet 51 when the pump chamber 52 is expanded, and fluid in the pump chamber 52 is discharged from the outlet 53 when the pump chamber 52 contracts.

図4は、圧電ポンプ101の断面図である。図4(A)は流路用溝59を通る垂直面での断面図、図4(B)はポンプ室52の中心を通り、且つ流路用溝59の延びる方向に対してほぼ直交する垂直面での断面図である。   FIG. 4 is a cross-sectional view of the piezoelectric pump 101. 4A is a cross-sectional view of a vertical plane passing through the flow channel groove 59, and FIG. 4B is a vertical view that passes through the center of the pump chamber 52 and is substantially orthogonal to the direction in which the flow channel groove 59 extends. It is sectional drawing in a surface.

ポンプ室天板60は、剛性の高いステンレススチールを加工した高剛性板60Cと、PETシートを加工した接合層60Aと、高剛性板60Cと接合層60Aとの間の接着剤層60Bとを備える。接着剤層60Bの厚みは20〜80μm、高剛性板60Cの厚みは200〜800μm、接合層60Aの厚みは30〜100μmとする。   The pump chamber top plate 60 includes a high-rigidity plate 60C obtained by processing highly rigid stainless steel, a bonding layer 60A obtained by processing a PET sheet, and an adhesive layer 60B between the high-rigidity plate 60C and the bonding layer 60A. . The thickness of the adhesive layer 60B is 20 to 80 μm, the thickness of the high-rigidity plate 60C is 200 to 800 μm, and the thickness of the bonding layer 60A is 30 to 100 μm.

このポンプ室天板60は高剛性板60C上に接着剤をスクリーン印刷などで塗布して接着剤層60Bを形成した後、接合層60Aを貼り合わせ、接着剤を熱硬化またはUV硬化させて構成する。なお他に、接合層60Aに予め接着剤層60Bを塗工して仮硬化状態にしておき、その後、高剛性板60Cをラミネート法により貼り合わせポンプ室天板60を構成してもよい。   The pump chamber top plate 60 is formed by applying an adhesive on the high-rigidity plate 60C by screen printing or the like to form the adhesive layer 60B, and then bonding the bonding layer 60A and thermally curing or UV curing the adhesive. To do. In addition, the adhesive layer 60B may be applied to the bonding layer 60A in advance to be in a temporarily cured state, and then the high rigidity plate 60C may be bonded by a laminating method to constitute the pump chamber top plate 60.

ここでポンプ室本体70は、ポンプ室天板60の接合層60Aの端より内側約1mm程度オフセットした位置に接合して、ポンプ室天板60を約1mm程度、ポンプ室本体70の主面側方から外側に突出させている。この構成は、予め形成しておいたポンプ室本体70に対して、このポンプ室天板60の接合層60Aを接合させて実現しても良く、ポンプ室天板60の接合層60A上にポンプ室本体70を構成する部材を順に接合させて実現してもよい。ここでのポンプ室本体70とポンプ室天板60とは種々の接合方法で接合されるが、特にレーザ溶着等の急峻な熱履歴が加わる接合方法にて接合される場合、本発明はより有効である。   Here, the pump chamber main body 70 is bonded to a position offset by about 1 mm inside from the end of the bonding layer 60 </ b> A of the pump chamber top plate 60, and the pump chamber top plate 60 is about 1 mm from the main surface side of the pump chamber main plate 70. It protrudes outward from the side. This configuration may be realized by bonding the bonding layer 60A of the pump chamber top plate 60 to the pump chamber main body 70 formed in advance, and the pump is formed on the bonding layer 60A of the pump chamber top plate 60. You may implement | achieve by joining the member which comprises the chamber main body 70 in order. Here, the pump chamber body 70 and the pump chamber top plate 60 are bonded by various bonding methods, but the present invention is more effective particularly when bonded by a bonding method in which a steep thermal history such as laser welding is applied. It is.

