JP2006100622A - Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head - Google Patents

Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head Download PDF

Info

Publication number
JP2006100622A
JP2006100622A JP2004285687A JP2004285687A JP2006100622A JP 2006100622 A JP2006100622 A JP 2006100622A JP 2004285687 A JP2004285687 A JP 2004285687A JP 2004285687 A JP2004285687 A JP 2004285687A JP 2006100622 A JP2006100622 A JP 2006100622A
Authority
JP
Japan
Prior art keywords
film
piezoelectric film
thermal expansion
expansion coefficient
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285687A
Other languages
Japanese (ja)
Inventor
Takatsugi Wada
隆亜 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004285687A priority Critical patent/JP2006100622A/en
Publication of JP2006100622A publication Critical patent/JP2006100622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of piezoelectric performance by suppressing a 90° domain caused by tensile stress acting on a piezoelectric film in a process for crystallizing the piezoelectric film. <P>SOLUTION: A vibrating plate 2 is formed on a substrate 1 being an Si substrate. An intermediate film 3, which is made of an MgO film having a thermal expansion coefficient larger than that of the piezoelectric film 5, is laminated on the vibrating plate 2. The intermediate film 3 is patterned corresponding to a movable region of the vibrating plate 2 located on a hollow part 1a of the substrate 1. After that, film forming of an electrode film 4 and the piezoelectric film 5 is executed. The piezoelectric film 5 is crystallized by heat treatment during film forming or after film forming. A thermal expansion coefficient, a Young's modulus, and a thickness of each of the vibrating plate 2, the intermediate film 3, and the piezoelectric film 5, are set so as to satisfy prescribed conditions. Consequently, the 90° domain in crystallization of the piezoelectric film 5 can be suppressed by changing the stress of the piezoelectric film 5 occurring in the crystallization process from tensile stress to compression stress. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロポンプ、液体吐出記録装置等の駆動部に用いられるユニモルフ型圧電膜素子、液体吐出ヘッド、およびユニモルフ型圧電膜素子の製造方法に関するものである。   The present invention relates to a unimorph piezoelectric film element, a liquid discharge head, and a method for manufacturing a unimorph piezoelectric film element used in a driving unit of a micropump, a liquid discharge recording apparatus, and the like.

近年、機能性薄膜を使ったデバイス研究が盛んであり、機能性材料を薄膜化し各種デバイスに応用することによって、優れた機能の実現が期待されている。   In recent years, research on devices using functional thin films has been actively conducted, and realization of excellent functions is expected by making functional materials into thin films and applying them to various devices.

例えば、強誘電体の圧電性、焦電性、分極反転等の物性を用いた圧電膜素子やセンサー、不揮発メモリー等のデバイス研究が盛んであるが、なかでも圧電駆動力によってインク等液体を吐出させる液体吐出方式の記録装置は、高速・高密度で高精細・高画質の記録が可能であり、かつ、カラー化・コンパクト化にも適しており、プリンターはもとより、複写機、ファクシミリ等にも適用され、近年急速な発展を成し遂げた。このような記録技術分野においては将来におけるさらなる高品位・高精細な記録技術への要望が高まってきている。その実現のための一つの方法として圧電性を有する膜(圧電膜)を利用した圧電膜素子があげられ、次世代高品位・高精細記録技術への応用が期待されている。   For example, devices such as piezoelectric film elements and sensors that use physical properties of ferroelectrics such as piezoelectricity, pyroelectricity, and polarization inversion, and non-volatile memory are actively researched. In particular, liquids such as ink are ejected by piezoelectric driving force. The liquid ejection type recording device enables high-speed, high-density, high-definition and high-quality recording, and is also suitable for colorization and compactness. It is suitable not only for printers but also for copiers, facsimiles, etc. Applied, has achieved rapid development in recent years. In such a recording technology field, there is an increasing demand for recording technology with higher quality and higher definition in the future. One method for realizing this is a piezoelectric film element using a piezoelectric film (piezoelectric film), which is expected to be applied to next-generation high-quality and high-definition recording technology.

圧電膜の作製にあたっては様々な方法が挙げられるが、例えば特許文献1にRFスパッタリングを用いたPZT膜の成膜方法が記載されている。また特許文献2にはゾルゲル法の前駆体分解温度制御により、(100)面に配向したPZT膜を形成する方法が記載されている。   There are various methods for producing the piezoelectric film. For example, Patent Document 1 describes a method for forming a PZT film using RF sputtering. Patent Document 2 describes a method of forming a PZT film oriented in the (100) plane by controlling the precursor decomposition temperature of the sol-gel method.

圧電膜を利用した圧電膜素子には様々な方式が挙げられるが、特に、圧電体とはヤング率の異なる振動板に圧電膜を積層したユニモルフ型圧電膜素子は非常に簡易で優れた駆動素子であり、液体吐出ヘッドへの適応が容易である。   There are various types of piezoelectric film elements using a piezoelectric film. In particular, a unimorph type piezoelectric film element in which a piezoelectric film is laminated on a diaphragm having a different Young's modulus from a piezoelectric body is very simple and excellent. Therefore, it is easy to adapt to the liquid discharge head.

ユニモルフ型圧電膜素子を駆動源とする液体吐出ヘッドの一例として、流路基板であるSi基板に陽極接合したガラス基板(ガラス振動板)に、別基板上に成膜された圧電膜を転写した構成が挙げられる。ガラス基板は振動板として優れているとともに線膨張係数がSiと近いため、あらかじめ液体流路を形成したSi基板上に陽極接合してユニモルフ型圧電膜素子を形成するのに適している。   As an example of a liquid discharge head using a unimorph type piezoelectric film element as a drive source, a piezoelectric film formed on another substrate is transferred to a glass substrate (glass diaphragm) that is anodically bonded to a Si substrate that is a flow path substrate. A configuration is mentioned. Since the glass substrate is excellent as a vibration plate and has a linear expansion coefficient close to that of Si, it is suitable for forming a unimorph type piezoelectric film element by anodic bonding on a Si substrate on which a liquid channel is formed in advance.

圧電膜は一般に複合酸化物であるため、結晶化には高い温度が必要となる。そこで結晶化のために、基板を非加熱で圧電膜の成膜を行い、成膜後にアニールする方法や、基板を加熱し結晶化しながら成膜を行う方法が開発されている。しかし高温で結晶化するため、圧電膜が成膜される基板は高温に耐えうる単結晶基板が必要となる。単結晶基板には代表的なものとしてMgOやSrTiO3 などが挙げられるが、振動板となるガラス基板に接着した後に単結晶基板のみを熱燐酸等で溶解して除去して転写しなければならず、コストのみならずスループット上も非常に不利であり、量産化の大きな障壁になる。 Since a piezoelectric film is generally a complex oxide, a high temperature is required for crystallization. Therefore, for crystallization, a method of forming a piezoelectric film without heating the substrate and annealing after the film formation, or a method of forming a film while heating and crystallizing the substrate has been developed. However, since crystallization occurs at a high temperature, the substrate on which the piezoelectric film is formed needs a single crystal substrate that can withstand high temperatures. Typical examples of the single crystal substrate include MgO and SrTiO 3 , but after bonding to the glass substrate serving as the vibration plate, only the single crystal substrate must be dissolved and removed by hot phosphoric acid and transferred. In addition, not only the cost but also the throughput is very disadvantageous, which becomes a large barrier to mass production.

このような問題点を解決するために、転写プロセスを用いることなく耐熱性の振動板に圧電膜を直接成膜する方法が有効である。耐熱性の振動板に圧電膜を直接成膜する方法に関しては、特許文献3に開示されたように、Si基板の表面を熱酸化してSiO2 層を形成し、振動板として用いる方法がある。 In order to solve such problems, a method of directly forming a piezoelectric film on a heat-resistant diaphragm without using a transfer process is effective. Regarding a method of directly forming a piezoelectric film on a heat-resistant diaphragm, as disclosed in Patent Document 3, there is a method in which the surface of a Si substrate is thermally oxidized to form a SiO 2 layer and used as a diaphragm. .

また、本発明者らも、歪み点の高い耐熱性のガラスを振動板としてあらかじめ流路を形成したSi基板に陽極接合を行い、振動板を研磨薄片化し、その上に電極を介して直接圧電膜を歪み点以下の温度で成膜または常温で成膜後に歪み点以下でアニールすることにより、圧電膜を用いたユニモルフ型圧電膜素子を駆動源とする液体吐出ヘッドを簡易に作製する方法を提案している。   In addition, the present inventors also performed anodic bonding to a Si substrate in which a flow path was previously formed using heat-resistant glass having a high strain point as a vibration plate, and the vibration plate was polished and sliced. A method of easily producing a liquid discharge head using a unimorph type piezoelectric film element using a piezoelectric film as a drive source by forming a film at a temperature below the strain point or annealing at a temperature after forming the film at a room temperature. is suggesting.

しかし圧電膜を、転写プロセスを用いずに振動板上に形成する手法の場合、以下のような大きな問題点が挙げられる。上記の特許文献3に開示された構成においては、Si基板上にSiO2 層が形成され、その上にPZT膜が直接成膜されて結晶化された後、Si基板がPZT膜面とは反対の面からエッチングにより裏抜きされて圧力室等の液体流路が形成される。このような製造方法の場合、PZT膜が高温で結晶化して室温まで冷却される際に、成膜基板であるSi基板の熱膨張係数に大きく影響を受けて格子定数が変化し、PZT膜の圧電性が大きく劣化する。この現象の理由は完全には解明できていないが、以下のように考えられる。 However, in the case of a method of forming a piezoelectric film on a diaphragm without using a transfer process, the following major problems can be mentioned. In the configuration disclosed in Patent Document 3 above, a SiO 2 layer is formed on a Si substrate, and after a PZT film is directly formed and crystallized thereon, the Si substrate is opposite to the PZT film surface. A liquid flow path such as a pressure chamber is formed by etching back from the surface. In the case of such a manufacturing method, when the PZT film is crystallized at a high temperature and cooled to room temperature, the lattice constant is greatly influenced by the thermal expansion coefficient of the Si substrate, which is the film formation substrate, and the PZT film The piezoelectricity is greatly deteriorated. The reason for this phenomenon has not been fully clarified, but is thought to be as follows.

PZT膜の熱膨張係数は組成によって異なるが、最も圧電性の高いMPB組成(Zr:Ti=0.53:0.47)近傍では9×10-6(/℃)程度である。一方、Si基板は3×10-6(/℃)であり、PZTに比べてかなり小さい。このためPZT膜が結晶化し、キュリー点を経て室温まで冷却される際に、PZT膜が大きく収縮しようとするのに対してSi基板の収縮量は小さいため、PZT膜は引っ張り方向の力を受けることになる。この力を緩和するため、正方晶であるPZTの結晶の方位は、結晶軸の長いC軸が引っ張りの力を受けるSi基板の面内方向に向くものが多くなる。正方晶であるPZTの分極軸はC軸方向であるから、電界のかかる基板面上下方向に対して分極方向が垂直に向いた結晶いわゆる90°ドメインが多くなり、圧電性の大きな劣化を引き起こすと考えられる。 Although the thermal expansion coefficient of the PZT film varies depending on the composition, it is about 9 × 10 −6 (/ ° C.) in the vicinity of the MPB composition having the highest piezoelectricity (Zr: Ti = 0.53: 0.47). On the other hand, the Si substrate is 3 × 10 −6 (/ ° C.), which is considerably smaller than PZT. For this reason, when the PZT film is crystallized and cooled to room temperature via the Curie point, the PZT film tends to shrink greatly, whereas the shrinkage amount of the Si substrate is small, so the PZT film receives a force in the pulling direction. It will be. In order to relieve this force, the orientation of tetragonal PZT crystals tends to be in the in-plane direction of the Si substrate where the C-axis having a long crystal axis receives tensile force. Since the polarization axis of PZT, which is a tetragonal crystal, is the C-axis direction, there are many so-called 90 ° domains in which the polarization direction is perpendicular to the vertical direction of the substrate surface to which an electric field is applied, causing a large deterioration in piezoelectricity. Conceivable.

