JPH1158730A - Ink jet type recording head and its manufacture - Google Patents

Ink jet type recording head and its manufacture

Info

Publication number
JPH1158730A
JPH1158730A JP21663497A JP21663497A JPH1158730A JP H1158730 A JPH1158730 A JP H1158730A JP 21663497 A JP21663497 A JP 21663497A JP 21663497 A JP21663497 A JP 21663497A JP H1158730 A JPH1158730 A JP H1158730A
Authority
JP
Japan
Prior art keywords
film
boron
drive electrode
recording head
ink jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21663497A
Other languages
Japanese (ja)
Inventor
Manabu Nishiwaki
学 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21663497A priority Critical patent/JPH1158730A/en
Publication of JPH1158730A publication Critical patent/JPH1158730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a residual stress of a tin film by interposing a boron diffused membrane between a silicon single crystal substrate and a piezoelectric membrane in an ink jet type recording head for discharging ink by pressure generated by a deflected deformation of a pressure generating membrane. SOLUTION: A layer 32 in which boron to become an electric membrane is diffused is formed on an upper surface of a silicon single crystal substrate. Then, platinum to become a lower driving electrode 10 is formed as a membrane on an upper surface of the boron diffused membrane 32. A precursor of a piezoelectric film is laminated on the electrode 10, and heated to be crystallized as a piezoelectric membrane 11. Thereafter, an upper driving electrode film 12, lower driving electrode 10 and an ink chamber such as an ink chamber or the like are formed. As a result, a static deflection amount of a pressure generating membrane at the time of applying no voltage after a pressurizing camber is formed is increased form the substrate due to that the platinum of the electrode 10 loses a restraint of a tensile stress and a compressive stress of a silicon dioxide membrane from the substrate to be largely deflected if the membrane 31 does not exist. Reversely, with this constitution, since compressive stress of the silicon of the boron diffusion is weak, it is reduced to about 10 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入力される印字デ
ータに応じて選択的にインク滴を記録用紙上に飛翔・固
着させることにより可視画像を得るインクジェット式記
録装置に用いるインクジェト式記録ヘッドに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an ink jet recording head for use in an ink jet recording apparatus for obtaining a visible image by selectively flying and fixing ink droplets on recording paper in accordance with input print data. .

【0002】さらに詳しくはノズル板、インク加圧室基
板を積層しインク加圧室基板の表面に形成した圧電性膜
のたわみ変形により加圧してインク滴を飛翔させるオン
デマンド型インクジェト式記録ヘッドに関する。
More specifically, the present invention relates to an on-demand type ink jet recording head in which a nozzle plate and an ink pressurizing chamber substrate are laminated and a piezoelectric film formed on the surface of the ink pressurizing chamber substrate is pressurized by bending deformation to fly ink droplets. .

【0003】[0003]

【従来の技術】本発明に関わる従来技術としては、特表
平5-504740号公報等がある。
2. Description of the Related Art As a prior art relating to the present invention, there is JP-A-5-504740.

【0004】この従来例ではインク加圧室を内包する基
材に圧電性膜をスパッタやゾルゲル法等のいわゆる薄膜
製法で一体形成することにより、簡易な構造で高性能な
オンデマンド型インクジェット式記録ヘッドを実現して
いる。とくに基材に珪素単結晶基板を用い、異方性エッ
チングをすることにより高精度のインク加圧室を形成す
ることができる。
In this conventional example, a piezoelectric film is integrally formed on a base material containing an ink pressurizing chamber by a so-called thin-film manufacturing method such as sputtering or a sol-gel method, so that a high-performance on-demand ink jet recording with a simple structure is realized. The head has been realized. In particular, a high-precision ink pressurizing chamber can be formed by performing anisotropic etching using a silicon single crystal substrate as a base material.

【0005】従来の薄膜PZTと珪素単結晶基板を用い
たインクジェットヘッドようアクチュエータの配列方向
の断面図を図8に示す。20は珪素単結晶基板、2はこ
の珪素単結晶基板に異方性エッチングにより形成した加
圧室、18はこの加圧室間を仕切る隔壁、21は2酸化
珪素膜、10は下部駆動電極、11は圧電性薄膜、12
は上部駆動電極であり、各薄膜厚は数100nmから数
μmである。30は圧電歪発生部であり31は隔壁を介
して圧電歪発生部を支持する支持部である。
FIG. 8 is a cross-sectional view in the arrangement direction of an actuator such as a conventional inkjet head using a thin film PZT and a silicon single crystal substrate. 20 is a silicon single crystal substrate, 2 is a pressure chamber formed on the silicon single crystal substrate by anisotropic etching, 18 is a partition partitioning the pressure chamber, 21 is a silicon dioxide film, 10 is a lower drive electrode, 11 is a piezoelectric thin film, 12
Denotes an upper drive electrode, and each thin film has a thickness of several hundred nm to several μm. Reference numeral 30 denotes a piezoelectric strain generating unit, and reference numeral 31 denotes a support unit that supports the piezoelectric strain generating unit via a partition.

【0006】[0006]

【発明が解決しようとする課題】図8のごとく珪素単結
晶基板の片面に薄膜を積層形成すると、これらの薄膜に
残留応力が発生する。一般に10、12の電極用の金属
薄膜をスパッタ成膜法等により成膜すると、引っ張り応
力が発生する。21の2酸化珪素膜を熱酸化により形成
すると圧縮応力が発生する。この残留応力は珪素単結晶
基板20から拘束を受けているが、その後加圧室2を形
成されるとこれらの応力が解放され、圧電歪発生部30
や支持部31が変形する。
When thin films are formed on one surface of a silicon single crystal substrate as shown in FIG. 8, residual stress is generated in these thin films. Generally, when metal thin films for electrodes 10 and 12 are formed by a sputtering film forming method or the like, a tensile stress is generated. When the silicon dioxide film 21 is formed by thermal oxidation, a compressive stress is generated. This residual stress is restrained by the silicon single crystal substrate 20, but when the pressurizing chamber 2 is formed thereafter, these stresses are released, and the piezoelectric strain generating section 30
And the support portion 31 is deformed.

【0007】上記変形は各薄膜の引っ張り応力と圧縮応
力が相殺されれば軽減されるが、圧縮応力が勝ると変形
が大きい。この初期の変形が大きいと圧電歪が効率的に
たわみに変換されず、変位効率を落とす一因となってい
た。また支持部31は圧電歪発生部に比して薄く、また
狭小であるため変形が大きい。この変形量が大きいと、
上記加圧室形成の際或いは使用時に支持部が破壊するこ
とがあった。特に圧電歪による変形量を増やすためには
この支持部31をより薄くして曲げ剛性を下げるほうが
望ましいが、このような改善は前記弊害が助長されるた
め実施が難しかった。
The above-mentioned deformation is reduced if the tensile stress and the compressive stress of each thin film are offset, but the deformation is large if the compressive stress is superior. If the initial deformation is large, the piezoelectric strain is not efficiently converted into deflection, which is one of the factors that lowers the displacement efficiency. Further, since the support portion 31 is thinner and narrower than the piezoelectric strain generating portion, the deformation is large. If this deformation is large,
In some cases, the support portion was broken when the above-mentioned pressurized chamber was formed or during use. In particular, in order to increase the amount of deformation due to piezoelectric strain, it is desirable to make the support portion 31 thinner to lower the bending rigidity. However, such an improvement is difficult to implement because the above-mentioned adverse effects are promoted.