以上のようにポンプ室天板60に高剛性板60Cを設けるため、ポンプ室本体70を肉厚にすること無くポンプ室全体の剛性を高められ、圧電ポンプ101の吐出性能を改善できる。   Since the high rigidity plate 60C is provided on the pump chamber top plate 60 as described above, the rigidity of the entire pump chamber can be increased without increasing the thickness of the pump chamber main body 70, and the discharge performance of the piezoelectric pump 101 can be improved.

また、ポンプ室本体70を、同じPETシートで構成されたポンプ室天板60の接合層60Aに接合するので、両者の線膨張係数が等しく、両者の溶着した界面に作用する熱応力は、ポンプ室本体70を高剛性板60Cに直接接合する場合よりも大幅に抑制される。   In addition, since the pump chamber body 70 is bonded to the bonding layer 60A of the pump chamber top plate 60 made of the same PET sheet, the linear expansion coefficients of both are equal and the thermal stress acting on the welded interface between the two is This is significantly less than when the chamber body 70 is directly joined to the high-rigidity plate 60C.

なお、接合層60AはPETシート以外の素材でも良いが、熱が加わった際の伸縮方向がポンプ室70と同方向である線膨張係数を有するものであればよい。特に、高剛性板60Cのステンレススチールよりも線膨張係数が大きく、ステンレススチールよりもPETシートの線膨張係数に近ければ好適である。   The bonding layer 60 </ b> A may be made of a material other than the PET sheet, but may be any material having a linear expansion coefficient whose expansion / contraction direction when heat is applied is the same as that of the pump chamber 70. In particular, it is preferable that the linear expansion coefficient is larger than the stainless steel of the high-rigidity plate 60C, and is closer to the linear expansion coefficient of the PET sheet than stainless steel.

一方、高剛性板60Cと接合層60Aとは線膨張係数が相違するため、接着剤層60Bにおけるポンプ室本体70に対面する領域には、ポンプ室本体70を高剛性板60Cに直接接続する場合と略同等の熱応力が作用することになる。しかしながら、ポンプ室本体70を接合層60Aの端より内側にオフセット配置しているので、ポンプ室本体70を高剛性板60Cに直接接続する場合よりも接着剤層60Bの剥離は生じにくくなる。したがって、この圧電ポンプ101はポンプ室天板60を異素材により構成しても、両者の貼り合わせ面に作用する熱応力に対する応力耐性が高いものになる。   On the other hand, since the linear expansion coefficient is different between the high-rigidity plate 60C and the bonding layer 60A, the pump chamber main body 70 is directly connected to the high-rigidity plate 60C in the region facing the pump chamber main body 70 in the adhesive layer 60B. A thermal stress substantially equivalent to the above will act. However, since the pump chamber body 70 is offset from the end of the bonding layer 60A, the adhesive layer 60B is less likely to peel than when the pump chamber body 70 is directly connected to the high-rigidity plate 60C. Therefore, even if the pump chamber top plate 60 is made of a different material, the piezoelectric pump 101 has high stress resistance against thermal stress acting on the bonding surfaces of the two.

次に、圧電ポンプを用いて熱応力試験を行ったFEM解析によるシミュレーションの結果を説明する。   Next, a simulation result by FEM analysis in which a thermal stress test is performed using a piezoelectric pump will be described.

圧電ポンプは以下の仕様とした。
・ポンプ室本体の各層厚:75μm
・ポンプ室天板の接合層:50μm
・ポンプ室天板の高剛性板:500μm
また熱応力試験は以下の仕様とした。
・熱履歴:+260℃→+20℃または+260℃→−40℃
そして、圧電ポンプにおけるポンプ室天板とポンプ室本体とのオフセット量の条件を変えて熱応力試験を行い、各試験終了後にポンプ室天板に発生した応力の最大値を比較した。
The piezoelectric pump has the following specifications.
・ Each layer thickness of the pump chamber body: 75μm
・ Joint layer of pump chamber top plate: 50μm
・ High rigidity plate of the pump chamber top plate: 500μm
The thermal stress test was made as follows.
Thermal history: + 260 ° C → + 20 ° C or + 260 ° C → -40 ° C
And the thermal stress test was performed by changing the conditions of the offset amount between the pump chamber top plate and the pump chamber main body in the piezoelectric pump, and the maximum value of the stress generated in the pump chamber top plate after each test was compared.