一方、特許文献4には、振動板となるSiO2 層を設けたSi基板上にPZT膜を形成する構成において、PZT膜に引っ張り応力を加える中間膜を設ける構成が開示されている。これは、PZTの熱膨張係数が振動板となるSiO2 より大きいため、圧電膜であるPZT膜と反対側から圧力室等の液体流路を形成すると、数ミクロンと薄くなったSiO2 の振動板がPZT膜との熱膨張差によって圧縮方向の力を受けて液体流路側に変形してしまうのを防ぐ目的で中間膜を設けるものである。しかしこの方法では、前述の引っ張り応力によって、PZT膜の圧電性に寄与しない90°ドメインが逆に増えてしまう傾向があり、圧電性の劣化が著しい。 On the other hand, Patent Document 4 discloses a configuration in which an intermediate film for applying a tensile stress to a PZT film is provided in a structure in which a PZT film is formed on a Si substrate provided with a SiO 2 layer serving as a vibration plate. This is because the thermal expansion coefficient of PZT is larger than that of SiO 2 serving as a vibration plate. When a liquid flow path such as a pressure chamber is formed from the side opposite to the PZT film, which is a piezoelectric film, the vibration of SiO 2 thinned to several microns. An intermediate film is provided for the purpose of preventing the plate from being deformed to the liquid flow path side by receiving a force in the compression direction due to a difference in thermal expansion with the PZT film. However, in this method, the above-described tensile stress tends to increase the 90 ° domain that does not contribute to the piezoelectricity of the PZT film, and the piezoelectricity is significantly deteriorated.

また、特許文献5にはSi基板上にスパッタされた振動板となるSiN上に鉛拡散防止を目的としたジルコニア膜を介してPZT膜を成膜する方法が開示されている。ジルコニア膜は熱膨張係数がPZTより大きいため、目的は異なるが、このような膜を振動板と圧電膜の間に設けることは圧電膜の引っ張り応力を軽減するのにも有効である。しかし、応力はヤング率とひずみ量の積であるから、熱履歴によって発生する応力はその材料の熱膨張係数と断面積とヤング率の積に比例する。そして、断面積のうち膜同士で接している長さは同じであるから、問題となるのは膜厚であり、特定の膜厚関係を満たさないと、PZT膜への引っ張り応力を低減することはできない。
特開平06−290983号公報 特開平11−220185号公報 特開2000−52550号公報 特開2000−141644号公報 特開平07−246705号公報
Patent Document 5 discloses a method of forming a PZT film through SiN film for the purpose of preventing lead diffusion on SiN as a diaphragm sputtered on a Si substrate. Since the zirconia film has a thermal expansion coefficient larger than that of PZT and thus has a different purpose, providing such a film between the diaphragm and the piezoelectric film is also effective in reducing the tensile stress of the piezoelectric film. However, since the stress is the product of Young's modulus and strain, the stress generated by the thermal history is proportional to the product of the thermal expansion coefficient, the cross-sectional area and the Young's modulus of the material. And since the length of the cross-sectional area where the films are in contact with each other is the same, the problem is the film thickness, and if the specific film thickness relationship is not satisfied, the tensile stress to the PZT film is reduced. I can't.
Japanese Patent Laid-Open No. 06-290983 JP-A-11-220185 JP 2000-52550 A JP 2000-141644 A JP 07-246705 A

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、結晶化工程における圧電膜への引っ張り応力を完全に無くし、さらに好ましくは圧縮方向の応力にすることによって、いわゆる90°ドメインの発生を抑制し、圧電膜の圧電特性を大幅に改善して安価で高品位な液体吐出ヘッド等を実現できるユニモルフ型圧電膜素子、液体吐出ヘッド、およびユニモルフ型圧電膜素子の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and completely eliminates the tensile stress to the piezoelectric film in the crystallization process, and more preferably by making the stress in the compression direction. Manufacture of unimorph-type piezoelectric film elements, liquid-discharge heads, and unimorph-type piezoelectric film elements that can suppress the generation of the 90 ° domain and significantly improve the piezoelectric characteristics of the piezoelectric film to realize an inexpensive and high-quality liquid-discharge head, etc. It is intended to provide a method.

上記目的を達成するため、本発明のユニモルフ型圧電膜素子は、振動板と、前記振動板上に積層された圧電膜とを備えたユニモルフ型圧電膜素子であって、前記圧電膜より熱膨張係数の大きな中間膜を介して前記圧電膜が前記振動板上に積層されており、前記中間膜が前記振動板の可動領域に対応するようにパターニングされ、かつ、前記振動板と前記中間膜と前記圧電膜のそれぞれの熱膨張係数、ヤング率および厚さの間に以下の関係が成立することを特徴とする。
(中間膜の熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜の熱膨張係数×ヤング率×厚さ)
In order to achieve the above object, a unimorph type piezoelectric film element of the present invention is a unimorph type piezoelectric film element comprising a diaphragm and a piezoelectric film laminated on the diaphragm, and is more thermally expanded than the piezoelectric film. The piezoelectric film is laminated on the diaphragm via an intermediate film having a large coefficient, the intermediate film is patterned so as to correspond to a movable region of the diaphragm, and the diaphragm, the intermediate film, The following relationship is established among the respective thermal expansion coefficient, Young's modulus, and thickness of the piezoelectric film.
(Thermal expansion coefficient of intermediate film × Young's modulus × thickness) − (thermal expansion coefficient of diaphragm × Young's modulus × thickness) ≧ (thermal expansion coefficient of piezoelectric film × Young's modulus × thickness)

圧力室等の液体流路(中空部)を形成する基板にSi基板を用いる場合、振動板はSiに近い熱膨張係数のものを用いないと熱履歴により剥離する確率が大きくなる。Si基板は熱膨張係数が3×10-6(/℃)程度とかなり小さい部類に入り、振動板も熱膨張係数の比較的小さなガラス材料等を選択する必要性がある。またSi基板の表面を酸化することによってSiO2 層を作成し、Si基板を裏抜きして振動板として用いる場合でも、SiO2 の熱膨張係数は0.2×10-6(/℃)程度と非常に小さく、熱膨張係数の小さな振動板を用いることに変わりはない。 When a Si substrate is used as a substrate for forming a liquid flow path (hollow part) such as a pressure chamber, the probability of separation due to thermal history increases unless a diaphragm having a thermal expansion coefficient close to Si is used. The Si substrate has a considerably small thermal expansion coefficient of about 3 × 10 −6 (/ ° C.), and it is necessary to select a glass material having a relatively small thermal expansion coefficient for the diaphragm. Even when the SiO 2 layer is formed by oxidizing the surface of the Si substrate, and the Si substrate is used as a diaphragm by being back-sided, the thermal expansion coefficient of SiO 2 is about 0.2 × 10 −6 (/ ° C.). The diaphragm is very small and has a small coefficient of thermal expansion.

これに対して、圧電膜を形成する圧電材料は熱膨張係数の大きなものが多く、特に代表的なPZTは最も圧電性の高いMPB組成において9×10-6(/℃)程度とかなり大きい。従って、熱膨張係数の大きな圧電膜を熱膨張係数の小さな振動板に成膜することになり、圧電膜を結晶化して冷却する際に圧電膜に引っ張り応力を加えることになる。 On the other hand, many piezoelectric materials forming the piezoelectric film have a large thermal expansion coefficient, and typical PZT is particularly large at about 9 × 10 −6 (/ ° C.) in the MPB composition having the highest piezoelectricity. Therefore, a piezoelectric film having a large thermal expansion coefficient is formed on a diaphragm having a small thermal expansion coefficient, and tensile stress is applied to the piezoelectric film when the piezoelectric film is crystallized and cooled.

一例として図4に充分に厚いMgO基板上にPZT膜を成膜し焼成・結晶化させたときのX線回折パターンを示す。また、図5には、充分に厚いSi基板上にPZT膜を成膜・焼成したときの熱膨張係数とX線回折で得られたPZT(112)(211)混合ピークの面間隔dの関係を示す。図4に示されるPZT膜は無配向であり、PZT(211)は正確にはPZT(112)(211)混合ピークである。このPZT(112)(211)混合ピークに着目すると、図5に示すように熱膨張係数の小さなSi基板上では面間隔dが小さくなり引っ張りに、PZTより熱膨張係数の大きなMgO上では面間隔dが大きくなり圧縮になっている様子がわかる。   As an example, FIG. 4 shows an X-ray diffraction pattern when a PZT film is formed on a sufficiently thick MgO substrate, fired and crystallized. FIG. 5 shows the relationship between the thermal expansion coefficient when a PZT film is formed and fired on a sufficiently thick Si substrate and the interplanar spacing d of the PZT (112) (211) mixed peak obtained by X-ray diffraction. Indicates. The PZT film shown in FIG. 4 is non-oriented, and PZT (211) is precisely a PZT (112) (211) mixed peak. Focusing on this PZT (112) (211) mixed peak, as shown in FIG. 5, the surface interval d is reduced on the Si substrate having a small thermal expansion coefficient, and the surface interval is formed on MgO having a larger thermal expansion coefficient than PZT. It can be seen that d increases and is compressed.

図6は圧電性劣化の原因を説明するもので、Siのように熱膨張係数の小さな基板上に成膜された場合、結晶化温度からキュリー点を超えて室温まで冷却される際に引っ張りの応力が結晶の相転移時にかかり、PZTのような正方晶においては分極軸であるC軸方向が引っ張り応力の加わる電界と垂直な面内を向くいわゆる90°ドメインが多くなる。例えば、正方晶である結晶化温度で(100)(010)(001)等価面であったものは、キュリー点を通過して正方晶に転移する際に面内の引っ張りにより(100)を向くものが多くなり、結晶化温度で(110)(101)(011)等価面であったものは、(110)を向くものが多くなる。このように、電界に対し分極軸が垂直に向いているものが多くなるため、圧電性が大きく劣化すると考えられる。   FIG. 6 explains the cause of piezoelectric degradation. When a film is formed on a substrate having a small coefficient of thermal expansion such as Si, the film is pulled when it is cooled from the crystallization temperature to the room temperature beyond the Curie point. Stress is applied at the time of crystal phase transition, and in a tetragonal crystal such as PZT, the so-called 90 ° domain in which the C-axis direction, which is the polarization axis, faces in a plane perpendicular to the electric field to which tensile stress is applied increases. For example, a tetragonal crystal with a crystallization temperature of (100) (010) (001) equivalent plane faces (100) due to in-plane pulling when passing through the Curie point and transitioning to a tetragonal crystal. Many of them are (110) (101) (011) equivalent planes at the crystallization temperature, and many are facing (110). As described above, since the number of polarization axes that are perpendicular to the electric field increases, the piezoelectricity is considered to be greatly deteriorated.