【0008】本発明はかかる課題を解決するためのもの
であり、その目的とするところは、アクチュエータ変位
効率を上げつつ、製造上不良の低減、信頼性を向上させ
る手段を提案し、高密度で高性能なインクジェット式記
録ヘッドを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to propose a means for reducing the manufacturing defect and improving the reliability while increasing the actuator displacement efficiency. An object of the present invention is to provide a high-performance ink jet recording head.

【0009】[0009]

【課題を解決するための手段】本発明のインクジェット
式記録ヘッドは列状に隔壁を介して珪素単結晶基板に配
列されたインク加圧室、該加圧室の片面を覆蓋し前記隔
壁により懸架かつ固定され、加圧室の一壁面をなすがご
とく配置された弾性膜と下部駆動電極膜と圧電性膜と上
部駆動電極膜からなる圧力発生膜、各々の加圧室に連通
するインク吐出ノズルから構成され、前記圧力発生膜の
たわみ変形で発生する圧力によりインクを吐出するイン
クジェット式記録ヘッドであって、前記弾性膜は少なく
ともほう素が拡散された珪素と下部駆動電極からなるこ
とを特徴とする特徴とする。
An ink jet recording head according to the present invention has ink pressurizing chambers arranged in a row on a silicon single crystal substrate via partition walls, and covers one side of the pressurizing chambers and is suspended by the partition walls. An elastic film, a lower drive electrode film, a piezoelectric film, and an upper drive electrode film, which are fixed and arranged as if forming one wall surface of the pressurizing chamber, and an ink discharge nozzle communicating with each pressurizing chamber. An ink jet recording head configured to discharge ink by a pressure generated by bending deformation of the pressure generating film, wherein the elastic film includes at least boron-diffused silicon and a lower drive electrode. It is a feature to do.

【0010】また或いは、列状に隔壁を介して珪素単結
晶基板に配列されたインク加圧室、該加圧室の片面を覆
蓋し前記隔壁により懸架かつ固定され、加圧室の一壁面
をなすがごとく配置された弾性膜と下部駆動電極膜と圧
電性膜と上部駆動電極膜からなる圧力発生膜、各々の加
圧室に連通するインク吐出ノズルから構成され、前記圧
力発生膜のたわみ変形で発生する圧力によりインクを吐
出するインクジェット式記録ヘッドであって、前記圧力
発生膜は圧電歪発生部と該圧電歪発生部を支持する支持
部からなり、該圧電歪発生部は上部駆動電極と圧電性膜
と下部駆動電極とほう素が拡散された珪素膜とからなる
ことを特徴とする。
[0010] Alternatively, an ink pressurizing chamber arranged in a row on a silicon single crystal substrate via a partition, covers one side of the pressurizing chamber, and is suspended and fixed by the partition. The pressure generating film is composed of an elastic film, a lower drive electrode film, a piezoelectric film, and an upper drive electrode film, which are arranged like a pressurized film, and ink discharge nozzles communicating with the respective pressure chambers. An ink jet recording head that ejects ink by a pressure generated in the pressure generating film, wherein the pressure generating film includes a piezoelectric strain generating unit and a support unit that supports the piezoelectric strain generating unit, and the piezoelectric strain generating unit includes an upper driving electrode and It is characterized by comprising a piezoelectric film, a lower drive electrode and a silicon film in which boron is diffused.

【0011】また本発明のインクジェット式記録ヘッド
の製造方法は、珪素単結晶基板の片表面にホウ素を熱拡
散させた後該基板の両表面を熱酸化する行程、該ホウ素
を熱拡散させた面に下部駆動電極膜と圧電性膜と上部駆
動電極膜を順次積層し、これらの電極膜と圧電性膜を所
望の形状にエッチングする圧力発生膜の形成行程、前記
珪素単結晶基板に異方性エッチングにより前記加圧室を
形成する行程からなることを特徴とする。
The method of manufacturing an ink jet recording head according to the present invention comprises the steps of thermally diffusing boron on one surface of a silicon single crystal substrate and then thermally oxidizing both surfaces of the substrate. The lower drive electrode film, the piezoelectric film, and the upper drive electrode film are sequentially laminated on the silicon single crystal substrate, and a process of forming a pressure generating film for etching the electrode film and the piezoelectric film into a desired shape is performed. The method is characterized by comprising the step of forming the pressure chamber by etching.

【0012】また或いは、珪素単結晶基板の両面を熱酸
化させた後、該基板の片表面の2酸化珪素膜を除去し、
この除去面にホウ素を熱拡散させ、その上面に下部駆動
電極膜と圧電性膜と上部駆動電極膜を順次積層し、これ
らの電極膜と圧電性膜を所望の形状にエッチングする圧
力発生膜の形成行程、前記珪素単結晶基板に異方性エッ
チングにより前記加圧室を形成する行程からなることを
特徴とする。
Alternatively, after thermally oxidizing both surfaces of the silicon single crystal substrate, the silicon dioxide film on one surface of the substrate is removed,
The lower surface of the drive electrode film, the piezoelectric film, and the upper drive electrode film are sequentially laminated on the upper surface, and a pressure generating film for etching the electrode film and the piezoelectric film into a desired shape is formed. The forming step includes a step of forming the pressure chamber in the silicon single crystal substrate by anisotropic etching.

【0013】[0013]

【発明の実施の形態】以下に本発明を一実施形態に基づ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on one embodiment.

【0014】(実施形態1)図1、図2を用いて本発明の
インクジェット式記録ヘッドの構造を説明する。
(Embodiment 1) The structure of an ink jet recording head of the present invention will be described with reference to FIGS.

【0015】図1は本発明の実施例におけるインクジェ
ット式記録ヘッドの概略斜視図を示す。
FIG. 1 is a schematic perspective view of an ink jet recording head according to an embodiment of the present invention.

【0016】1はインク加圧室基板であり、2列に千鳥
状に配列された加圧室2、各加圧室にインク(図示せず)
を供給するための共通流路3、各々の加圧室2と共通流
路3を連通する供給路9を有する。配列ピッチは180
分の1インチ、約141ミクロンとし、1列当たり64
素子を配し、2列で360ドット/インチ、128ノズ
ルの印字密度を有するプリントヘッドを実現している。
8は変位素子に信号を供給するための配線基板である。
Reference numeral 1 denotes an ink pressurizing chamber substrate, pressurizing chambers 2 arranged in two rows in a zigzag pattern, and ink (not shown) is provided in each pressurizing chamber.
And a supply path 9 that communicates each pressurizing chamber 2 with the common flow path 3. Array pitch is 180
1 inch, about 141 microns, 64 per row
The elements are arranged to realize a print head having a printing density of 360 dots / inch and 128 nozzles in two rows.
Reference numeral 8 denotes a wiring board for supplying a signal to the displacement element.

【0017】6は前記加圧室2に対応してインク吐出用
ノズル7を複数穿ったノズル板である。前記加圧室基板
1とノズル板6を接着後、基体90に嵌着しインクジェ
ット式記録ヘッドを成す。
Reference numeral 6 denotes a nozzle plate provided with a plurality of ink discharge nozzles 7 corresponding to the pressure chamber 2. After the pressure chamber substrate 1 and the nozzle plate 6 are bonded, they are fitted to the base 90 to form an ink jet recording head.