図5は、オフセット量と応力との関係を説明する図である。   FIG. 5 is a diagram for explaining the relationship between the offset amount and the stress.

+260℃→+20℃の熱履歴で行った熱応力試験では、オフセット量0mmすなわち図1の比較構成の場合に応力30MPaで最大であった、オフセット量を大きくした場合ほど応力は低下し、オフセット量を1.0mmとした場合に応力は比較構成よりも約95%低減した。   In the thermal stress test conducted with a thermal history of + 260 ° C. → + 20 ° C., the offset amount was 0 mm, that is, the maximum was 30 MPa in the case of the comparative configuration of FIG. When the thickness was 1.0 mm, the stress was reduced by about 95% compared to the comparative configuration.

+260℃→−40℃の熱履歴で行った熱応力試験においても、同様な傾向が見られ、オフセット量0mmすなわち図1の比較構成の場合に応力37MPaで最大であり、オフセット量を大きくした場合ほど応力は低下し、オフセット量を1.0mmとした場合に応力は比較構成よりも約95%低減した。   In the thermal stress test performed with a thermal history of + 260 ° C. → −40 ° C., a similar tendency is observed, and the offset amount is 0 mm, that is, the maximum is 37 MPa in the case of the comparative configuration in FIG. 1, and the offset amount is increased. The stress was reduced as much as possible, and when the offset amount was 1.0 mm, the stress was reduced by about 95% compared to the comparative configuration.

このように、異種材質の貼り合わせを行っていてもオフセットを取ることにより熱応力を抑制でき、したがって本発明により異素材貼り合わせ面での剥離を抑制でき、圧電ポンプの熱応力耐性が高まることがシミュレーションにおいて確認された。   In this way, even if different types of materials are bonded, it is possible to suppress thermal stress by taking an offset. Therefore, the present invention can suppress peeling at the bonded surfaces of different materials, and increase the thermal stress resistance of the piezoelectric pump. Was confirmed in the simulation.

《第2の実施形態》
図6は、第2の実施形態に係る圧電ポンプ102の断面図である。圧電ポンプ102は圧電ポンプ101と異なり、ポンプ室本体70の外側端を段形状にしている。具体的には、弁室板66と底板67との外形状を圧電ポンプ101よりも小さくしていて、弁室板66と底板67との外側端を、流路板62とポンプ室板63とダイヤフラム64との外側端よりも内側に配置している。
<< Second Embodiment >>
FIG. 6 is a cross-sectional view of the piezoelectric pump 102 according to the second embodiment. Unlike the piezoelectric pump 101, the piezoelectric pump 102 has a stepped outer end of the pump chamber body 70. Specifically, the outer shape of the valve chamber plate 66 and the bottom plate 67 is made smaller than that of the piezoelectric pump 101, and the outer ends of the valve chamber plate 66 and the bottom plate 67 are connected to the flow path plate 62 and the pump chamber plate 63. It arrange | positions inside the outer side edge with the diaphragm 64. FIG.

このようにポンプ室本体70を段形状にすることで、ポンプ室本体70とポンプ室天板60との接合位置において、熱応力に寄与するポンプ室本体70の最外端の厚みを、段差形状を有しない第1の実施形態の圧電ポンプ101に比べて実質的に肉薄にできる。したがって、ポンプ室天板60の接着剤層60Bに作用する熱応力を抑制でき、接着剤層60Bの剥離をより抑制できる。   Thus, by making the pump chamber main body 70 stepped, the thickness of the outermost end of the pump chamber main body 70 that contributes to thermal stress at the joining position of the pump chamber main body 70 and the pump chamber top plate 60 is stepped. Compared with the piezoelectric pump 101 of the first embodiment that does not have the Therefore, thermal stress acting on the adhesive layer 60B of the pump chamber top plate 60 can be suppressed, and peeling of the adhesive layer 60B can be further suppressed.