図7に、熱膨張係数の大きなMgO基板上にPZT膜を成膜した場合の電気的特性を、図8に熱膨張係数の小さなSi基板上にPZT膜を成膜したときの電気的特性を示す。図7および図8のグラフを比較すると、電界と電束密度の関係(P−Eカーブ)においてMgO基板上では角型比が高く飽和電束密度が高い良好なヒステリシスを描き圧電性も高いが、Si基板上では角型比が落ち飽和電束密度も低くヒステリシスが劣化し、圧電性も低くなることが分かる。   FIG. 7 shows the electrical characteristics when a PZT film is formed on an MgO substrate having a large thermal expansion coefficient, and FIG. 8 shows the electrical characteristics when a PZT film is formed on an Si substrate having a small thermal expansion coefficient. Show. Comparing the graphs of FIG. 7 and FIG. 8, the relationship between the electric field and the electric flux density (PE curve) shows a good hysteresis with a high squareness ratio and a high saturation electric flux density on the MgO substrate. It can be seen that on the Si substrate, the squareness ratio is lowered, the saturation electric flux density is low, the hysteresis is deteriorated, and the piezoelectricity is also lowered.

本発明者らは鋭意研究を重ね、10μm以下の薄い振動板と圧電膜の間に、圧電膜より熱膨張係数の大きな中間膜を設けて、(中間膜の熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜の熱膨張係数×ヤング率×厚さ)の関係を満たすように設計することによって、結晶化温度から常温に冷却する過程で圧電膜に圧縮方向の応力を加え、90°ドメインの増加を抑制することに成功した。   The present inventors have conducted extensive research and provided an intermediate film having a thermal expansion coefficient larger than that of the piezoelectric film between a thin diaphragm having a thickness of 10 μm or less and the piezoelectric film, and (thermal expansion coefficient of the intermediate film × Young's modulus × thickness )-(The thermal expansion coefficient of the diaphragm × Young's modulus × thickness) ≧ (Thermal expansion coefficient of the piezoelectric film × Young's modulus × thickness) By designing to satisfy the relationship, cooling from the crystallization temperature to room temperature In the process, stress in the compression direction was applied to the piezoelectric film, and the increase in the 90 ° domain was successfully suppressed.

さらに鋭意研究を重ねた結果、圧電膜より熱膨張係数の大きな中間膜を、振動板上のユニモルフ型圧電膜素子の駆動領域に対応してパターニングしておくことで、より効率的に圧電膜に圧縮方向の応力を与え、90°ドメインの発生を効果的に抑えることに成功した。   As a result of further intensive research, an intermediate film having a larger thermal expansion coefficient than that of the piezoelectric film is patterned to correspond to the driving region of the unimorph type piezoelectric film element on the diaphragm, thereby making the piezoelectric film more efficient. A stress in the compression direction was applied to successfully suppress the generation of the 90 ° domain.

すなわち、振動板と圧電膜の間に上記の関係を満たす熱膨張係数の大きな中間膜を介在させ、かつ振動板の可動領域に合わせて圧電膜と同様に中間膜をパターニングすることによって、転写プロセスを用いずに振動板上へ直接圧電膜を形成し、優れたユニモルフ型圧電膜素子を形成することが可能になる。またこの手法を用いて作製したユニモルフ型圧電膜素子を駆動源とする高性能で安価な液体吐出ヘッドを実現することが可能になる。   That is, an intermediate film having a large thermal expansion coefficient that satisfies the above relationship is interposed between the diaphragm and the piezoelectric film, and the intermediate film is patterned in the same manner as the piezoelectric film in accordance with the movable region of the diaphragm, thereby transferring the transfer process. It is possible to form an excellent unimorph type piezoelectric film element by directly forming a piezoelectric film on the vibration plate without using the material. In addition, it is possible to realize a high-performance and inexpensive liquid discharge head using a unimorph type piezoelectric film element manufactured using this method as a drive source.

図1に示すように、中空部1aを有する基板1上に振動板2が形成され、MgO膜等の中間膜3を介して、電極膜4および圧電膜5が積層される。中間膜3は圧電膜5より大きな熱膨張係数をもち、中間膜3、電極膜4、圧電膜5は、振動板2の可動領域である基板1の中空部1aの形状に対応してパターニングされ、中空部1aの上方を除く部分では、振動板2の表面が露出している。   As shown in FIG. 1, a diaphragm 2 is formed on a substrate 1 having a hollow portion 1a, and an electrode film 4 and a piezoelectric film 5 are laminated via an intermediate film 3 such as an MgO film. The intermediate film 3 has a thermal expansion coefficient larger than that of the piezoelectric film 5, and the intermediate film 3, the electrode film 4, and the piezoelectric film 5 are patterned corresponding to the shape of the hollow portion 1 a of the substrate 1 that is the movable region of the diaphragm 2. The surface of the diaphragm 2 is exposed at a portion other than the upper portion of the hollow portion 1a.

振動板材料には様々な材料を用いることができるが、Siを酸化もしくは窒化して得られるSiO2 やSiNも、基板材料として用いられるSiとの剥がれが発生しにくく、また振動板の厚さを研磨等では困難な薄い範囲まで自在にコントロールしやすく好ましい。また、ヤング率が低く、高耐熱性を有するガラス基板も好ましく、特にSi基板と熱膨張係数が高い温度領域まで近く、陽極接合後に剥がれの発生しにくいホウケイ酸ガラスやアルミノケイ酸ガラス、アルミノホウケイ酸ガラス基板が好ましい。 Various materials can be used for the diaphragm material, but SiO 2 and SiN obtained by oxidizing or nitriding Si are less likely to peel off from Si used as a substrate material, and the thickness of the diaphragm This is preferable because it can be freely controlled in a thin range that is difficult to polish. In addition, a glass substrate having a low Young's modulus and high heat resistance is also preferable. In particular, a borosilicate glass, an aluminosilicate glass, or an aluminoborosilicate that is close to the Si substrate and has a high thermal expansion coefficient and hardly peels off after anodic bonding. A glass substrate is preferred.

圧電膜の作成方法にはあらゆる成膜方法を用いることが可能であり、例えばRFスパッタリング、イオンビームスパッタ、イオンプレーティング、EB蒸着、プラズマCVD、MO−CVD、レーザーアブレーションなどが挙げられる。いずれの成膜方法も酸化物の薄膜を作成することが可能であるが、圧電性を有する膜の作製においては、組成がその特性に大きく寄与するため、基板温度可変でかつガス圧により組成制御の容易なRFスパッタリングが好ましい。   Any film forming method can be used as the method for forming the piezoelectric film, and examples include RF sputtering, ion beam sputtering, ion plating, EB deposition, plasma CVD, MO-CVD, and laser ablation. Although any film formation method can produce an oxide thin film, the composition greatly contributes to the characteristics in the production of a piezoelectric film. Therefore, the composition of the substrate can be varied and the composition can be controlled by gas pressure. Easy RF sputtering is preferred.

圧電膜には、圧電性を有する様々な膜を用いることができるが、特にPbを含むペロブスカイト構造酸化物が望ましい。例えばPb(Zr、Ti)O3 、(Pb、La)(Zr、Ti)O3 などがその代表例として挙げられる。特にPb(Zr、Ti)O3 (いわゆるPZTと表される)は圧電特性に優れ、材料として好ましい。また最近注目を浴びているPb(Zn、Nb)O3 −PbTiO3 固溶体(いわゆるPZN−PTと表される)やPb(Mg、Nb)O3 −PbTiO3 固溶体(いわゆるPMN−PTと表される)などもPZTを大きく上回る非常に大きな圧電特性を有し、材料として好ましい。 As the piezoelectric film, various films having piezoelectricity can be used, and a perovskite structure oxide containing Pb is particularly desirable. For example, Pb (Zr, Ti) O 3 , (Pb, La) (Zr, Ti) O 3 and the like can be given as typical examples. In particular, Pb (Zr, Ti) O 3 (expressed as so-called PZT) is excellent in piezoelectric characteristics and is preferable as a material. Recently, Pb (Zn, Nb) O 3 —PbTiO 3 solid solution (represented as so-called PZN-PT) and Pb (Mg, Nb) O 3 —PbTiO 3 solid solution (represented as so-called PMN-PT). Etc.) has a very large piezoelectric characteristic that greatly exceeds PZT and is preferable as a material.

圧電膜より大きな熱膨張係数を持つ中間膜には、熱膨張係数の大きな様々な膜材料を用いることができるが、特に熱膨張係数が13.0×10-6(/℃)のMgO、熱膨張係数が11.5×10-6(/℃)のZrO2 、熱膨張係数が16.8×10-6(/℃)のCuなどは、その熱膨張係数が特に大きく、また耐熱性にも優れ、材料として好ましい。 For the intermediate film having a larger thermal expansion coefficient than that of the piezoelectric film, various film materials having a large thermal expansion coefficient can be used. In particular, MgO having a thermal expansion coefficient of 13.0 × 10 −6 (/ ° C.), heat ZrO 2 with an expansion coefficient of 11.5 × 10 −6 (/ ° C.) and Cu with a thermal expansion coefficient of 16.8 × 10 −6 (/ ° C.) have a particularly large thermal expansion coefficient and are also heat resistant. It is also excellent as a material.

中間膜および圧電膜は、降温時の圧縮応力を振動板を変形させることによって効果的に利用できるように、基板の中空部に対向する可動領域のみ残すようにパターニングするのが好ましいが、中空部に対向する可動領域の周辺部において中間膜を不連続にするだけでも同様の効果を得ることが可能である。また中空部に対向する可動領域の周辺部の一部が不連続であっても、完全に連続である場合よりも効果的である。   The intermediate film and the piezoelectric film are preferably patterned so as to leave only a movable region facing the hollow part of the substrate so that the compressive stress at the time of cooling can be effectively used by deforming the diaphragm. The same effect can be obtained simply by making the intermediate film discontinuous at the peripheral part of the movable region facing the surface. Further, even if a part of the peripheral portion of the movable region facing the hollow portion is discontinuous, it is more effective than the case where it is completely continuous.

図2および図3は、ユニモルフ型圧電膜素子を搭載する液体吐出ヘッドを示すもので、圧力室21a、吐出口(ノズル)21b、液供給口21c等の液体流路を設けた基板21上に薄い振動板22が形成されている。液体流路上に位置する振動板22上に、圧電膜25より熱膨張係数の大きな中間膜23が、中間膜23の熱膨張係数×ヤング率×厚さ−振動板22の熱膨張係数×ヤング率×厚さ≧圧電膜25の熱膨張係数×ヤング率×厚さ、の関係を満たすように形成され、液体流路間の隔壁上には中間膜23が形成されず不連続となっている。中間膜23上に、原子の拡散防止を兼ねた貴金属の第一の電極膜24が形成され、その上に圧電膜25が形成される。さらにその上に第二の電極膜26が形成される。   FIGS. 2 and 3 show a liquid discharge head on which a unimorph type piezoelectric film element is mounted. On a substrate 21 provided with a liquid flow path such as a pressure chamber 21a, a discharge port (nozzle) 21b, a liquid supply port 21c. A thin diaphragm 22 is formed. On the diaphragm 22 located on the liquid flow path, the intermediate film 23 having a larger thermal expansion coefficient than the piezoelectric film 25 is the thermal expansion coefficient of the intermediate film 23 x Young's modulus x thickness-thermal expansion coefficient of the diaphragm 22 x Young's modulus. × Thickness ≧ thermal expansion coefficient of piezoelectric film 25 × Young's modulus × thickness is satisfied, and the intermediate film 23 is not formed on the partition between the liquid flow paths and is discontinuous. On the intermediate film 23, a first electrode film 24 of a noble metal that also serves to prevent diffusion of atoms is formed, and a piezoelectric film 25 is formed thereon. Further, a second electrode film 26 is formed thereon.