【0018】図2は図1の一点鎖線A-A'部の加圧室配列
方向の断面図であり、前記加圧室基板1の下面に略長方
形状の圧力発生膜50となる弾性膜4、下部駆動電極1
0、圧電性膜11、上部駆動電極12が順次積層され、
この加圧室基板1と圧力発成膜50が一体的に形成され
る。鎖線19が一吐出素子単位となる。本例では下部駆
動電極10に厚みをもたせることにより弾性膜4の機能
をも併せもっている。
FIG. 2 is a cross-sectional view taken along the dashed line AA ′ of FIG. 1 in the direction in which the pressure chambers are arranged. The elastic film 4 on the lower surface of the pressure chamber substrate 1 is a substantially rectangular pressure generating film 50. , Lower drive electrode 1
0, a piezoelectric film 11, and an upper drive electrode 12 are sequentially laminated,
The pressure chamber substrate 1 and the pressure generating film 50 are integrally formed. The chain line 19 is one ejection element unit. In this example, the function of the elastic film 4 is also provided by giving the lower drive electrode 10 a thickness.

【0019】7はノズル板6内のノズル、13は配列さ
れた加圧室2内のインク、4は弾性膜、10は下部駆動
電極、11は圧電性膜、12は上部駆動電極である。圧
電性膜11は各加圧室に対応し、食刻により加圧室幅よ
り若干狭小幅に形成する。
Reference numeral 7 denotes a nozzle in the nozzle plate 6, 13 denotes ink in the arranged pressure chambers 2, 4 denotes an elastic film, 10 denotes a lower drive electrode, 11 denotes a piezoelectric film, and 12 denotes an upper drive electrode. The piezoelectric film 11 corresponds to each pressure chamber, and is formed by etching to have a width slightly smaller than the width of the pressure chamber.

【0020】本例では加圧室のピッチを141μm、加
圧室の幅を50μm、長さ(図中奥行き方向)を1.2mmと
し、隔壁の幅は91μmとした。
In this embodiment, the pitch of the pressurizing chamber was 141 μm, the width of the pressurizing chamber was 50 μm, the length (in the depth direction in the figure) was 1.2 mm, and the width of the partition wall was 91 μm.

【0021】ここでインク吐出の原理を簡略に説明す
る。待機時はスイッチ17aが開き、次の吐出に備え
る。図2の左端の吐出素子に待機状態を示す。吐出時に
は図2中央の吐出素子図に示す如く、スイッチ17bを
閉じ、矢印Bに示す圧電性膜11の分極方向と同極性、
換言すると分極時の印加電圧極性と同じように電圧を印
加すると圧電性膜11は厚み方向に膨張すると共にその
幅方向(図2上は水平方向)に収縮する。この収縮で圧電
性膜11と弾性膜4の界面に圧縮の剪断応力が働き、弾
性膜4および圧電性膜11は図の上方向にたわむ。この
たわみにより加圧室2の体積が減少しノズルからインク
滴が飛び出す。その後図2右端に示す如く、再びスイッ
チ17cを開くと、たわんでいた弾性膜4等が復元し、
加圧室体積の膨張により図示しないインク供給路よりイ
ンクが充填される。
Here, the principle of ink ejection will be briefly described. During standby, the switch 17a is opened to prepare for the next ejection. The standby state is shown in the ejection element at the left end of FIG. At the time of ejection, as shown in the ejection element diagram in the center of FIG. 2, the switch 17b is closed, and the same polarity as the polarization direction of the piezoelectric film 11 indicated by the arrow B is applied.
In other words, when a voltage is applied in the same manner as the applied voltage polarity during polarization, the piezoelectric film 11 expands in the thickness direction and contracts in the width direction (the horizontal direction in FIG. 2). Due to this contraction, a compressive shear stress acts on the interface between the piezoelectric film 11 and the elastic film 4, and the elastic film 4 and the piezoelectric film 11 bend upward in the drawing. Due to this deflection, the volume of the pressurizing chamber 2 is reduced, and ink droplets fly out of the nozzle. Thereafter, as shown in the right end of FIG. 2, when the switch 17c is opened again, the bent elastic film 4 and the like are restored,
The ink is filled from an ink supply path (not shown) due to the expansion of the pressure chamber volume.

【0022】本発明のインクジェット式記録ヘッドの製
造方法を図3と図4に基づいて説明する。本例では直径
100mm、厚さ220μmの(110)面を有す加圧室基
板であるところの珪素単結晶基板20を用い、図3(I)
の如く、その全面に熱酸化法により2酸化珪素からなる
エッチング保護層21を1μm厚で形成する。
The method of manufacturing the ink jet recording head according to the present invention will be described with reference to FIGS. In this example, a silicon single crystal substrate 20 which is a pressure chamber substrate having a (110) plane having a diameter of 100 mm and a thickness of 220 μm is used, and FIG.
Then, an etching protection layer 21 made of silicon dioxide is formed to a thickness of 1 μm on the entire surface by a thermal oxidation method.

【0023】次に図3(II)の如くこの片面のエッチング
保護層21を緩衝フッ酸等により除去する。
Next, as shown in FIG. 3 (II), the etching protection layer 21 on one side is removed with buffered hydrofluoric acid or the like.

【0024】その後図3(III)の如く前工程でエッチン
グ保護層21を除去した面に後に弾性膜となるホウ素を
拡散させた層32を形成する。具体的には珪素単結晶基
板にホウ素基板を対峙させ、1200℃に加熱した炉の
中で1から5時間放置させることにより、形成すること
ができる。本例では膜厚を1μmとした。ホウ素の拡散
濃度は種々実験検討の結果、1cm平方当たり10の12剰
から10の16剰が好ましく、さらに好ましくは10の1
3剰から10の15剰が最適であった。前記下限より少
ないと後の珪素の異方性エッチングの際、エッチング液
によるホウ素拡散膜の浸食が激しくなりエッチストッパ
としての機能が不十分であり、前記上限より多いと膜の
圧縮応力が増え本発明の目的にそぐわなかった。
Thereafter, as shown in FIG. 3 (III), a layer 32 in which boron is diffused to form an elastic film later is formed on the surface from which the etching protection layer 21 has been removed in the previous step. Specifically, it can be formed by allowing a boron substrate to face a silicon single crystal substrate and leaving it in a furnace heated to 1200 ° C. for 1 to 5 hours. In this example, the film thickness was 1 μm. As a result of various experimental studies, the boron diffusion concentration is preferably from 12 to 10 residues per square cm to 16 to 10 residues, more preferably 10 to 1 residue.
The 15 remainder from 3 to 10 was optimal. If the amount is less than the lower limit, during the subsequent anisotropic etching of silicon, the erosion of the boron diffusion film by the etchant becomes severe, and the function as an etch stopper is insufficient. It did not meet the purpose of the invention.

【0025】次にホウ素拡散膜32の上面にスパッタ成
膜法等の薄膜形成方法により、下部駆動電極10となる
白金を400nmの厚みで製膜する。この際白金層とその
上下層の間の密着力を上げるために極薄のチタン、クロ
ム等を中間層として介してもよい。また事後の加熱温度
に対する耐熱性があれば下部駆動電極はイリジウム等他
の導電材料を用いてもよい。なおこの下部駆動電極10
は前記ホウ素拡散膜32と併せて弾性膜を兼ねている。
Next, platinum to be the lower drive electrode 10 is formed to a thickness of 400 nm on the upper surface of the boron diffusion film 32 by a thin film forming method such as a sputtering film forming method. At this time, in order to increase the adhesion between the platinum layer and the upper and lower layers, ultra-thin titanium, chromium or the like may be interposed as an intermediate layer. The lower drive electrode may be made of another conductive material such as iridium as long as it has heat resistance to the subsequent heating temperature. The lower drive electrode 10
Also serves as an elastic film in combination with the boron diffusion film 32.