なお、ここではダイヤフラム64と弁室板66との間を境として2段形状としたが、より多段に構成するようにしてもよく、流路板62とポンプ室板63との間を境として段形状としたり、ポンプ室板63とダイヤフラム64との間を境として段形状としたりすると、より熱応力を抑制でき好適である。   Here, a two-stage shape is formed with the boundary between the diaphragm 64 and the valve chamber plate 66 as a boundary. However, a multi-stage configuration may be adopted, and a boundary between the flow path plate 62 and the pump chamber plate 63 may be used. A step shape, or a step shape with the boundary between the pump chamber plate 63 and the diaphragm 64 as a boundary, is preferable because the thermal stress can be further suppressed.

《第3の実施形態》
図7は、第3の実施形態に係る圧電ポンプ103の概略の上面図である。圧電ポンプ103は、主面長手方向におけるポンプ室天板60の寸法とポンプ室本体70の寸法とが等しく、主面短手方向におけるポンプ室天板60の寸法とポンプ室本体70の寸法とも等しい。そして、ポンプ室天板60の主面コーナーに当たるポンプ室本体70の四隅が面取りされた形状であって、この四隅で接合層60Aの端よりも内側にポンプ室本体70が接合している。
<< Third Embodiment >>
FIG. 7 is a schematic top view of the piezoelectric pump 103 according to the third embodiment. In the piezoelectric pump 103, the dimension of the pump chamber top plate 60 in the longitudinal direction of the main surface is equal to the dimension of the pump chamber main body 70, and the size of the pump chamber top plate 60 in the short direction of the main surface is also equal to the dimension of the pump chamber main body 70. . The four corners of the pump chamber main body 70 corresponding to the corners of the main surface of the pump chamber top plate 60 are chamfered, and the pump chamber main body 70 is joined to the inside of the joining layer 60A at the four corners.

このような構成であっても、少なくともポンプ室天板60の主面コーナー部分では、高剛性板60Cと接合層60Aとの異素材貼り合わせ面が剥離しにくくなるので、圧電ポンプ103の熱応力耐性が高まる。   Even in such a configuration, since the dissimilar material bonding surface of the high-rigidity plate 60C and the bonding layer 60A is difficult to peel off at least at the corner portion of the main surface of the pump chamber top plate 60, the thermal stress of the piezoelectric pump 103 is reduced. Increases resistance.

101,102,103…圧電ポンプ
1A,1B…第1の接合部材
2A,2B…第2の接合部材
3A,3B,60A…接合層
51…流入口
52…ポンプ室
53…排出口
54,55…逆止弁
56…液体保持用部材
57…開口
59…流路用溝
60…ポンプ室天板
60B…接着剤層
60C…高剛性板
62…流路板
63…ポンプ室板
64…ダイヤフラム
65…圧電振動子
66…弁室板
67…底板
68…コネクタ
70…ポンプ室本体
H…弁室開口
DESCRIPTION OF SYMBOLS 101,102,103 ... Piezoelectric pump 1A, 1B ... 1st joining member 2A, 2B ... 2nd joining member 3A, 3B, 60A ... Joining layer 51 ... Inflow port 52 ... Pump chamber 53 ... Discharge port 54, 55 ... Check valve 56 ... Liquid holding member 57 ... Opening 59 ... Channel groove 60 ... Pump chamber top plate 60B ... Adhesive layer 60C ... High rigidity plate 62 ... Channel plate 63 ... Pump chamber plate 64 ... Diaphragm 65 ... Piezoelectric Vibrator 66 ... Valve chamber plate 67 ... Bottom plate 68 ... Connector 70 ... Pump chamber body H ... Valve chamber opening

Claims (8)