このように、あらかじめ加工を施したSi基板等の基板上に薄い振動板を接合し、その上に圧電膜より熱膨張係数の大きな中間膜を積層し、中間膜は基板の中空部である液体流路に対向して変形する振動板の可動領域にのみに位置するようにパターニングされる。中間膜上に貴金属等の第1の電極膜を設け、次いで圧電膜を加熱結晶化しながら成膜もしくは非加熱成膜して後焼成により結晶化させることにより、圧電膜に降温時に圧縮応力を加える構成にし、圧電性を劣化させずに圧電膜を振動板上へ直接形成することを可能にする。   In this way, a thin diaphragm is bonded onto a substrate such as a Si substrate that has been processed in advance, and an intermediate film having a larger thermal expansion coefficient than that of the piezoelectric film is laminated thereon, and the intermediate film is a liquid that is a hollow portion of the substrate. Patterning is performed so as to be located only in the movable region of the diaphragm that deforms in opposition to the flow path. A first electrode film such as a noble metal is provided on the intermediate film, and then the piezoelectric film is formed by heating or crystallization while being heated or non-heated and then crystallized by firing, thereby applying a compressive stress to the piezoelectric film when the temperature is lowered. The configuration allows the piezoelectric film to be formed directly on the diaphragm without deteriorating the piezoelectricity.

圧電膜の上に貴金属等の第2の電極膜を形成し、ユニモルフ型圧電膜素子を駆動源とする液体吐出ヘッドを作製する。Si基板に圧力室や吐出口となる液体流路の加工を施した後に振動板を陽極接合などにより形成し、その上に高性能な圧電膜を直接成膜することが可能になるため、従来より高精細で高品位な液体吐出ヘッドを歩留まり良く生産することができる。   A second electrode film made of a noble metal or the like is formed on the piezoelectric film, and a liquid discharge head using a unimorph type piezoelectric film element as a drive source is manufactured. Since it is possible to form a diaphragm by anodic bonding after processing the pressure channel and the liquid flow path that becomes the discharge port on the Si substrate, it is possible to directly form a high-performance piezoelectric film on it. High-definition and high-quality liquid discharge heads can be produced with high yield.

図1に示すように、中空構造をもつSi基板である基板1に形成された熱酸化によるSiO2 の振動板2上に、中間膜3および電極膜4を積層し、成膜方法としてRFスパッタリングを用いてPZT膜を非加熱成膜し、後焼成して圧電膜5を形成し、ユニモルフ型圧電膜素子を作成した。具体的な製造工程は以下の通りである。 As shown in FIG. 1, an intermediate film 3 and an electrode film 4 are laminated on a SiO 2 diaphragm 2 formed by thermal oxidation on a substrate 1 which is a Si substrate having a hollow structure, and RF sputtering is used as a film forming method. A PZT film was formed without using heat, and then baked to form the piezoelectric film 5 to produce a unimorph type piezoelectric film element. The specific manufacturing process is as follows.

Si(100)基板上に熱酸化によって1μm厚のSiO2 膜を形成した。これをSiO2 面とは反対の面からエッチング技術を行い溝(中空部)を形成し、中空構造のSi基板上に振動板となるSiO2 膜が形成された構造とした。振動板を構成するSiO2 の熱膨張係数は0.2×10-6(/℃)、ヤング率は7.2×1010(N/m2 )である。この上に熱膨張係数の大きなMgOの中間膜を、RFスパッタにて表示Arガス圧=0.14Pa、O2 流量/Ar流量=5%で、室温にて、厚さ1.0μm形成した。その後750℃で後熱処理を行った。 A 1 μm thick SiO 2 film was formed on the Si (100) substrate by thermal oxidation. This was etched from the surface opposite to the SiO 2 surface to form a groove (hollow part), and a SiO 2 film serving as a diaphragm was formed on a hollow Si substrate. The thermal expansion coefficient of SiO 2 constituting the diaphragm is 0.2 × 10 −6 (/ ° C.), and the Young's modulus is 7.2 × 10 10 (N / m 2 ). On this, an intermediate film of MgO having a large thermal expansion coefficient was formed by RF sputtering with an Ar gas pressure = 0.14 Pa, an O 2 flow rate / Ar flow rate = 5%, and a thickness of 1.0 μm at room temperature. Thereafter, post-heat treatment was performed at 750 ° C.

図9および図10のグラフは、MgOの中間膜のSiO2 上の焼成前および焼成後のX線回折図を示すもので、焼成前・後、共にMgO(111)に優先配向しているが、MgO(200)も見られ、多結晶の膜になっている。MgOの熱膨張係数は13.0×10-6(/℃)、ヤング率は20.6×1010(N/m2 )である。熱膨張係数の大きなMgO膜を、基板の中空部に対応する部分のみを残して、他の領域をウェットエッチングで除去した。この後、熱膨張係数の大きなMgO側に密着層としてTiを厚さ4nm、さらにその上に第一電極となるPtを厚さ150nmにRFスパッタにて形成した。その上に基板ヒーターOFF、表示Arガス圧3.0Paで、アモルファスのPZT層をRFスパッタにて1μm表面に形成した。このアモルファスのPZT層は通常MgO基板上で650℃の後熱処理により結晶化し、圧電膜であるPZT膜となる。PZTの熱膨張係数はMPB組成近傍で9.0×10-6(/℃)、ヤング率は8.0×1010(N/m2 )である。 The graphs of FIGS. 9 and 10 show X-ray diffraction patterns before and after firing on the SiO 2 of the MgO intermediate film. Both before and after firing are preferentially oriented to MgO (111). MgO (200) is also seen, and is a polycrystalline film. MgO has a thermal expansion coefficient of 13.0 × 10 −6 (/ ° C.) and a Young's modulus of 20.6 × 10 10 (N / m 2 ). The MgO film having a large thermal expansion coefficient was removed by wet etching, leaving only the portion corresponding to the hollow portion of the substrate. Thereafter, Ti was formed as an adhesion layer on the MgO side having a large thermal expansion coefficient by a thickness of 4 nm, and further, Pt as a first electrode was formed thereon by RF sputtering to a thickness of 150 nm. On top of that, an amorphous PZT layer was formed on the surface of 1 μm by RF sputtering at a substrate heater OFF and a display Ar gas pressure of 3.0 Pa. This amorphous PZT layer is usually crystallized by post-heat treatment at 650 ° C. on an MgO substrate to become a PZT film which is a piezoelectric film. The thermal expansion coefficient of PZT is 9.0 × 10 −6 (/ ° C.) near the MPB composition, and the Young's modulus is 8.0 × 10 10 (N / m 2 ).

形成したアモルファスのPZT層を酸素雰囲気中で昇降温1℃/min、650℃で5hrアニールし、結晶化を行った。結晶化温度から冷却過程が進むにつれて、図1の矢印で示すように振動板の熱収縮は非常に小さく他の層に対して引っ張りに働く。熱膨張係数の大きなMgOの中間膜は引張りをキャンセルして圧縮方向に働こうとする。   The formed amorphous PZT layer was annealed in an oxygen atmosphere at an elevated temperature of 1 ° C./min and 650 ° C. for 5 hours to perform crystallization. As the cooling process proceeds from the crystallization temperature, the thermal contraction of the diaphragm is very small as shown by the arrow in FIG. The intermediate film of MgO having a large thermal expansion coefficient cancels tension and tries to work in the compression direction.

(中間膜MgOの熱膨張係数×ヤング率×厚さ)−(振動板SiO2 の熱膨張係数×ヤング率×厚さ)≧(圧電膜PZTの熱膨張係数×ヤング率×厚さ)、の関係を満たすように各膜の厚さが設定され、かつ(中間膜MgOの熱膨張係数)>(圧電膜PZTの熱膨張係数)の関係にあるため、結晶化温度から室温までの温度領域で圧電膜PZTに対して圧縮の力が働く。 (Thermal expansion coefficient of the intermediate film MgO × Young's modulus × thickness) − (Thermal expansion coefficient of the diaphragm SiO 2 × Young's modulus × thickness) ≧ (Thermal expansion coefficient of the piezoelectric film PZT × Young's modulus × thickness) Since the thickness of each film is set so as to satisfy the relationship, and (thermal expansion coefficient of the intermediate film MgO)> (thermal expansion coefficient of the piezoelectric film PZT), the temperature range from the crystallization temperature to room temperature is satisfied. A compression force acts on the piezoelectric film PZT.

さらに振動板SiO2 が1μmと薄く、また中間膜MgOはSi基板の中空部に対向して変形する振動板の可動領域にのみ形成されているため、中空部以外の隔壁部分に対向する部位では振動板からの拘束が少なく、冷却過程のMgO層の大きな収縮に対してSi基板の中空部に対向する振動板が中空部側に大きく変形して圧縮の応力が失われない(図1の(b)参照)。 Furthermore, the diaphragm SiO 2 is as thin as 1 μm, and the intermediate film MgO is formed only in the movable region of the diaphragm that deforms facing the hollow portion of the Si substrate. There is little restraint from the diaphragm, and the diaphragm facing the hollow portion of the Si substrate is greatly deformed toward the hollow portion with respect to the large shrinkage of the MgO layer during the cooling process, and the compression stress is not lost (( b)).

この結果、PZTが焼成温度から室温まで冷却される際に90°ドメインが増加するのが抑制された。また振動板SiO2 はSi基板上に熱酸化で設けられており、650℃で焼成しても問題は発生しなかった。その後、結晶化したPZT表面に第二の電極膜となるPtをRFスパッタにより形成した。圧電膜PZT上のPtをSi基板の中空部の形状に合わせてドライエッチングにてパターニングを行った。さらにPtのパターンに沿ってウェットエッチングにより圧電膜PZTをエッチングした。 As a result, an increase in 90 ° domain was suppressed when PZT was cooled from the firing temperature to room temperature. Further, the diaphragm SiO 2 was provided on the Si substrate by thermal oxidation, and no problem occurred even when baked at 650 ° C. Thereafter, Pt serving as the second electrode film was formed on the crystallized PZT surface by RF sputtering. Pt on the piezoelectric film PZT was patterned by dry etching in accordance with the shape of the hollow portion of the Si substrate. Further, the piezoelectric film PZT was etched by wet etching along the Pt pattern.

この圧電膜PZTの電気的特性を測定したところ、電界強度と電束密度の関係であるP−Eカーブにおいて良好な角型比と高い飽和電束密度を示し、良好なヒステリシス特性を示した。またこのようにして作製したユニモルフ型圧電膜素子を図11のような矩形波を印可してレーザードップラー変位計による測定を行ったところ、ユニモルフ型圧電膜素子として充分な変位を確認できた。   When the electrical characteristics of the piezoelectric film PZT were measured, it showed a good squareness ratio and a high saturation electric flux density in the PE curve, which is the relationship between the electric field strength and the electric flux density, and showed good hysteresis characteristics. Further, when the unimorph type piezoelectric film element thus produced was applied with a rectangular wave as shown in FIG. 11 and measured with a laser Doppler displacement meter, a sufficient displacement as a unimorph type piezoelectric film element was confirmed.