【0026】その上に圧電性膜の前駆体24を積層す
る。本例ではチタン酸鉛、ジルコン酸鉛をそのモル配合
比が55%,45%となるようなPZT系圧電膜の前駆体をゾ
ルゲル法にて最終的に0.9μm厚みとなるまで8回の塗工
/乾燥/脱脂を繰り返して成膜した。なお種々の試行実
験の結果、この圧電膜の化学式が、PbCTiAZrBO
〔A+B=1〕にて表され、前記化学式中のA、Cが、
0.5≦A≦0.6、0.85≦C≦1.10の範囲内で
選択すれば、実用に耐えうる圧電性を得ることができ
た。成膜方法は本方法に限らず高周波スパッタ成膜やCV
D等を用いてもよい(図3(IV))。
The precursor 24 of the piezoelectric film is laminated thereon. In this example, a precursor of a PZT-based piezoelectric film in which the molar mixing ratio of lead titanate and lead zirconate is 55% and 45% is applied eight times by a sol-gel method until a final thickness of 0.9 μm is obtained. Process / drying / degreasing was repeated to form a film. As a result of various trial experiments, the chemical formula of this piezoelectric film was PbCTiAZrBO
3 [A + B = 1], wherein A and C in the above chemical formula are
If the selection was made in the range of 0.5 ≦ A ≦ 0.6 and 0.85 ≦ C ≦ 1.10. Piezoelectricity that could withstand practical use could be obtained. The film formation method is not limited to this method, and high-frequency sputtering film formation and CV
D or the like may be used (FIG. 3 (IV)).

【0027】次に基板全体を圧電性膜前駆体の結晶化の
為に加熱する。本例では赤外線輻射光源29を用いて基
板両面から、酸素雰囲気中で700℃で5分加熱し自然
降温させることにより、圧電性膜の結晶化を行なった。
この工程により圧電性膜前駆体24は上記狙い通りの組
成で結晶化および焼結し圧電性膜11となった(図3
(V))。
Next, the entire substrate is heated for crystallization of the piezoelectric film precursor. In the present example, the piezoelectric film was crystallized by heating at 700 ° C. for 5 minutes in an oxygen atmosphere from both surfaces of the substrate using an infrared radiation light source 29 and naturally lowering the temperature.
By this process, the piezoelectric film precursor 24 was crystallized and sintered with the above-described target composition to form the piezoelectric film 11 (FIG. 3).
(V)).

【0028】この後、圧電性膜11上に上部駆動電極膜
12を形成する。本例では上部駆動電極12は100nm
厚の白金をスパッタ成膜法にて形成した(図4(I))。
Thereafter, an upper drive electrode film 12 is formed on the piezoelectric film 11. In this example, the upper drive electrode 12 is 100 nm
Thick platinum was formed by a sputter deposition method (FIG. 4 (I)).

【0029】次に上部駆動電極12、圧電性膜11を加
圧室2が形成される位置に合わせて適当なエッチングマ
スク(図示せず)を施した後、所定の分離形状にイオンミ
リングを用いて同時に形成する(図4(II))。
Next, after the upper drive electrode 12 and the piezoelectric film 11 are provided with an appropriate etching mask (not shown) in accordance with the position where the pressure chamber 2 is formed, ion milling is performed in a predetermined separation shape. At the same time (FIG. 4 (II)).

【0030】次に下部駆動電極10を同じく適当なエッ
チングマスク(図示せず)を施した後、所定の形状(外部
駆動回路との接続端子等)にイオンミリングを用いて形
成した(図4(III))。
Next, the lower drive electrode 10 is similarly formed with an appropriate etching mask (not shown), and is formed in a predetermined shape (connection terminal to an external drive circuit, etc.) by ion milling (FIG. 4 ( III)).

【0031】この基板20の圧電性膜を形成した側に後
工程で浸される種々の薬液に対する保護膜(繁雑な為図
示せず)を形成後、その反対面の少なくとも加圧室或い
は加圧室隔壁を含む領域にエッチング保護層21を緩衝
フッ酸等によりエッチングして窓22を形成する(図4
(IV))。
After forming a protective film (not shown for simplicity) against various chemicals immersed in a later step on the side of the substrate 20 on which the piezoelectric film is formed, at least a pressurizing chamber or pressurizing chamber on the opposite surface is formed. The window 22 is formed by etching the etching protection layer 21 with buffered hydrofluoric acid or the like in the region including the chamber partition (FIG. 4).
(IV)).

【0032】その後異方性エッチング液、たとえば80
℃に保温された濃度17%程の水酸化カリウム水溶液を
用いて珪素単結晶基板20を基板上面まで貫通するごと
く異方性エッチングする。ホウ素拡散膜はこの水酸化カ
リウムに難溶であるので、薄膜部が加圧室を介してエッ
チング液に犯されることはない。この加圧室形成はその
他、平行平板型反応性イオンエッチング等の活性気体を
用いた異方性エッチング方法を用いてもよい 。この行
程によりインク加圧室等流路が形成される(図4(V))。
Thereafter, an anisotropic etching solution such as 80
The silicon single crystal substrate 20 is anisotropically etched by using an aqueous solution of potassium hydroxide having a concentration of about 17% kept at a temperature of ℃ so as to penetrate the silicon single crystal substrate 20 to the upper surface of the substrate. Since the boron diffusion film is hardly soluble in the potassium hydroxide, the thin film portion is not violated by the etching solution via the pressurizing chamber. Alternatively, an anisotropic etching method using an active gas such as a parallel plate type reactive ion etching may be used for forming the pressurized chamber. Through this process, a flow path such as an ink pressurizing chamber is formed (FIG. 4 (V)).

【0033】加圧室形成後の圧力発生膜の電圧不印加時
の静的たわみ量を比較すると、従来のものが100nmから2
00nm図中の下側にたわんでいたのに対し、本例は10nm程
度であった。これは従来品の下部駆動電極10の白金が引
っぱり応力と2酸化珪素膜の圧縮応力が基板からの拘束
を失ったことにより基板側に大きくたわんだのに対し、
本発明品ではホウ素拡散の珪素の圧縮応力が弱いために
このたわみが減ったものと考えられる。また従前多発し
ていたこの工程での薄膜の割れも本例ではほとんど発生
しなかった。
Comparing the amount of static deflection of the pressure generating film after the formation of the pressurized chamber when no voltage is applied, the conventional one is 100 to 2 nm.
In contrast to the sagging on the lower side in the 00 nm diagram, this example was about 10 nm. This is because the platinum of the lower drive electrode 10 of the conventional product largely deflected to the substrate side due to the loss of restraint from the substrate due to the tensile stress and the compressive stress of the silicon dioxide film,
It is considered that in the product of the present invention, the bending stress was reduced due to the low compressive stress of boron-diffused silicon. Also, in this example, cracking of the thin film in this step, which had frequently occurred before, hardly occurred.

