JPS627148B2 - - Google Patents

Info

Publication number
JPS627148B2
JPS627148B2 JP53133295A JP13329578A JPS627148B2 JP S627148 B2 JPS627148 B2 JP S627148B2 JP 53133295 A JP53133295 A JP 53133295A JP 13329578 A JP13329578 A JP 13329578A JP S627148 B2 JPS627148 B2 JP S627148B2
Authority
JP
Japan
Prior art keywords
powder
ultra
diamond
high pressure
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53133295A
Other languages
Japanese (ja)
Other versions
JPS5562848A (en
Inventor
Fumihiro Ueda
Kenichi Nishigaki
Taijiro Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13329578A priority Critical patent/JPS5562848A/en
Publication of JPS5562848A publication Critical patent/JPS5562848A/en
Publication of JPS627148B2 publication Critical patent/JPS627148B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた靭性および耐熱耐摩耗性
を有し、特に切削工具用材料として使用するのに
適した超高圧焼結材料に関するものである。 一般に、鋳鉄などの鉄系金属材料や、アルミニ
ウム、アルミニウム合金、銅、および銅合金など
の非鉄金属材料、さらにプラスチツク、ゴム、黒
鉛、セラミツクなどの非金属材料などの切削に使
用される切削工具には、高硬度、すぐれた耐摩耗
性、靭性、および熱的化学的安定性などの特性を
備えることが要求されている。 近年、かかる要求を満足すべく、主成分がダイ
ヤモンドからなる超高圧焼結材料が提案され、前
記超高圧焼結材料は常温は勿論のこと、比較的高
温においても高硬度を有し、すぐれた耐摩耗性を
示すことから、衝撃の加わるような苛酷な条件下
での仕上げ切削工具用材料として使用されてい
る。 確かに、上記超高圧焼結材料製切削工具によれ
ば、上記鉄系金属材料や非鉄金属材料の切削に際
して、高速切削が可能となるために、構成刃先が
つきにくく、すぐれた仕上げ面が得られるという
利点がもたらされる。 このように上記従来超高圧焼結材料は、主成分
が著しく高い硬さを有するダイヤモンドで構成さ
れているために、上記鉄系金属材料や非鉄金属材
料、および非金属材料の切削に切削工具として使
用した場合に、すぐれた耐摩耗性を示すものの、
十分な靭性を備えたものではないため、この靭性
不足が原因で切削時にチツピング摩耗を起し易
く、この結果本来具備しているすぐれた耐摩耗性
を十分発揮することができず、また十分な高温耐
酸化性を備えていないため、温度上昇を伴なう切
削には使用することができないのが現状である。 本発明者等は、上述のような観点から、靭性、
高温耐酸化性(耐熱性)、および耐摩耗性を兼ね
備えた切削工具用材料を得べく、ダイヤモンドに
着目して研究を行なつた結果、ダイヤモンド粉末
に、周期律表の4a、5a、および6a族金属の炭化
物、並びに同4aおよび5a族金属の炭窒化物のうち
の1種または2種以上(以下、これらを総称して
金属の炭・窒化物といい、それぞれTiC、ZrC、
HfC、VC、TaC、NbC、Mo2C、WC、Cr3C2
TiCN、ZrCN、HfCN、VCN、TaCN、および
NbCNで示す)からなる粉末を配合したものを原
料粉末として使用し、超高圧焼結を行なうと、ダ
イヤモンド粒子同志および上記金属の炭・窒化物
粒子同志の相互接触がなく、ダイヤモンド粒子と
上記金属の炭・窒化物粒子とが相互に隣接し合
い、しかもその粒界では前記各粒子を構成する成
分の拡散が生じて強固な粒子間結合が形成されて
いる緻密な組織の焼結材料が得られ、この結果得
られた焼結材料は、ダイヤモンド粒子によつても
たらされるすぐれた耐摩耗性と、金属の炭・窒化
物粒子によつてもたらされるすぐれた靭性および
耐熱性とを兼ね備えるという知見を得たのであ
る。 したがつて、この発明の超高圧焼結材料は、上
記知見にもとづいてなされたもので、容量%で、 ダイヤモンド:80%超〜90%、 金属の炭・窒化物および不可避不純物:10〜20