第1の接合部材と、前記第1の接合部材よりも高剛性である第2の接合部材と、を接合した接合体であって、
前記第2の接合部材は、前記第2の接合部材の線膨張係数と異なる線膨張係数を有する接合層が主面に形成され、
前記第1の接合部材は、前記第2の接合部材の線膨張係数と異なる線膨張係数を有し、外側端の少なくとも一部が前記接合層の端よりも内側に当たる位置で前記接合層に接合する、接合体。
A joined body obtained by joining a first joining member and a second joining member having higher rigidity than the first joining member,
The second bonding member is formed on the main surface with a bonding layer having a linear expansion coefficient different from the linear expansion coefficient of the second bonding member,
The first bonding member has a linear expansion coefficient different from the linear expansion coefficient of the second bonding member, and is bonded to the bonding layer at a position where at least a part of the outer end is inward of the end of the bonding layer. To join.
第1の接合部材と、前記第1の接合部材よりも高剛性である第2の接合部材と、を接合した接合体であって、
前記第2の接合部材は、前記第2の接合部材の線膨張係数よりも大きい線膨張係数を有する接合層が主面に形成され、
前記第1の接合部材は、前記第2の接合部材よりも低剛性であり、前記第2の接合部材の線膨張係数よりも大きい線膨張係数を有し、外側端の少なくとも一部が前記接合層の端よりも内側に当たる位置で前記接合層に接合する、接合体。
A joined body obtained by joining the first joining member and the second joining member having higher rigidity than the first joining member,
In the second bonding member, a bonding layer having a linear expansion coefficient larger than the linear expansion coefficient of the second bonding member is formed on the main surface,
The first joining member is lower in rigidity than the second joining member, has a linear expansion coefficient larger than that of the second joining member, and at least a part of an outer end thereof is the joining member. A joined body joined to the joining layer at a position hitting the inner side of the end of the layer.
前記第1の接合部材は外側端が段形状であり、前記第1の接合部材の前記接合層に接合する主面とは逆側の主面における外側端が、前記第1の接合部材の前記接合層に接合する主面における外側端よりも内側に位置する、請求項1または2に記載の接合体。   The outer end of the first bonding member has a step shape, and the outer end of the main surface opposite to the main surface to be bonded to the bonding layer of the first bonding member is the first bonding member of the first bonding member. The joined body according to claim 1, wherein the joined body is located on an inner side than an outer end of a main surface joined to the joining layer. 前記接合層と前記第1の接合部材とは同等の線膨張係数を有する、請求項1〜3のいずれかに記載の接合体。   The joined body according to any one of claims 1 to 3, wherein the joining layer and the first joining member have an equivalent linear expansion coefficient. 流体機器本体と、前記流体機器本体よりも高剛性である剛性板と、を接合して流体機器室を構成し、前記流体機器室内の流体に圧力をかけて前記流体を吐出する流体機器であって、
前記剛性板は、前記剛性板の線膨張係数よりも大きい線膨張係数を有する接合層が主面に形成され、
前記流体機器本体は、前記剛性板よりも低剛性であり、前記剛性板の線膨張係数よりも大きい線膨張係数を有し、外側端の少なくとも一部が前記接合層の端よりも内側に当たる位置で前記接合層に接合する、流体機器。
The fluid device main body and a rigid plate having higher rigidity than the fluid device main body are joined to form a fluid device chamber, and the fluid device chamber discharges the fluid by applying pressure to the fluid in the fluid device chamber. And
In the rigid plate, a bonding layer having a linear expansion coefficient larger than the linear expansion coefficient of the rigid plate is formed on the main surface,
The fluid device body is lower in rigidity than the rigid plate, has a linear expansion coefficient larger than the linear expansion coefficient of the rigid plate, and a position where at least a part of the outer end is inward of the end of the bonding layer A fluid device which is bonded to the bonding layer.
前記流体機器本体は外側端が段形状であり、前記流体機器本体の前記接合層に接合する主面とは逆側の主面における外側端が、前記流体機器本体の前記接合層に接合する主面における外側端よりも内側に位置する、請求項5に記載の流体機器。   The fluid device main body has a stepped outer end, and the outer end of the main surface opposite to the main surface bonded to the bonding layer of the fluid device main body is bonded to the bonding layer of the fluid device main body. The fluid device according to claim 5, wherein the fluid device is located inside an outer end of the surface. 前記接合層と前記流体機器本体とは同等の線膨張係数を有する、請求項5または6に記載の流体機器。   The fluid device according to claim 5 or 6, wherein the bonding layer and the fluid device main body have an equivalent linear expansion coefficient. 前記流体機器は圧電ポンプである、請求項5〜7のいずれかに記載の流体機器。   The fluid device according to claim 5, wherein the fluid device is a piezoelectric pump.
JP2010014472A 2009-01-26 2010-01-26 Conjugate and fluid equipment Active JP5402673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014472A JP5402673B2 (en) 2009-01-26 2010-01-26 Conjugate and fluid equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009014761 2009-01-26
JP2009014761 2009-01-26
JP2010014472A JP5402673B2 (en) 2009-01-26 2010-01-26 Conjugate and fluid equipment