【0034】以上の工程により形成された加圧室基板に
別体のノズル板等を接着組み立てしインクジェットヘッ
ドが完成する。
A separate nozzle plate and the like are bonded and assembled to the pressurized chamber substrate formed by the above steps to complete the ink jet head.

【0035】以上の如く形成したインクジェット式記録
ヘッドを従来の構造のものと、製造歩留と印字耐久性を
比較したところ、従来品に対し製造歩留が20%向上
し、印字耐久性は40%向上した。
When the ink jet recording head formed as described above was compared with a conventional structure having a conventional structure in terms of manufacturing yield and printing durability, the manufacturing yield was improved by 20% and the printing durability was improved by 40% over the conventional product. % Improved.

【0036】また先述の初期のたわみ量の多寡は圧力発
生膜の変形効率にも影響し、従来品が20Vの電圧印加に
対し最大たわみ量が200nmであったのに対し本発明品は2
50nmと大きな変形量を得ることができた。
The amount of the initial deflection described above also affects the deformation efficiency of the pressure-generating film. The conventional product had a maximum deflection of 200 nm when a voltage of 20 V was applied.
A large deformation amount of 50 nm was obtained.

【0037】(実施形態2)本発明の別の実施形態の製造
方法を図5と図6に基づいて説明する。尚寸法、製法、
材質等不記載のものは先の実施形態1と同じである。
(Embodiment 2) A manufacturing method according to another embodiment of the present invention will be described with reference to FIGS. In addition, dimensions, manufacturing method,
Materials not described in the material are the same as those in the first embodiment.

【0038】加圧室基板であるところの珪素単結晶基板
20を用い、図5(I)の如く、その上面にホウ素拡散層
32を形成する。本例ではホウ素拡散層を1500nm厚
に形成した。
Using a silicon single crystal substrate 20 which is a pressure chamber substrate, a boron diffusion layer 32 is formed on the upper surface thereof as shown in FIG. In this example, the boron diffusion layer was formed to have a thickness of 1500 nm.

【0039】次に図5(II)の如くその全面に熱酸化法に
より2酸化珪素からなるエッチング保護層21を形成す
る。この際、上記ホウ素拡散層の上側にホウ素拡散2酸
化珪素膜33が形成される。本例ではホウ素拡散2酸化
珪素膜の厚さが200nmとなるように反応時間を制御し
た。
Next, as shown in FIG. 5 (II), an etching protection layer 21 made of silicon dioxide is formed on the entire surface by a thermal oxidation method. At this time, a boron diffusion silicon dioxide film 33 is formed above the boron diffusion layer. In this example, the reaction time was controlled so that the thickness of the boron-diffused silicon dioxide film became 200 nm.

【0040】次に前工程でホウ素が拡散された面にスパ
ッタ成膜法等の薄膜形成方法により、下部駆動電極10
となる白金を800nmの厚みで製膜する。なおこの下部
駆動電極10は弾性膜を兼ねている。その上に圧電性膜
の前駆体24を積層する。組成製法等は実施形態1と同
様である(図5(III))。
Next, the lower drive electrode 10 is formed on the surface where boron was diffused in the previous step by a thin film forming method such as a sputter film forming method.
Is formed with a thickness of 800 nm. The lower drive electrode 10 also serves as an elastic film. A piezoelectric film precursor 24 is laminated thereon. The composition and the like are the same as in the first embodiment (FIG. 5 (III)).

【0041】次に基板全体を圧電性膜前駆体の結晶化の
為に加熱する。本例では赤外線輻射光源29を用いて基
板両面から、酸素雰囲気中で650℃で5分保持した後
900℃で3分加熱し自然降温させることにより、圧電
性膜の結晶化を行なった。この工程により圧電性膜前駆
体24は上記狙い通りの組成で結晶化および焼結し圧電
性膜11となった(図5(IV))。
Next, the entire substrate is heated for crystallization of the piezoelectric film precursor. In this example, the piezoelectric film was crystallized by holding the substrate at 650 ° C. for 5 minutes in an oxygen atmosphere and then heating it at 900 ° C. for 3 minutes and allowing it to cool naturally from both sides of the substrate using the infrared radiation light source 29. By this step, the piezoelectric film precursor 24 was crystallized and sintered with the above-described target composition to form the piezoelectric film 11 (FIG. 5 (IV)).

【0042】上記のごとき900℃を超える加熱を行う
と、珪素或いはホウ素拡散珪素と白金が近接している
と、両者が反応して白金シリサイドを形成し膜剥離が起
こってしまうが、前記ホウ素拡散2酸化珪素膜33を間
に介することによりこの膜がバリアとなりこのような不
具合が生じなかった。従って本例のごとき製法/構成を
用いると、PZT前駆体をより高温で焼成することがで
き、PZTの結晶化が促進しより高い圧電特性を得ること
ができた。
When heating at a temperature exceeding 900 ° C. is performed as described above, if silicon or boron-diffused silicon and platinum are close to each other, they react with each other to form platinum silicide and peel off the film. With the silicon dioxide film 33 interposed therebetween, this film became a barrier and such a problem did not occur. Therefore, by using the manufacturing method / configuration as in this example, the PZT precursor could be fired at a higher temperature, the crystallization of PZT was promoted, and higher piezoelectric characteristics could be obtained.

【0043】この後、圧電性膜11上に上部駆動電極膜
12を形成する。本例では上部駆動電極12は200nm
厚の金をスパッタ成膜法にて形成した(図6(I))。
Thereafter, an upper drive electrode film 12 is formed on the piezoelectric film 11. In this example, the upper drive electrode 12 is 200 nm
Thick gold was formed by a sputter deposition method (FIG. 6 (I)).

【0044】次に上部駆動電極12と圧電性膜11を加
圧室2が形成される位置に合わせて適当なエッチングマ
スク(図示せず)を施した後、所定の分離形状にイオンミ
リングを用いて同時に形成する(図6(II))。
Next, an appropriate etching mask (not shown) is applied to the upper drive electrode 12 and the piezoelectric film 11 in accordance with the position where the pressure chamber 2 is to be formed. At the same time (FIG. 6 (II)).

【0045】次に下部駆動電極10とホウ素拡散2酸化
珪素膜を同じく適当なエッチングマスク(図示せず)を施
した後、所定の形状に反応性気相エッチングを用いて形
成した。この際少なくとも加圧室上の圧力発生膜となる
部分の部駆動電極10とホウ素拡散2酸化珪素膜は前期
圧電性膜と同一幅となるようにした(図6(III))。
Next, the lower drive electrode 10 and the boron-diffused silicon dioxide film were similarly formed with a suitable etching mask (not shown), and then formed into a predetermined shape by reactive vapor etching. At this time, at least the portion of the drive electrode 10 and the boron-diffused silicon dioxide film on the pressure chamber, which is to be a pressure generating film, had the same width as the piezoelectric film (FIG. 6 (III)).

【0046】この基板20の圧電性膜を形成した側に後
工程で浸される種々の薬液に対する保護膜(繁雑な為図
示せず)を形成後、その反対面の少なくとも加圧室或い
は加圧室隔壁を含む領域にエッチング保護層21をフッ
化水素によりエッチングして窓22を形成する(図6(I
V))。
After a protective film (not shown for simplicity) for various chemicals immersed in a later step is formed on the side of the substrate 20 on which the piezoelectric film is formed, at least a pressurizing chamber or a pressurizing chamber on the opposite surface is formed. The window 22 is formed by etching the etching protection layer 21 with hydrogen fluoride in the region including the chamber partition (FIG. 6 (I
V)).