図2に示すように、圧力室21a、ノズル21b、液供給口21c等の液体流路を設けたSi基板である基板21上に振動板22となる熱酸化膜を転写し、振動板22上に熱膨張係数の非常に大きいMgOの中間膜23を成膜した後、第一の電極膜24を積層し、さらにその上に、成膜方法としてRFスパッタリングを用いて、圧電膜25としてアモルファスのPZT層を非加熱成膜し、ひき続き後焼成し、その上に第二の電極膜26を形成することで、ユニモルフ型圧電膜素子20を駆動源とする液体吐出ヘッドを作製した。具体的な製造工程は以下の通りである。   As shown in FIG. 2, a thermal oxide film serving as a vibration plate 22 is transferred onto a substrate 21 which is a Si substrate provided with liquid flow paths such as a pressure chamber 21a, a nozzle 21b, and a liquid supply port 21c. After the MgO intermediate film 23 having a very large thermal expansion coefficient is formed on the first electrode film 24, the first electrode film 24 is laminated, and further, RF sputtering is used as the film formation method, and the piezoelectric film 25 is made of an amorphous material. A PZT layer was formed without heating, followed by firing, and a second electrode film 26 was formed thereon, thereby producing a liquid discharge head using the unimorph piezoelectric film element 20 as a drive source. The specific manufacturing process is as follows.

Si(100)基板上にICPドライエッチング技術を用いて、圧力室、液供給口、吐出口等を含む液体流路となる溝を形成した。この後、熱酸化膜1μmが形成されたSi基板を、液体流路が形成されたSi基板上に固相接合を用いて貼り付け、熱酸化膜が形成されたSi基板を裏面からウェットエッチングすることによって厚さ1μmの熱酸化膜SiO2 からなる振動板を形成した。SiO2 の熱膨張係数は0.2×10-6(/℃)、ヤング率は7.2×1010(N/m2 )である。この上に熱膨張係数の大きなMgOをRFスパッタにて、表示Arガス圧=0.14Pa、O2 流量/Ar流量=5%に制御し、室温で、厚さ1.0μm形成した。その後750℃で後熱処理を行った。 A groove serving as a liquid flow path including a pressure chamber, a liquid supply port, a discharge port, and the like was formed on the Si (100) substrate using an ICP dry etching technique. Thereafter, the Si substrate on which the thermal oxide film 1 μm is formed is attached to the Si substrate on which the liquid flow path is formed by using solid phase bonding, and the Si substrate on which the thermal oxide film is formed is wet-etched from the back surface. Thus, a diaphragm made of a thermal oxide film SiO 2 having a thickness of 1 μm was formed. SiO 2 has a thermal expansion coefficient of 0.2 × 10 −6 (/ ° C.) and a Young's modulus of 7.2 × 10 10 (N / m 2 ). On top of this, MgO having a large thermal expansion coefficient was controlled by RF sputtering to display Ar gas pressure = 0.14 Pa, O 2 flow rate / Ar flow rate = 5%, and a thickness of 1.0 μm was formed at room temperature. Thereafter, post-heat treatment was performed at 750 ° C.

MgO膜の焼成前・後、共にMgO(111)に優先配向しているが、MgO(200)も見られ、多結晶の膜になっている。MgOの熱膨張係数は13.0×10-6(/℃)、ヤング率は20.6×1010(N/m2 )である。熱膨張係数の大きなMgO膜を、基板の液体流路に対応する部分のみを残して、他の領域をウェットエッチングで除去した。この後、熱膨張係数の大きなMgO側に密着層としてTiを厚さ4nm、さらにその上に第一の電極膜となるPtを厚さ150nmにRFスパッタにて形成した。その上に基板ヒーターOFF、表示Arガス圧3.0Paで、アモルファスのPZT層をRFスパッタにて1μmの厚さに形成した。このアモルファスのPZT層は650℃の後熱処理により結晶化したPZT層となる。PZTの熱膨張係数はMPB組成近傍で9.0×10-6(/℃)、ヤング率は8.0×1010(N/m2 )である。 Before and after firing the MgO film, both are preferentially oriented to MgO (111). However, MgO (200) is also observed, and it is a polycrystalline film. MgO has a thermal expansion coefficient of 13.0 × 10 −6 (/ ° C.) and a Young's modulus of 20.6 × 10 10 (N / m 2 ). The MgO film having a large thermal expansion coefficient was removed by wet etching while leaving only the portion corresponding to the liquid flow path of the substrate. Thereafter, Ti was formed as an adhesion layer on the MgO side having a large thermal expansion coefficient by a thickness of 4 nm, and further, Pt as a first electrode film was formed thereon by RF sputtering to a thickness of 150 nm. An amorphous PZT layer having a thickness of 1 μm was formed thereon by RF sputtering with a substrate heater OFF and a display Ar gas pressure of 3.0 Pa. This amorphous PZT layer becomes a PZT layer crystallized by post-heat treatment at 650 ° C. The thermal expansion coefficient of PZT is 9.0 × 10 −6 (/ ° C.) near the MPB composition, and the Young's modulus is 8.0 × 10 10 (N / m 2 ).

形成したアモルファスのPZT層を酸素雰囲気中で昇降温1℃/min、650℃で5hrアニールし、結晶化を行った。結晶化温度から室温までの各層の熱収縮において、振動板の熱収縮は非常に小さく他の層に対して引っ張りに働き、熱膨張係数の大きなMgO層は引張りをキャンセルして圧縮方向に働こうとする。(中間膜MgOの熱膨張係数×ヤング率×厚さ)−(振動板SiO2 の熱膨張係数×ヤング率×厚さ)≧(圧電膜PZTの熱膨張係数×ヤング率×厚さ)、の関係を満たし、かつ(中間膜MgOの熱膨張係数)>(圧電膜PZTの熱膨張係数)の関係にあるため、結晶化温度から室温までの温度領域でPZTに対して圧縮の力が働く(図2の(b)参照)。さらに、振動板SiO2 が1μmと薄く、また中間膜MgO層は圧力室等に対向する振動板の可動領域にのみ形成されているため、隔壁部分に対向する変形しない振動板からの拘束が少ない。従って冷却過程のMgO層の大きな収縮に対して圧力室に対向する振動板が圧力室側に大きく変形して圧縮の応力が失われない。この結果、PZTが焼成温度から室温まで冷却される際に90°ドメインが増加するのが抑制された。 The formed amorphous PZT layer was annealed in an oxygen atmosphere at an elevated temperature of 1 ° C./min and 650 ° C. for 5 hours to perform crystallization. In the thermal contraction of each layer from the crystallization temperature to room temperature, the thermal contraction of the diaphragm is very small and acts on the other layers, and the MgO layer having a large thermal expansion coefficient cancels the tension and works in the compression direction. And (Thermal expansion coefficient of the intermediate film MgO × Young's modulus × thickness) − (Thermal expansion coefficient of the diaphragm SiO 2 × Young's modulus × thickness) ≧ (Thermal expansion coefficient of the piezoelectric film PZT × Young's modulus × thickness) Since the relationship is satisfied and (thermal expansion coefficient of intermediate film MgO)> (thermal expansion coefficient of piezoelectric film PZT), compression force acts on PZT in the temperature range from the crystallization temperature to room temperature ( (See (b) of FIG. 2). Further, since the diaphragm SiO 2 is as thin as 1 μm and the intermediate film MgO layer is formed only in the movable region of the diaphragm facing the pressure chamber or the like, there are few constraints from the undeformed diaphragm facing the partition wall portion. . Therefore, the diaphragm facing the pressure chamber is greatly deformed to the pressure chamber side with respect to the large shrinkage of the MgO layer in the cooling process, and the compression stress is not lost. As a result, an increase in 90 ° domain was suppressed when PZT was cooled from the firing temperature to room temperature.

また振動板SiO2 はSiの熱酸化酸であり、650℃で焼成しても問題は発生しなかった。その後、結晶化したPZT表面に第二の電極膜となるPtをRFスパッタにより形成した。PZT膜上の電極膜PtをSi基板の流路に合わせてドライエッチングにてパターニングを行った。さらにPtのパターンに沿ってウェットエッチングによりPZT膜をエッチングした。このPZTの電気的特性を測定したところ、電界強度と電束密度の関係であるP−Eカーブにおいて良好な角型比と高い飽和電束密度を示し、良好なヒステリシス特性を示した。 Further, the diaphragm SiO 2 is a thermal oxidation acid of Si, and no problem occurred even when baked at 650 ° C. Thereafter, Pt serving as the second electrode film was formed on the crystallized PZT surface by RF sputtering. The electrode film Pt on the PZT film was patterned by dry etching according to the flow path of the Si substrate. Further, the PZT film was etched by wet etching along the Pt pattern. When the electrical characteristics of the PZT were measured, the P-E curve, which is the relationship between the electric field strength and the electric flux density, showed a good squareness ratio and a high saturated electric flux density, and showed good hysteresis characteristics.

本実施例では圧電膜の上下に電極膜を設けた圧電膜素子の片方の面に、振動板が貼り付けられたユニモルフ型圧電膜素子を用いている。あらかじめSi基板上に様々な加工を施すことにより、ユニモルフ型圧電膜素子を用いた様々なデバイスが作製可能である。本実施例のユニモルフ型圧電膜素子を搭載した液体吐出ヘッドの吐出確認を行うために、この液体吐出ヘッドにIPAを充填して図11のような駆動波形によって駆動したところ、液滴の吐出を確認することができた。   In this embodiment, a unimorph type piezoelectric film element is used in which a diaphragm is attached to one surface of a piezoelectric film element in which electrode films are provided above and below the piezoelectric film. By performing various processes on the Si substrate in advance, various devices using unimorph type piezoelectric film elements can be manufactured. In order to confirm the discharge of the liquid discharge head on which the unimorph type piezoelectric film element of this embodiment is mounted, the liquid discharge head is filled with IPA and driven by the drive waveform as shown in FIG. I was able to confirm.

図2に示す膜構成のユニモルフ型圧電膜素子20を駆動源とする液体吐出ヘッドを、成膜方法としてRFスパッタリングを用いて、あらかじめ圧力室21a、吐出口21b、液供給口21c等の液体流路を設けたSi基板である基板21上に、振動板22となるアルミノケイ酸ガラスSD2(HOYA株式会社 登録商標)を陽極接合し、その上に熱膨張係数の非常に大きいMgOの中間膜23を成膜し、さらにその上に圧電膜25となるPZT膜を非加熱成膜および後焼成によって形成し、ユニモルフ型圧電膜素子を駆動源とする液体吐出ヘッドを作製した。具体的な製造方法は以下の通りである。   The liquid discharge head using the unimorph type piezoelectric film element 20 having the film configuration shown in FIG. 2 as a drive source is preliminarily used for the liquid flow such as the pressure chamber 21a, the discharge port 21b, and the liquid supply port 21c by using RF sputtering as a film forming method. An aluminosilicate glass SD2 (registered trademark of HOYA Co., Ltd.) serving as a diaphragm 22 is anodically bonded on a substrate 21 which is a Si substrate provided with a path, and an MgO intermediate film 23 having a very large thermal expansion coefficient is formed thereon. A PZT film to be a piezoelectric film 25 was formed thereon by non-heated film formation and post-baking, and a liquid discharge head using a unimorph type piezoelectric film element as a drive source was produced. A specific manufacturing method is as follows.