Publications (2)

Publication Number Publication Date
JP2010190211A true JP2010190211A (en) 2010-09-02
JP5402673B2 JP5402673B2 (en) 2014-01-29

Family

ID=42816489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014472A Active JP5402673B2 (en) 2009-01-26 2010-01-26 Conjugate and fluid equipment

Country Status (1)

Country Link
JP (1) JP5402673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234986A (en) * 2013-06-24 2014-12-24 研能科技股份有限公司 Miniature pneumatic power device
CN105484982A (en) * 2014-09-15 2016-04-13 研能科技股份有限公司 Micro gas pressure power device
CN109505765A (en) * 2017-09-15 2019-03-22 研能科技股份有限公司 Air transporting arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267479A (en) * 1999-11-09 2001-09-28 Agile Systems Inc Bus bar heat sink
JP2006100622A (en) * 2004-09-30 2006-04-13 Canon Inc Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head
JP2008078679A (en) * 2001-07-26 2008-04-03 Denso Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267479A (en) * 1999-11-09 2001-09-28 Agile Systems Inc Bus bar heat sink
JP2008078679A (en) * 2001-07-26 2008-04-03 Denso Corp Semiconductor device
JP2006100622A (en) * 2004-09-30 2006-04-13 Canon Inc Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234986A (en) * 2013-06-24 2014-12-24 研能科技股份有限公司 Miniature pneumatic power device
CN104234986B (en) * 2013-06-24 2016-10-05 研能科技股份有限公司 Micro pressure power set
CN105484982A (en) * 2014-09-15 2016-04-13 研能科技股份有限公司 Micro gas pressure power device
CN109505765A (en) * 2017-09-15 2019-03-22 研能科技股份有限公司 Air transporting arrangement

Also Published As

Publication number Publication date
JP5402673B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP6222208B2 (en) Fluid control device and pump
JP4873014B2 (en) Piezoelectric micro blower
JP6585741B2 (en) Fluid control device
JP5012889B2 (en) Piezoelectric micro blower
JP5533823B2 (en) Fluid control device
WO2012140967A1 (en) Actuator-support structure and pump device
JP5170250B2 (en) Piezoelectric pump
US8210831B2 (en) Piezoelectric pump
JP6319517B2 (en) pump
JP5593907B2 (en) Piezoelectric pump and manufacturing method thereof
WO2018021099A1 (en) Valve, gas control device, and sphygmomanometer
JP5402673B2 (en) Conjugate and fluid equipment
JP4957501B2 (en) Piezoelectric micro blower
JP6127361B2 (en) Fluid control device
US20230287904A1 (en) Actuator for a resonant acoustic pump
JP2008054367A (en) Piezoelectric actuator and pump employing it
JP2010065550A (en) Piezoelectric pump and fluid transfer system
JP6809866B2 (en) Micropump and fluid transfer device
JP4940042B2 (en) Piezoelectric pump
JP2002106469A (en) Diaphragm pump
JP2005113777A (en) Pump
KR101197332B1 (en) Vibration amplification piezoelectric pump
JP2005113776A (en) Pump
JP2009281300A (en) Liquid circulation system including piezoelectric pump
JP2009121242A (en) Diaphragm type liquid conveyance device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150