【0047】その後異方性エッチング液、たとえば80
℃に保温された濃度17%程の水酸化カリウム水溶液を
用いて珪素単結晶基板20を基板上面まで貫通するごと
く異方性エッチングする。この加圧室形成はその他、平
行平板型反応性イオンエッチング等の活性気体を用いた
反応性気相エッチング法を用いてもよい。この行程によ
りインク加圧室等流路が形成される(図6(V))。
Thereafter, an anisotropic etching solution, for example, 80
The silicon single crystal substrate 20 is anisotropically etched by using an aqueous solution of potassium hydroxide having a concentration of about 17% kept at a temperature of ° C. so as to penetrate the silicon single crystal substrate 20 to the upper surface of the substrate. The pressurized chamber may be formed by a reactive gas phase etching method using an active gas such as a parallel plate type reactive ion etching. Through this process, a flow path such as an ink pressurizing chamber is formed (FIG. 6 (V)).

【0048】加圧室形成後の圧力発生膜の電圧不印加時
の静的たわみ量を比較すると、従来のものが100nmから2
00nm図中の下側にたわんでいたのに対し、本例は30nm程
度であった。また従前多発していたこの工程での薄膜の
割れも本例ではほとんど発生しなかった。
When the static deflection amount of the pressure generating film after the formation of the pressurizing chamber when no voltage is applied is compared, the conventional one is 100 nm to 2 nm.
In contrast to the sagging on the lower side in the 00 nm figure, this example was about 30 nm. Also, in this example, cracking of the thin film in this step, which had frequently occurred before, hardly occurred.

【0049】以上の工程により形成された加圧室基板に
別体のノズル板6、インク供給管、支持体(図示せず)を
接着する。
A separate nozzle plate 6, an ink supply tube, and a support (not shown) are bonded to the pressurized chamber substrate formed by the above steps.

【0050】本例の圧力発生膜の詳細を図7に示す。と
ころでこのようなユニモルフ型アクチュエータの変位効
率を上げるためには、圧電歪発生部30に比して、支持
部31は剛性を下げなるべく曲がりやすくしたほうがよ
い。
FIG. 7 shows details of the pressure generating film of this example. Incidentally, in order to increase the displacement efficiency of such a unimorph type actuator, it is preferable that the supporting portion 31 be easily bent to reduce the rigidity as compared with the piezoelectric strain generating portion 30.

【0051】支持部を曲がりやすくするためには支持部
面積を増やすか、支持部膜厚を薄くするかである。前者
は加圧室の幅が限られいるので、相対的に圧電歪発生部
の面積を減らすことになっていしまうので結果変位効率
は上がらない。本例のごとく支持部31の下部駆動電極
膜も除去し、ホウ素拡散膜のみで支持部を構成すること
により変位効率を上げることができ、また上述のごとく
製造上も容易である。
In order to make the supporting portion bend easily, it is necessary to increase the area of the supporting portion or to reduce the thickness of the supporting portion. In the former case, since the width of the pressurizing chamber is limited, the area of the piezoelectric strain generating portion is relatively reduced, so that the displacement efficiency is not improved. The displacement efficiency can be increased by removing the lower drive electrode film of the support portion 31 and forming the support portion only with the boron diffusion film as in this example, and the manufacturing is easy as described above.

【0052】一方従来の2酸化珪素膜のみで支持部を形
成しようとすると、支持部31は2酸化珪素膜のみにな
り、膜積層による応力相殺ができず、圧縮応力の解放に
よる変形曲がりがこの支持部に集中し、著しく破壊不良
を発生する。本例の如くホウ素拡散膜を用いることによ
り、前記応力解放が低減されこの破壊不良を回避するこ
とができた。
On the other hand, if it is attempted to form the support portion only with the conventional silicon dioxide film, the support portion 31 becomes only the silicon dioxide film, the stress cannot be canceled by the film lamination, and the deformation bending due to the release of the compressive stress causes this. Concentrates on the support, causing remarkable failure. By using a boron diffusion film as in this example, the stress release was reduced, and this failure failure could be avoided.

【0053】尚本例では支持部31をホウ素拡散膜32
のみで構成したが、ホウ素拡散2酸化珪素膜33が薄く
ホウ素拡散2酸化珪素膜の圧縮応力が無視できる程度に
小さければこれらの2層をもって支持部を構成してもよ
い。
In this embodiment, the supporting portion 31 is formed of a boron diffusion film 32.
Although only the boron diffusion silicon dioxide film 33 is thin, if the compressive stress of the boron diffusion silicon dioxide film is so small as to be negligible, the support portion may be composed of these two layers.

【0054】またホウ素拡散膜と下部駆動電極の白金の
間にホウ素拡散2酸化珪素膜を介することにより、本例
のごとく700℃を超える焼成を行っても、白金と珪素
の化合物が発生し、層間の密着力を落とすことはなかっ
た。もちろんこのような白金と珪素の反応を抑制するバ
リアは本例の他、ホウ素拡散膜の上面に2酸化珪素膜を
別途CVD法等で成膜してもよい。
By interposing a boron-diffused silicon dioxide film between the boron-diffused film and the platinum of the lower drive electrode, a compound of platinum and silicon is generated even when baking at a temperature exceeding 700 ° C. as in this example, It did not reduce the adhesion between the layers. Of course, in addition to this example, such a barrier for suppressing the reaction between platinum and silicon may be formed by separately forming a silicon dioxide film on the upper surface of the boron diffusion film by a CVD method or the like.

【0055】以上の如く形成したインクジェット式記録
ヘッドを従来の構造のものと、製造歩留と印字耐久性を
比較したところ、従来品に対し製造歩留が50%向上
し、印字耐久性は40%向上した。このような初期のたわ
みは圧力発生膜の変形効率にも影響し、従来品が20Vの
電圧印加に対し最大たわみ量が200nmであったのに対し
本発明品は400nmと大きな変形量を得ることができた。
The production yield and printing durability of the ink jet recording head formed as described above were compared with those of the conventional structure, and the production yield was improved by 50% and the printing durability was 40% over the conventional product. % Improved. Such initial deflection also affects the deformation efficiency of the pressure-generating film, and the conventional product has a maximum deflection of 200 nm when a voltage of 20 V is applied, while the product of the present invention obtains a large deformation of 400 nm. Was completed.

【0056】また本例では圧電性膜としてPZT系材料を
用いて説明したが、この系に酸化ニオブや酸化ニッケ
ル、酸化マグネシウム等他の金属酸化物を添加したも
の、或いはPZT系以外の材料でも本発明は有効である。
In this embodiment, a PZT-based material has been described as the piezoelectric film. However, a material obtained by adding other metal oxides such as niobium oxide, nickel oxide, and magnesium oxide to this film, or a material other than the PZT-based material is used. The present invention is effective.

【0057】なお本例ではインクジェットヘッドの応用
例を説明してきたが、その他微小光学装置、微小圧力検
出器等薄膜圧電材料の特性を応用した微小他素子の変位
或いは圧力発生器、検出器すべてに本発明は有効であ
る。
In this embodiment, an application example of the ink jet head has been described. However, the present invention is applicable to all other micro element devices such as micro optical devices, micro pressure detectors, etc. The present invention is effective.