Si(100)基板上にICPドライエッチング技術を用いて実施例2と同様に液体流路となる溝を形成した。この後、振動板として30μm厚のアルミノケイ酸ガラスSD2を溝が形成されたSi基板上に陽極接合を用いて貼り付け、アルミノケイ酸ガラスSD2を研磨にて3μmまで薄片化した。アルミノケイ酸ガラスSD2の熱膨張係数は3.2×10-6(/℃)、ヤング率は8.9×1010(N/m2 )である。研磨によって薄片化したアルミノケイ酸ガラス上に熱膨張係数の大きなMgOをRFスパッタにて、表示Arガス圧=0.14Pa、O2 流量/Ar流量=5%に制御し、室温で、厚さ1.0μmに成膜した。MgOの熱膨張係数は13.0×10-6(/℃)、ヤング率は20.6×1010(N/m2 )である。熱膨張係数の大きなMgO膜を、基板の液体流路に対応する部分のみを残して、他の領域をウェットエッチングで除去した。この後、熱膨張係数の大きなMgO側に密着層としてTiを厚さ4nm、さらにその上に第一の電極膜となるPtを厚さ150nmにRFスパッタにて形成した。その上に基板ヒーターOFF、表示Arガス圧3.0Paで、アモルファスのPZT層をRFスパッタにて1μmの厚さに形成した。このアモルファスのPZT層は、アルミノケイ酸ガラスSD2の歪点より低い650℃の後熱処理でも無配向のPZTとなる。PZTの熱膨張係数はMPB組成近傍で9.0×10-6(/℃)、ヤング率は8.0×1010(N/m2 )である。 A groove serving as a liquid flow path was formed on the Si (100) substrate using the ICP dry etching technique in the same manner as in Example 2. Thereafter, an aluminosilicate glass SD2 having a thickness of 30 μm was attached to the Si substrate having the grooves as an oscillating plate by anodic bonding, and the aluminosilicate glass SD2 was thinned to 3 μm by polishing. The aluminosilicate glass SD2 has a thermal expansion coefficient of 3.2 × 10 −6 (/ ° C.) and a Young's modulus of 8.9 × 10 10 (N / m 2 ). On the aluminosilicate glass thinned by polishing, MgO having a large thermal expansion coefficient is controlled by RF sputtering to display Ar gas pressure = 0.14 Pa, O 2 flow rate / Ar flow rate = 5%, and a thickness of 1 at room temperature. A film was formed to a thickness of 0.0 μm. MgO has a thermal expansion coefficient of 13.0 × 10 −6 (/ ° C.) and a Young's modulus of 20.6 × 10 10 (N / m 2 ). The MgO film having a large thermal expansion coefficient was removed by wet etching while leaving only the portion corresponding to the liquid flow path of the substrate. Thereafter, Ti was formed as an adhesion layer on the MgO side having a large thermal expansion coefficient by a thickness of 4 nm, and further, Pt as a first electrode film was formed thereon by RF sputtering to a thickness of 150 nm. An amorphous PZT layer having a thickness of 1 μm was formed thereon by RF sputtering with a substrate heater OFF and a display Ar gas pressure of 3.0 Pa. This amorphous PZT layer becomes non-oriented PZT even after post-heat treatment at 650 ° C., which is lower than the strain point of the aluminosilicate glass SD2. The thermal expansion coefficient of PZT is 9.0 × 10 −6 (/ ° C.) near the MPB composition, and the Young's modulus is 8.0 × 10 10 (N / m 2 ).

形成したアモルファスのPZT層を酸素雰囲気中で昇降温1℃/min、650℃で5hrアニールし、結晶化を行った。図2の(b)に示したように、振動板22の熱収縮は非常に小さく他の層に対して引っ張りに働く。熱膨張係数の大きな中間膜MgO層23は引張りをキャンセルして圧縮方向に働こうとする。   The formed amorphous PZT layer was annealed in an oxygen atmosphere at an elevated temperature of 1 ° C./min and 650 ° C. for 5 hours to perform crystallization. As shown in FIG. 2 (b), the thermal contraction of the diaphragm 22 is very small and acts on the other layers. The intermediate film MgO layer 23 having a large thermal expansion coefficient cancels the tension and tries to work in the compression direction.

(中間膜MgOの熱膨張係数×ヤング率×厚さ)−(振動板SD2の熱膨張係数×ヤング率×厚さ)≧(圧電膜PZTの熱膨張係数×ヤング率×厚さ)、の関係を満たしており、かつ(中間膜MgOの熱膨張係数)>(圧電膜PZTの熱膨張係数)の関係にあるため、結晶化温度から室温までの温度領域でPZTに対して圧縮の力が働き、さらに振動板となるガラスが3μmと薄く、また中間膜MgO層はSi基板の液体流路に対向して変形する振動板上にのみ形成されているため、Si基板の液体流路以外の隔壁部分に対向する非可動領域で変形しない振動板からの拘束が少なく、冷却過程のMgO層の大きな収縮に対してSi基板上の振動板が圧力室側に大きく変形して圧縮の応力が失われない。この結果、PZTが焼成温度から室温まで冷却される際に90°ドメインが増加するのが抑制された。またアルミノケイ酸ガラスSD2は歪み点が667℃であり、650℃で焼成しても問題は発生しなかった。   (Thermal expansion coefficient of the intermediate film MgO × Young's modulus × thickness) − (Thermal expansion coefficient of the diaphragm SD2 × Young's modulus × thickness) ≧ (Thermal expansion coefficient of the piezoelectric film PZT × Young's modulus × thickness) And (the thermal expansion coefficient of the intermediate film MgO)> (thermal expansion coefficient of the piezoelectric film PZT), the compression force acts on PZT in the temperature range from the crystallization temperature to room temperature. Further, since the glass serving as the vibration plate is as thin as 3 μm, and the intermediate film MgO layer is formed only on the vibration plate that deforms facing the liquid flow path of the Si substrate, the partition walls other than the liquid flow path of the Si substrate There is little constraint from the diaphragm that does not deform in the non-movable region facing the part, and the diaphragm on the Si substrate is greatly deformed to the pressure chamber side due to the large shrinkage of the MgO layer during the cooling process, and the compression stress is lost. Absent. As a result, an increase in 90 ° domain was suppressed when PZT was cooled from the firing temperature to room temperature. The aluminosilicate glass SD2 had a strain point of 667 ° C., and no problem occurred even when baked at 650 ° C.

図12はSi基板とアルミノケイ酸ガラスSD2の温度に対する熱膨張係数変化(HOYA株式会社カタログ抜粋)を示す。このグラフからわかるように、Si基板とアルミノケイ酸ガラスSD2は熱膨張係数が高温まで非常に近く、焼成によっても剥離等の問題は全く発生しなかった。   FIG. 12 shows the change in thermal expansion coefficient with respect to the temperature of the Si substrate and the aluminosilicate glass SD2 (extracted from HOYA catalog). As can be seen from this graph, the Si substrate and the aluminosilicate glass SD2 have very close thermal expansion coefficients up to a high temperature, and no problems such as peeling occurred even after firing.

その後、結晶化したPZT表面に第二の電極膜となるPtをRFスパッタにより形成し、PZT上の第一の電極膜PtをSi基板の液体流路に合わせてドライエッチングにてパターニングを行った。さらにPtのパターンに沿ってウェットエッチングによりPZTをエッチングした。このPZTの電気的特性を測定したところ、電界強度と電束密度の関係であるP−Eカーブにおいて良好な角型比と高い飽和電束密度を示し、良好なヒステリシス特性を示した。さらに作製したユニモルフ型圧電膜素子を図11のような矩形波を印可してレーザードップラー変位計による測定を行ったところ、ユニモルフ型圧電膜素子として充分な変位を確認できた。   Thereafter, Pt serving as the second electrode film was formed on the crystallized PZT surface by RF sputtering, and the first electrode film Pt on the PZT was patterned by dry etching in accordance with the liquid flow path of the Si substrate. . Further, PZT was etched by wet etching along the Pt pattern. When the electrical characteristics of the PZT were measured, the P-E curve, which is the relationship between the electric field strength and the electric flux density, showed a good squareness ratio and a high saturated electric flux density, and showed good hysteresis characteristics. Further, when the produced unimorph type piezoelectric film element was applied with a rectangular wave as shown in FIG. 11 and measured by a laser Doppler displacement meter, a sufficient displacement as a unimorph type piezoelectric film element was confirmed.

本実施例では圧電膜の上下に電極を設けた圧電膜素子の片方の面に、振動板が貼り付けられたユニモルフ型圧電膜素子が形成されている。あらかじめSi基板に様々な加工を施すことにより、液体吐出ヘッドに限らず、ユニモルフ型の圧電膜素子を用いた様々なデバイスが作製可能である。本実施例の液体吐出ヘッドにIPAを充填して図11のような駆動波形によって駆動したところ、液滴の吐出を確認することができた。   In this embodiment, a unimorph type piezoelectric film element having a diaphragm attached is formed on one surface of a piezoelectric film element in which electrodes are provided above and below the piezoelectric film. By performing various processes on the Si substrate in advance, not only the liquid ejection head but also various devices using unimorph type piezoelectric film elements can be manufactured. When the liquid discharge head of this example was filled with IPA and driven by the drive waveform as shown in FIG. 11, the discharge of droplets could be confirmed.

図2に示す膜構成のユニモルフ型圧電膜素子20を駆動源とする液体吐出ヘッドを、成膜方法としてRFスパッタリングを用いて、あらかじめ液体流路を設けたSi基板である基板21上に振動板22となるアルミノケイ酸ガラスSD2を陽極接合し、その上に圧電膜25となるPZT膜を基板21を加熱して結晶化しながら成膜し、ユニモルフ型圧電膜素子を駆動源とする液体吐出ヘッドを作製した。以下に具体的な製造方法を説明する。   The liquid ejection head using the unimorph type piezoelectric film element 20 having the film configuration shown in FIG. 2 as a driving source is formed on the substrate 21 which is a Si substrate provided with a liquid channel in advance by using RF sputtering as a film forming method. An aluminosilicate glass SD2 to be 22 is anodically bonded, and a PZT film to be a piezoelectric film 25 is formed thereon while heating the substrate 21 to crystallize, and a liquid discharge head using a unimorph type piezoelectric film element as a drive source is formed. Produced. A specific manufacturing method will be described below.

Si(100)基板上にICPドライエッチング技術を用いて実施例2と同様に液体流路となる溝を形成した。この後、振動板として30μm厚のアルミノケイ酸ガラスSD2を溝が形成されたSi基板上に陽極接合を用いて貼り付け、アルミノケイ酸ガラスSD2を研磨にて5μmまで薄片化した。アルミノケイ酸ガラスSD2の熱膨張係数は3.2×10-6(/℃)、ヤング率は8.9×1010(N/m2 )である。研磨によって薄片化したアルミノケイ酸ガラス上に熱膨張係数の大きなMgOをRFスパッタにて表示Arガス圧=0.14Pa、O2 流量/Ar流量=5%に制御し、室温で、厚さ1.0μmに成膜した。MgOの熱膨張係数は13.0×10-6(/℃)、ヤング率は20.6×1010(N/m2 )である。 A groove serving as a liquid flow path was formed on the Si (100) substrate using the ICP dry etching technique in the same manner as in Example 2. Thereafter, an aluminosilicate glass SD2 having a thickness of 30 μm was attached as a vibration plate on the Si substrate having grooves formed by anodic bonding, and the aluminosilicate glass SD2 was thinned to 5 μm by polishing. The aluminosilicate glass SD2 has a thermal expansion coefficient of 3.2 × 10 −6 (/ ° C.) and a Young's modulus of 8.9 × 10 10 (N / m 2 ). MgO having a large thermal expansion coefficient is displayed on the aluminosilicate glass thinned by polishing by RF sputtering, Ar gas pressure = 0.14 Pa, O 2 flow rate / Ar flow rate = 5%, and a thickness of 1. A film was formed to 0 μm. MgO has a thermal expansion coefficient of 13.0 × 10 −6 (/ ° C.) and a Young's modulus of 20.6 × 10 10 (N / m 2 ).

熱膨張係数の大きなMgO層を、Si基板の液体流路に対応する部分のみを残して、他の領域をウェットエッチングで除去した。この後、熱膨張係数の大きなMgO側に密着層としてTiを厚さ4nm、さらにその上に第一の電極膜となるPtを厚さ150nmにRFスパッタにて形成した。その上に、基板温度650℃、表示Arガス圧3.0Paで、圧電膜であるPZT膜を結晶化しながら3μmの厚さに成膜した。PZTの熱膨張係数はMPB組成近傍で9.0×10-6(/℃)、ヤング率は8.0×1010(N/m2 )である。 The MgO layer having a large thermal expansion coefficient was removed by wet etching, leaving only the portion corresponding to the liquid flow path of the Si substrate. Thereafter, Ti was formed as an adhesion layer on the MgO side having a large thermal expansion coefficient by a thickness of 4 nm, and further, Pt as a first electrode film was formed thereon by RF sputtering to a thickness of 150 nm. On top of this, a PZT film as a piezoelectric film was formed to a thickness of 3 μm while crystallizing at a substrate temperature of 650 ° C. and a display Ar gas pressure of 3.0 Pa. The thermal expansion coefficient of PZT is 9.0 × 10 −6 (/ ° C.) near the MPB composition, and the Young's modulus is 8.0 × 10 10 (N / m 2 ).

(中間膜MgOの熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜PZTの熱膨張係数×ヤング率×厚さ)、の関係を満たしており、かつ(中間膜MgOの熱膨張係数)>(圧電膜PZTの熱膨張係数)の関係にあるため、結晶化温度から室温までの温度領域でPZTに対して圧縮の力が働き、さらに振動板となるガラスが5μmと薄く、またMgO層はSi基板の圧力室等に対向して変形する振動板上にのみ形成されているため、Si基板の圧力室等以外の隔壁部分に対向する非可動領域で変形しない振動板からの拘束が少なく、冷却過程のMgO層の大きな収縮に対して振動板が圧力室側に大きく変形して圧縮の応力が失われない。このため、PZTが焼成温度から室温まで冷却される際に90°ドメインが増加するのが抑制された。また図12に示すようにSi基板とアルミノケイ酸ガラスは高温まで熱膨張係数が非常に近く、基板温度を650℃に昇温、保持、降温させても全く剥がれは生じなかった。   (Thermal expansion coefficient of intermediate film MgO × Young's modulus × thickness) − (thermal expansion coefficient of diaphragm × Young's modulus × thickness) ≧ (thermal expansion coefficient of piezoelectric film PZT × Young's modulus × thickness) And satisfying the relationship of (thermal expansion coefficient of the intermediate film MgO)> (thermal expansion coefficient of the piezoelectric film PZT), the compression force acts on the PZT in the temperature range from the crystallization temperature to room temperature, Furthermore, the glass to be the vibration plate is as thin as 5 μm, and the MgO layer is formed only on the vibration plate deformed to oppose the pressure chamber of the Si substrate, so that it faces the partition walls other than the pressure chamber of the Si substrate. The restraint from the diaphragm that is not deformed in the non-movable region is small, and the diaphragm is largely deformed to the pressure chamber side with respect to the large contraction of the MgO layer in the cooling process, and the compression stress is not lost. For this reason, an increase in 90 ° domain was suppressed when PZT was cooled from the firing temperature to room temperature. Further, as shown in FIG. 12, the Si substrate and the aluminosilicate glass have very close thermal expansion coefficients up to a high temperature, and no peeling occurred even when the substrate temperature was raised, held, and lowered to 650 ° C.

結晶化したPZT表面に第二の電極膜となるPtをRFスパッタにより形成した。PZT上の第一の電極膜PtをSi基板の液体流路に合わせてドライエッチングにてパターニングを行った。さらにPtのパターンに沿ってウェットエッチングによりPZTをエッチングした。このPZTの電気的特性を測定したところ、電界強度と電束密度の関係であるP−Eカーブにおいて良好な角型比と高い飽和電束密度を示し、良好なヒステリシス特性を示した。   Pt serving as the second electrode film was formed on the crystallized PZT surface by RF sputtering. The first electrode film Pt on PZT was patterned by dry etching in accordance with the liquid flow path of the Si substrate. Further, PZT was etched by wet etching along the Pt pattern. When the electrical characteristics of the PZT were measured, the P-E curve, which is the relationship between the electric field strength and the electric flux density, showed a good squareness ratio and a high saturated electric flux density, and showed good hysteresis characteristics.

本実施例の液体吐出ヘッドにIPAを充填して図11のような駆動波形によって駆動したところ、液滴の吐出を確認することができた。   When the liquid discharge head of this example was filled with IPA and driven by the drive waveform as shown in FIG. 11, the discharge of droplets could be confirmed.

本発明のユニモルフ型圧電膜素子は、液体吐出ヘッドに限らず、圧電駆動力を用いる様々なデバイスに幅広く適用できる。   The unimorph type piezoelectric film element of the present invention is not limited to a liquid discharge head, and can be widely applied to various devices using a piezoelectric driving force.

一実施の形態によるユニモルフ型圧電膜素子を示すもので、(a)はその模式断面図、(b)は圧電膜の結晶化工程における圧縮応力を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS The unimorph type piezoelectric film element by one Embodiment is shown, (a) is the schematic cross section, (b) is a figure explaining the compressive stress in the crystallization process of a piezoelectric film. 別の実施の形態による液体吐出ヘッドを示すもので、(a)は液体流路に沿ってとった模式断面図、(b)は(a)のA−A線に沿ってとった模式断面図である。4A and 4B show a liquid discharge head according to another embodiment, in which FIG. 5A is a schematic cross-sectional view taken along a liquid flow path, and FIG. 5B is a schematic cross-sectional view taken along line AA in FIG. It is. 図2の液体吐出ヘッドを示す斜視図である。FIG. 3 is a perspective view showing the liquid discharge head of FIG. 2. PZT膜のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of a PZT film | membrane. PZT膜の結晶面(112)の面間隔を説明するグラフである。It is a graph explaining the surface interval of the crystal plane (112) of a PZT film | membrane. 引っ張り応力によって90°ドメインが増加する状況を説明する図である。It is a figure explaining the condition where a 90 degree domain increases by tensile stress. 90°ドメインが増加した場合のPZT膜の電気的特性を示すグラフである。It is a graph which shows the electrical property of a PZT film | membrane when a 90 degree domain increases. 90°ドメインを抑制した場合のPZT膜の電気的特性を示すグラフである。It is a graph which shows the electrical property of the PZT film | membrane at the time of suppressing a 90 degree domain. 中間膜MgOの焼成前のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern before baking of intermediate film MgO. 中間膜MgOの焼成後のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern after baking of intermediate film MgO. ユニモルフ型圧電膜素子の駆動波形を示す図である。It is a figure which shows the drive waveform of a unimorph type piezoelectric film element. アルミノケイ酸ガラスSD2とSiの熱膨張を比較するグラフである。It is a graph which compares the thermal expansion of aluminosilicate glass SD2 and Si.

符号の説明Explanation of symbols

1、21 基板
1a 中空部
2、22 振動板
3、23 中間膜
4、24、26 電極膜
5、25 圧電膜
20 ユニモルフ型圧電膜素子
21a 圧力室
21b 吐出口
21c 液供給口
DESCRIPTION OF SYMBOLS 1, 21 Substrate 1a Hollow part 2, 22 Diaphragm 3, 23 Intermediate film 4, 24, 26 Electrode film 5, 25 Piezoelectric film 20 Unimorph type piezoelectric film element 21a Pressure chamber 21b Discharge port 21c Liquid supply port

Claims (8)

振動板と、前記振動板上に積層された圧電膜とを備えたユニモルフ型圧電膜素子であって、前記圧電膜より熱膨張係数の大きな中間膜を介して前記圧電膜が前記振動板上に積層されており、前記中間膜が前記振動板の可動領域に対応するようにパターニングされ、かつ、前記振動板と前記中間膜と前記圧電膜のそれぞれの熱膨張係数、ヤング率および厚さの間に以下の関係が成立することを特徴とするユニモルフ型圧電膜素子。
(中間膜の熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜の熱膨張係数×ヤング率×厚さ)
A unimorph piezoelectric film element comprising a diaphragm and a piezoelectric film laminated on the diaphragm, wherein the piezoelectric film is placed on the diaphragm via an intermediate film having a larger thermal expansion coefficient than the piezoelectric film. The intermediate film is patterned so as to correspond to the movable region of the diaphragm, and between the thermal expansion coefficient, Young's modulus, and thickness of each of the diaphragm, the intermediate film, and the piezoelectric film. A unimorph type piezoelectric film element characterized in that the following relationship is established.
(Thermal expansion coefficient of intermediate film × Young's modulus × thickness) − (thermal expansion coefficient of diaphragm × Young's modulus × thickness) ≧ (thermal expansion coefficient of piezoelectric film × Young's modulus × thickness)
中間膜が、MgO膜、ZrO2 膜またはCu膜であることを特徴とする請求項1記載のユニモルフ型圧電膜素子。 The unimorph type piezoelectric film element according to claim 1, wherein the intermediate film is an MgO film, a ZrO 2 film, or a Cu film. 圧電膜が、少なくともPbを含むペロブスカイト構造の酸化物であることを特徴とする請求項1または2記載のユニモルフ型圧電膜素子。   The unimorph type piezoelectric film element according to claim 1 or 2, wherein the piezoelectric film is an oxide having a perovskite structure containing at least Pb. 振動板の厚みが10μm以下であることを特徴とする請求項1ないし3いずれか1項記載のユニモルフ型圧電膜素子。   4. A unimorph type piezoelectric film element according to claim 1, wherein the diaphragm has a thickness of 10 [mu] m or less. 振動板が、Si基板の酸化または窒化によって形成されていることを特徴とする請求項1ないし4いずれか1項記載のユニモルフ型圧電膜素子。   5. The unimorph type piezoelectric film element according to claim 1, wherein the diaphragm is formed by oxidizing or nitriding a Si substrate. 振動板が、ガラス板によって形成されていることを特徴とする請求項1ないし4いずれか1項記載のユニモルフ型圧電膜素子。   The unimorph type piezoelectric film element according to any one of claims 1 to 4, wherein the vibration plate is formed of a glass plate. 圧電駆動力によって液体流路の液体を加圧し吐出口から吐出する液体吐出ヘッドであって、前記液体流路を有する基板と、前記基板と一体である振動板と、前記振動板上に積層された圧電膜と、前記圧電膜に圧電駆動電力を供給するための電極手段とを有し、前記圧電膜より熱膨張係数の大きな中間膜を介して前記圧電膜が前記振動板上に積層されており、前記中間膜が前記液体流路に対応するようにパターニングされ、かつ、前記振動板と前記中間膜と前記圧電膜のそれぞれの熱膨張係数、ヤング率および厚さの間に以下の関係が成立することを特徴とする液体吐出ヘッド。
(中間膜の熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜の熱膨張係数×ヤング率×厚さ)
A liquid discharge head that pressurizes liquid in a liquid flow path by a piezoelectric driving force and discharges the liquid from a discharge port, the substrate having the liquid flow path, a vibration plate integrated with the substrate, and laminated on the vibration plate. A piezoelectric film and electrode means for supplying piezoelectric driving power to the piezoelectric film, and the piezoelectric film is laminated on the diaphragm via an intermediate film having a larger thermal expansion coefficient than the piezoelectric film. The intermediate film is patterned so as to correspond to the liquid flow path, and the following relationship is established between the thermal expansion coefficient, Young's modulus, and thickness of the diaphragm, the intermediate film, and the piezoelectric film: A liquid discharge head characterized by being established.
(Thermal expansion coefficient of intermediate film × Young's modulus × thickness) − (thermal expansion coefficient of diaphragm × Young's modulus × thickness) ≧ (thermal expansion coefficient of piezoelectric film × Young's modulus × thickness)
振動板と、前記振動板上に積層された圧電膜とを備えたユニモルフ型圧電膜素子の製造方法であって、
振動板上に圧電膜より熱膨張係数が大である中間膜を積層する工程と、
中間膜を振動板の可動領域に対応してパターニングする工程と、
中間膜上に圧電膜を積層・結晶化させる工程と、を有し、前記振動板と前記中間膜と前記圧電膜のそれぞれの熱膨張係数、ヤング率および厚さの間に以下の関係が成立することを特徴とするユニモルフ型圧電膜素子の製造方法。
(中間膜の熱膨張係数×ヤング率×厚さ)−(振動板の熱膨張係数×ヤング率×厚さ)≧(圧電膜の熱膨張係数×ヤング率×厚さ)
A method for producing a unimorph-type piezoelectric film element comprising a diaphragm and a piezoelectric film laminated on the diaphragm,
Laminating an intermediate film having a larger thermal expansion coefficient than the piezoelectric film on the diaphragm;
Patterning the intermediate film corresponding to the movable region of the diaphragm;
Laminating and crystallizing a piezoelectric film on the intermediate film, and the following relationship is established among the thermal expansion coefficient, Young's modulus, and thickness of each of the diaphragm, the intermediate film, and the piezoelectric film: A method for producing a unimorph type piezoelectric film element.
(Thermal expansion coefficient of intermediate film × Young's modulus × thickness) − (thermal expansion coefficient of diaphragm × Young's modulus × thickness) ≧ (thermal expansion coefficient of piezoelectric film × Young's modulus × thickness)
JP2004285687A 2004-09-30 2004-09-30 Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head Pending JP2006100622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285687A JP2006100622A (en) 2004-09-30 2004-09-30 Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285687A JP2006100622A (en) 2004-09-30 2004-09-30 Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head