【0058】[0058]

【発明の効果】本発明によれば、珪素単結晶基板と圧電
性膜の間にホウ素拡散膜を介することにより、薄膜の残
留応力を低減し、この残留応力解放に起因する製造歩留
や、変位特性、信頼性の低下を解決し高信頼性で高特性
のインクジェット式記録ヘッドを実現することができ
る。
According to the present invention, by interposing a boron diffusion film between a silicon single crystal substrate and a piezoelectric film, the residual stress of the thin film is reduced, and the production yield due to the release of the residual stress is reduced. It is possible to realize a highly reliable and high performance ink jet recording head by solving the displacement characteristics and the reduction in reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるインクジェット式記録
ヘッドの斜視図である。
FIG. 1 is a perspective view of an ink jet recording head according to an embodiment of the present invention.

【図2】本発明の実施例におけるインクジェット式記録
ヘッドの断面図である。
FIG. 2 is a sectional view of an ink jet recording head according to an embodiment of the present invention.

【図3】本発明の第1の実施形態におけるインクジェッ
ト式記録ヘッドの製造工程を示す図である。
FIG. 3 is a diagram illustrating a manufacturing process of the ink jet recording head according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態におけるインクジェッ
ト式記録ヘッドの製造工程を示す図である。
FIG. 4 is a diagram illustrating a manufacturing process of the ink jet recording head according to the first embodiment of the present invention.

【図5】本発明の第2の実施形態におけるインクジェッ
ト式記録ヘッドの製造工程を示す図である。
FIG. 5 is a diagram illustrating a manufacturing process of an ink jet recording head according to a second embodiment of the present invention.

【図6】本発明の第2の実施形態におけるインクジェッ
ト式記録ヘッドの製造工程を示す図である。
FIG. 6 is a diagram illustrating a manufacturing process of an ink jet recording head according to a second embodiment of the present invention.

【図7】本発明の第2の実施形態におけるインクジェッ
ト式記録ヘッドの断面図である。
FIG. 7 is a sectional view of an ink jet recording head according to a second embodiment of the present invention.

【図8】従来のインクジェット式記録ヘッドの課題を説
明する図である。
FIG. 8 is a diagram illustrating a problem of a conventional ink jet recording head.

【符号の説明】[Explanation of symbols]

1 加圧室基板 2 加圧室 3 共通流路 4 弾性膜 6 ノズル板 7 インク吐出用ノズル 8 配線基板 9 供給路 10 下部駆動電極 11 圧電性膜 12 上部駆動電極 13 インク 14 駆動電圧源 15 配線 16 配線 17 スイッチ 18 加圧室隔壁 19 インク吐出素子単位 20 珪素単結晶基板 21 エッチング保護層 22 エッチング窓 24 圧電性膜前駆体 29 輻射光源 30 圧電歪発生部 31 圧電歪発生部の支持部 32 ホウ素拡散膜 33 ホウ素拡散2酸化珪素膜 REFERENCE SIGNS LIST 1 pressurizing chamber substrate 2 pressurizing chamber 3 common flow path 4 elastic film 6 nozzle plate 7 ink discharging nozzle 8 wiring board 9 supply path 10 lower drive electrode 11 piezoelectric film 12 upper drive electrode 13 ink 14 drive voltage source 15 wiring Reference Signs List 16 Wiring 17 Switch 18 Pressurizing chamber partition wall 19 Ink ejection element unit 20 Silicon single crystal substrate 21 Etching protective layer 22 Etching window 24 Piezoelectric film precursor 29 Radiation light source 30 Piezoelectric strain generator 31 Support for piezoelectric strain generator 32 Boron Diffusion film 33 Boron diffusion silicon dioxide film

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 列状に隔壁を介して珪素単結晶基板に配
列されたインク加圧室、該加圧室の片面を覆蓋し前記隔
壁により懸架かつ固定され、加圧室の一壁面をなすがご
とく配置された弾性膜と下部駆動電極膜と圧電性膜と上
部駆動電極膜からなる圧力発生膜、各々の加圧室に連通
するインク吐出ノズルから構成され、前記圧力発生膜の
たわみ変形で発生する圧力によりインクを吐出するイン
クジェット式記録ヘッドであって、 前記弾性膜は少なくともほう素が拡散された珪素と下部
駆動電極からなることを特徴とするインクジェット式記
録ヘッド。
1. An ink pressurizing chamber arranged in a row on a silicon single crystal substrate via a partition, covering one surface of the pressurizing chamber, suspended and fixed by the partition, and forming one wall of the pressurizing chamber. The pressure generating film is composed of an elastic film, a lower drive electrode film, a piezoelectric film, and an upper drive electrode film, which are arranged like an ink discharge nozzle communicating with each pressure chamber. An ink jet recording head for discharging ink by generated pressure, wherein the elastic film comprises at least silicon in which boron is diffused and a lower drive electrode.
【請求項2】 前記弾性膜は少なくともほう素が拡散さ
れた珪素と2酸化珪素膜と下部駆動電極からなることを
特徴とする請求項1記載のインクジェット式記録ヘッ
ド。
2. The ink jet recording head according to claim 1, wherein said elastic film comprises at least silicon in which boron is diffused, a silicon dioxide film, and a lower drive electrode.
【請求項3】 前記弾性膜は少なくともほう素が拡散さ
れた珪素とほう素が拡散された2酸化珪素膜と下部駆動
電極からなることを特徴とする請求項1記載のインクジ
ェット式記録ヘッド。
3. The ink jet recording head according to claim 1, wherein the elastic film comprises at least silicon in which boron is diffused, a silicon dioxide film in which boron is diffused, and a lower drive electrode.
【請求項4】 上記下部駆動電極が白金からなることを
特徴とする請求項1から3記載のインクジェット式記録
ヘッド。
4. An ink jet recording head according to claim 1, wherein said lower drive electrode is made of platinum.
【請求項5】 列状に隔壁を介して珪素単結晶基板に配
列されたインク加圧室、該加圧室の片面を覆蓋し前記隔
壁により懸架かつ固定され、加圧室の一壁面をなすがご
とく配置された弾性膜と下部駆動電極膜と圧電性膜と上
部駆動電極膜からなる圧力発生膜、各々の加圧室に連通
するインク吐出ノズルから構成され、前記圧力発生膜の
たわみ変形で発生する圧力によりインクを吐出するイン
クジェット式記録ヘッドであって、前記圧力発生膜は圧
電歪発生部と該圧電歪発生部を支持する支持部からな
り、該圧電歪発生部は上部駆動電極と圧電性膜と下部駆
動電極とほう素が拡散された珪素膜とからなることを特
徴とするインクジェット式記録ヘッド。
5. An ink pressurizing chamber arranged in a row on a silicon single crystal substrate via a partition, covering one surface of the pressurizing chamber, being suspended and fixed by the partition, and forming one wall of the pressurizing chamber. The pressure generating film is composed of an elastic film, a lower drive electrode film, a piezoelectric film, and an upper drive electrode film, which are arranged like an ink discharge nozzle communicating with each pressure chamber. An ink jet recording head that discharges ink by a generated pressure, wherein the pressure generating film includes a piezoelectric strain generating unit and a support unit that supports the piezoelectric strain generating unit, and the piezoelectric strain generating unit includes an upper driving electrode and a piezoelectric driving unit. An ink jet recording head comprising a conductive film, a lower drive electrode, and a silicon film in which boron is diffused.
【請求項6】 前記支持部はほう素が拡散された珪素膜
で構成されることを特徴とする請求項5記載のインクジ
ェット式記録ヘッド。
6. The ink jet recording head according to claim 5, wherein said support portion is made of a silicon film in which boron is diffused.
【請求項7】 前記支持部はほう素が拡散された珪素膜
と2酸化珪素膜で構成されることを特徴とする請求項5
記載のインクジェット式記録ヘッド。
7. The semiconductor device according to claim 5, wherein said support portion is composed of a silicon film in which boron is diffused and a silicon dioxide film.
The ink jet recording head according to the above.
【請求項8】 前記支持部はほう素が拡散された珪素膜
とほう素が拡散された2酸化珪素膜で構成されることを
特徴とする請求項5記載のインクジェット式記録ヘッ
ド。
8. The ink jet recording head according to claim 5, wherein said support portion is composed of a silicon film in which boron is diffused and a silicon dioxide film in which boron is diffused.
【請求項9】 珪素単結晶基板の片表面にホウ素を熱拡
散させた後該基板の両表面を熱酸化する行程、該ホウ素
を熱拡散させた面に下部駆動電極膜と圧電性膜と上部駆
動電極膜を順次積層し、これらの電極膜と圧電性膜を所
望の形状にエッチングする圧力発生膜の形成行程、前記
珪素単結晶基板に異方性エッチングにより前記加圧室を
形成する行程からなることを特徴とするインクジェット
式記録ヘッドの製造方法。
9. The process of thermally diffusing boron on one surface of a silicon single crystal substrate and then thermally oxidizing both surfaces of the substrate, wherein the lower drive electrode film, the piezoelectric film, and the upper A step of forming a pressure generating film for sequentially laminating the drive electrode films and etching these electrode films and the piezoelectric film into a desired shape, and a step of forming the pressure chamber by anisotropic etching on the silicon single crystal substrate. A method for manufacturing an ink jet recording head.
【請求項10】 珪素単結晶基板の両面を熱酸化させた
後、該基板の片表面の2酸化珪素膜を除去し、この除去
面にホウ素を熱拡散させ、その上面に下部駆動電極膜と
圧電性膜と上部駆動電極膜を順次積層し、これらの電極
膜と圧電性膜を所望の形状にエッチングする圧力発生膜
の形成行程、前記珪素単結晶基板に異方性エッチングに
より前記加圧室を形成する行程からなることを特徴とす
るインクジェット式記録ヘッドの製造方法。
10. After both surfaces of a silicon single crystal substrate are thermally oxidized, a silicon dioxide film on one surface of the substrate is removed, boron is thermally diffused on the removed surface, and a lower drive electrode film is formed on the upper surface. A step of forming a pressure generating film for sequentially laminating a piezoelectric film and an upper drive electrode film and etching the electrode film and the piezoelectric film into a desired shape; Forming an ink jet recording head.
JP21663497A 1997-08-11 1997-08-11 Ink jet type recording head and its manufacture Pending JPH1158730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21663497A JPH1158730A (en) 1997-08-11 1997-08-11 Ink jet type recording head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21663497A JPH1158730A (en) 1997-08-11 1997-08-11 Ink jet type recording head and its manufacture

Publications (1)

Publication Number Publication Date
JPH1158730A true JPH1158730A (en) 1999-03-02

Family

ID=16691517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21663497A Pending JPH1158730A (en) 1997-08-11 1997-08-11 Ink jet type recording head and its manufacture

Country Status (1)

Country Link
JP (1) JPH1158730A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005032A1 (en) * 2002-07-09 2004-01-15 Seiko Epson Corporation Liquid ejection head
JP2005238845A (en) * 2004-02-27 2005-09-08 Samsung Electronics Co Ltd Piezoelectric actuator for ink-jet printhead and its forming method
US7345410B2 (en) * 2006-03-22 2008-03-18 Agilent Technologies, Inc. Temperature compensation of film bulk acoustic resonator devices
US8436516B2 (en) 2010-04-29 2013-05-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator device including electrode with buried temperature compensating layer
US9197185B2 (en) 2010-04-29 2015-11-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator device including electrodes with buried temperature compensating layers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005032A1 (en) * 2002-07-09 2004-01-15 Seiko Epson Corporation Liquid ejection head
CN100382969C (en) * 2002-07-09 2008-04-23 精工爱普生株式会社 Liquid ejection head
US7708389B2 (en) 2002-07-09 2010-05-04 Seiko Epson Corporation Liquid ejection head
EP2602114A1 (en) * 2002-07-09 2013-06-12 Seiko Epson Corporation Liquid jetting head
JP2005238845A (en) * 2004-02-27 2005-09-08 Samsung Electronics Co Ltd Piezoelectric actuator for ink-jet printhead and its forming method
JP4638750B2 (en) * 2004-02-27 2011-02-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Piezoelectric actuator for ink jet print head and method for forming the same
US7345410B2 (en) * 2006-03-22 2008-03-18 Agilent Technologies, Inc. Temperature compensation of film bulk acoustic resonator devices
US8436516B2 (en) 2010-04-29 2013-05-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator device including electrode with buried temperature compensating layer
US9197185B2 (en) 2010-04-29 2015-11-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator device including electrodes with buried temperature compensating layers
US9479139B2 (en) 2010-04-29 2016-10-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonator device including electrode with buried temperature compensating layer

Similar Documents

Publication Publication Date Title
JP3460218B2 (en) Ink jet printer head and method of manufacturing the same
WO2002073710A1 (en) Piezoelectric/electrostrictive film type actuator and method of manufacturing the actuator
KR20080033099A (en) Actuator device, liquid-jet head and method of manufacturing actuator device
US20070165082A1 (en) Liquid delivering apparatus and method of producing the same
JP2012106342A (en) Head and apparatus for ejecting liquid
JP4858670B2 (en) Method for manufacturing actuator device and liquid ejecting apparatus
JPH1158730A (en) Ink jet type recording head and its manufacture
JP3603931B2 (en) Ink jet recording head and ink jet recording apparatus
JP3442299B2 (en) Ink jet recording head and method of manufacturing the same
JP2000025225A (en) Actuator, ink jet recording head and ink jet recorder
JP5526559B2 (en) Liquid ejecting head manufacturing method, piezoelectric element manufacturing method, and piezoelectric element
JPH09156099A (en) Ink jet head and production thereof
JPH08252914A (en) Ink jet head and production thereof
JP2010120270A (en) Liquid injection head, liquid injection device, actuator device, and method of manufacturing the liquid injection head
JPH09156098A (en) Ink jet print head and its manufacture
JPH1178004A (en) Ink-jet recording head and production method thereof
JP3726469B2 (en) Method for manufacturing ink jet recording head
JP2010173197A (en) Liquid discharge head, liquid discharge device, actuator device, and manufacturing method of liquid discharge head
JP2009226728A (en) Manufacturing method of liquid jet head and manufacturing method of piezoelectric element
JP5099303B2 (en) Liquid ejecting head and manufacturing method thereof
JP2009208411A (en) Method for manufacturing liquid injection head
JP2008205048A (en) Manufacturing method of piezoelectric element, and manufacturing method of liquid jetting head
JP2006245248A (en) Piezoelectric element and its fabrication process, liquid ejection head and its manufacturing process, and liquid ejector
JP2005169965A (en) Manufacturing method for liquid discharge head
JP2001058401A (en) Ink-jet head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030318