Publications (1)

Publication Number Publication Date
JP2006100622A true JP2006100622A (en) 2006-04-13

Family

ID=36240125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285687A Pending JP2006100622A (en) 2004-09-30 2004-09-30 Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head

Country Status (1)

Country Link
JP (1) JP2006100622A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177353A (en) * 2007-01-18 2008-07-31 Fujifilm Corp Piezoelectric element and ink jet head
WO2009051166A1 (en) * 2007-10-16 2009-04-23 Murata Manufacturing Co., Ltd. Vibration device, and piezoelectric pump
JP2010190211A (en) * 2009-01-26 2010-09-02 Murata Mfg Co Ltd Jointed body and fluid device
CN101879814A (en) * 2009-03-26 2010-11-10 精工爱普生株式会社 The manufacture method of jet head liquid, jet head liquid and liquid injection apparatus
US8004159B2 (en) 2004-12-03 2011-08-23 Fujifilm Corporation Piezoelctric actuator, method of manufacturing same, and liquid ejection head
WO2013021614A1 (en) 2011-08-08 2013-02-14 パナソニック株式会社 Piezoelectric element
WO2013007538A3 (en) * 2011-07-08 2013-12-05 Osram Gmbh Production of a gas flow by means of vibrations
WO2014021440A1 (en) 2012-07-31 2014-02-06 Tdk Corporation Piezoelectric device, piezoelectric actuator, hard disk drive, ink jet printer apparatus, and piezoelectric sensor
CN104395087A (en) * 2012-08-03 2015-03-04 Tdk株式会社 Piezoelectric device, piezoelectric actuator, hard disk drive, ink jet printer apparatus, and piezoelectric sensor
US8981627B2 (en) 2012-06-04 2015-03-17 Tdk Corporation Piezoelectric device with electrode films and electroconductive oxide film
CN104471360A (en) * 2012-06-18 2015-03-25 松下知识产权经营株式会社 Infrared detection device
JP2016092089A (en) * 2014-10-31 2016-05-23 富士フイルム株式会社 Manufacturing method of piezoelectric element, and piezoelectric element
JP2017037932A (en) * 2015-08-07 2017-02-16 セイコーエプソン株式会社 Piezoelectric element, piezoelectric element application device, and manufacturing method of piezoelectric element
JPWO2015194452A1 (en) * 2014-06-20 2017-04-20 株式会社アルバック Multilayer film and manufacturing method thereof
US9689748B2 (en) 2011-08-08 2017-06-27 Panasonic Corporation Infrared detection element
JP2020170781A (en) * 2019-04-03 2020-10-15 アドバンストマテリアルテクノロジーズ株式会社 Film structure
US10964879B2 (en) 2012-06-04 2021-03-30 Tdk Corporation Method of manufacturing a dielectric device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004159B2 (en) 2004-12-03 2011-08-23 Fujifilm Corporation Piezoelctric actuator, method of manufacturing same, and liquid ejection head
JP2008177353A (en) * 2007-01-18 2008-07-31 Fujifilm Corp Piezoelectric element and ink jet head
WO2009051166A1 (en) * 2007-10-16 2009-04-23 Murata Manufacturing Co., Ltd. Vibration device, and piezoelectric pump
EP2202815A1 (en) * 2007-10-16 2010-06-30 Murata Manufacturing Co. Ltd. Vibration device, and piezoelectric pump
JPWO2009051166A1 (en) * 2007-10-16 2011-03-03 株式会社村田製作所 Vibration device and piezoelectric pump
JP5029692B2 (en) * 2007-10-16 2012-09-19 株式会社村田製作所 Piezoelectric pump
JP2012235687A (en) * 2007-10-16 2012-11-29 Murata Mfg Co Ltd Piezoelectric pump and vibration device
US9714651B2 (en) 2007-10-16 2017-07-25 Murata Manufacturing Co., Ltd. Vibrating device and piezoelectric pump
EP2202815A4 (en) * 2007-10-16 2017-03-29 Murata Manufacturing Co. Ltd. Vibration device, and piezoelectric pump
JP2010190211A (en) * 2009-01-26 2010-09-02 Murata Mfg Co Ltd Jointed body and fluid device
CN101879814A (en) * 2009-03-26 2010-11-10 精工爱普生株式会社 The manufacture method of jet head liquid, jet head liquid and liquid injection apparatus
WO2013007538A3 (en) * 2011-07-08 2013-12-05 Osram Gmbh Production of a gas flow by means of vibrations
US8884499B2 (en) 2011-08-08 2014-11-11 Panasonic Corporation Piezoelectric element
WO2013021614A1 (en) 2011-08-08 2013-02-14 パナソニック株式会社 Piezoelectric element
US9689748B2 (en) 2011-08-08 2017-06-27 Panasonic Corporation Infrared detection element
US8981627B2 (en) 2012-06-04 2015-03-17 Tdk Corporation Piezoelectric device with electrode films and electroconductive oxide film
US10964879B2 (en) 2012-06-04 2021-03-30 Tdk Corporation Method of manufacturing a dielectric device
CN104471360A (en) * 2012-06-18 2015-03-25 松下知识产权经营株式会社 Infrared detection device
CN104396039A (en) * 2012-07-31 2015-03-04 Tdk株式会社 Piezoelectric device, piezoelectric actuator, hard disk drive, ink jet printer apparatus, and piezoelectric sensor
WO2014021440A1 (en) 2012-07-31 2014-02-06 Tdk Corporation Piezoelectric device, piezoelectric actuator, hard disk drive, ink jet printer apparatus, and piezoelectric sensor
US9136820B2 (en) 2012-07-31 2015-09-15 Tdk Corporation Piezoelectric device
JP2015530728A (en) * 2012-07-31 2015-10-15 Tdk株式会社 Piezoelectric element, piezoelectric actuator, hard disk drive, inkjet printer device, and piezoelectric sensor
CN104395087A (en) * 2012-08-03 2015-03-04 Tdk株式会社 Piezoelectric device, piezoelectric actuator, hard disk drive, ink jet printer apparatus, and piezoelectric sensor
US8994251B2 (en) 2012-08-03 2015-03-31 Tdk Corporation Piezoelectric device having first and second non-metal electroconductive intermediate films
JPWO2015194452A1 (en) * 2014-06-20 2017-04-20 株式会社アルバック Multilayer film and manufacturing method thereof
US9985196B2 (en) 2014-06-20 2018-05-29 Ulvac, Inc. Multi-layered film and method of manufacturing the same
JP2016092089A (en) * 2014-10-31 2016-05-23 富士フイルム株式会社 Manufacturing method of piezoelectric element, and piezoelectric element
JP2017037932A (en) * 2015-08-07 2017-02-16 セイコーエプソン株式会社 Piezoelectric element, piezoelectric element application device, and manufacturing method of piezoelectric element
JP2020170781A (en) * 2019-04-03 2020-10-15 アドバンストマテリアルテクノロジーズ株式会社 Film structure
JP7421710B2 (en) 2019-04-03 2024-01-25 I-PEX Piezo Solutions株式会社 membrane structure

Similar Documents

Publication Publication Date Title
TWI264839B (en) Dielectric element, piezoelectric element, ink jet head and method for producing the same head
JP5164052B2 (en) Piezoelectric element, liquid discharge head, and liquid discharge apparatus
JP2006100622A (en) Unimorph type piezoelectric film element, manufacturing method therefor and liquid discharge head
TWI249437B (en) Dielectric thin film element, piezoelectric actuator and liquid discharge head, and method for manufacturing the same
JP4387623B2 (en) Method for manufacturing piezoelectric element
KR100672883B1 (en) Piezoelectric element
JP4086535B2 (en) Actuator and inkjet head manufacturing method
US8003161B2 (en) Method of manufacturing dielectric layer and method of manufacturing liquid jet head
TWI243496B (en) Piezoelectric film element, method of manufacturing the same, and liquid discharge head
US20070075403A1 (en) Functional structural element, method of manufacturing functional structural element, and substrate for manufacturing functional structural body
US7380318B2 (en) Method of manufacturing liquid discharge head
JP3907628B2 (en) Piezoelectric actuator, manufacturing method thereof, and liquid discharge head
JP4282079B2 (en) Piezoelectric element and liquid discharge head including the element
JP2005129670A (en) Unimorph type piezoelectric film element and its manufacturing method, and unimorph type ink jet head
JP2005186612A (en) Liquid discharge head and method of manufacturing the same, and method of manufacturing piezoelectric element
JP3903056B2 (en) Method for manufacturing piezoelectric element and method for manufacturing liquid jet recording head
CN100584995C (en) Sputtering target, method for producing sputtering target, sputtering apparatus, and liquid-jet head
JP2007154275A (en) Deposition method and thin piezoelectric substance film
JP2006303519A (en) Liquid injection recording head and its manufacturing method
JP2005119223A (en) Method for manufacturing piezoelectric film element, piezoelectric film element and inkjet head
JP2008205048A (en) Manufacturing method of piezoelectric element, and manufacturing method of liquid jetting head
JPH08252914A (en) Ink jet head and production thereof
JP2004214282A (en) Piezoelectric element
JPH1158730A (en) Ink jet type recording head and its manufacture
JP2002171009A (en) Transfer method for film