%未満、 からなる組成を有することに特徴がある。 ついで、この発明の超高圧焼結材料において、
成分組成範囲を上述のように限定した理由を説明
する。 (a) ダイヤモンド ダイヤモンド自体は、周知のようにモース硬
さ:10、ヌープ硬さ:8000Kg/mm2以上を有し、
現存する物質中、最も高い硬さを有する物質で
あるが、その含有量が80容量%以下では、所望
の著しく高い耐摩耗性を確保することができ
ず、一方90容量%を超えて含有させると、ダイ
ヤモンド粒子相互間の接触度合が大きくなり、
耐熱性にすぐれ、靭性に富んだ金属の炭・窒化
物粒子とダイヤモンド粒子との強固な粒子間結
合が不十分となり、この結果靭性低下をきたし
て切削時にチツピング摩耗が生じやすくなるこ
とから、その含有量を80容量%超〜90容量%と
定めた。 また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用されるダイヤモンド
粉末は、すぐれた焼結性を確保する目的で、平
均粒径50μm以下、一般には同10μm以下の粉
末粒径をもつものを使用するのが好ましく、さ
らに市販のメタルコートのダイヤモンド粉末を
原料粉末として使用してもよい。 (b) 金属の炭・窒化物 例えば、TiCは融点:3147℃、マイクロビツ
カース硬さ:3000Kg/mm2(荷重100g)、TaCは
融点:3985℃、マイクロビツカース硬さ:2380
Kg/mm2、およびTiCNは分解温度:3050℃、マ
イクロビツカース硬さ:2600Kg/mm2をそれぞれ
有するように、金属の炭・窒化物はいずれも高
融点高硬度を有すると共に、ダイヤモンドに比
して高温における耐酸化性にすぐれた物質であ
り、しかも金属の炭・窒化物には、上述のよう
に焼結時にダイヤモンド粒子との間に粒界拡散
を生じさせて強固な粒子間結合を形成する作用
があるほか、それ自体が焼結性にすぐれたもの
であるため、ダイヤモンド粒子間を金属の炭・
窒化物粒子で埋めた緻密な組織を形成する作用
があるが、その含有量が10%未満では、相対的
にダイヤモンドの含有量が多くなり過ぎて前記
作用に所望の効果を得ることができず、この結
果靭性低下をきたすようになり、一方その含有
量が20%以上になると、相対的にダイヤモンド
の含有量が80%以下となつて、ダイヤモンドの
もつ高硬度を焼結材料に充分反映することがで
きず、この結果所望の著しく高い耐摩耗性を確
保することができなくなることから、その含有
量を10〜20容量%未満に定めた。 また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用される金属の炭・窒
化物粉末は微粉のものが好ましく、平均粒径10
μm以下の微細な粉末を使用するのが望まし
い。 さらに、この発明の超高圧焼結材料は、通常
の粉末冶金法により、公知の超高圧超高温発生
装置を使用して製造することができる。 すなわち、原料粉末としてのダイヤモンド粉
末と、金属の炭・窒化物粉末とを所定割合に配
合し、この配合粉末を鉄製ボールミルなどの混
合機において長時間混合して均質な混合粉末と
し、ついでこの混合粉末を、例えば特公昭36−
23463号公報に記載されるような超高圧高温発
生装置における鋼製あるいは高融点金属製の容
器内に封入し、圧力および温度を上げ、最高圧
力:54〜70Kb、最高温度:1400〜1800℃の範
囲内の圧力および温度に数分〜数10分保持した
後、冷却し、最終的に圧力を解放することから
なる基本的工程によつて製造することができ
る。 つぎに、この発明の超高圧焼結材料を実施例に
より説明する。 実施例 原料粉末として、いずれも市販の1〜3μmの
範囲内の所定の平均粒径を有するダイヤモンド粉
末、TiC粉末、ZrC粉末、HfC粉末、VC粉末、
TaC粉末、NbC粉末、Mo2C粉末、WC粉末、
Cr3C2粉末、TiCN粉末、ZrCN粉末、HfCN粉
末、VCN粉末、TaCN粉末、およびNbCN粉末を
用意し、これら原料粉末をそれぞれ第1表に示さ
れる配合組成に配合し、この配合粉末をWC基超
硬合金製のボールミル中で溶媒としてアセトンを
使用して4時間混合した後、乾燥した。ついで、
この混合粉末を、直径10mmφ×高さ10mmのステン
レス鋼(JIS・SUS304)製管内に詰め、真空引き
しながら同じくWC基超硬合金(P20)製の蓋を
前記管の両側端部に溶接し、前記管を密封した。 このように上記混合粉末を充填密封した管を、
公知の超高圧高温発生装置に装着し、最高付加圧
力:60Kb、最高加熱温度:1450℃の条件で10分
間保持して焼結した後、冷却し、圧力解放を行な
うことによつて実質的に配合組成と同一の成分組
成をもつた本発明超高圧焼結材料1〜17をそれぞ
れ製造した。 この結果得られた本発明超高圧焼結材料1〜17
は、いずれもダイヤモンド粒と金属の炭・窒化物
粒とが均一に分散した緻密な組織を有するもので
あつた。
The present invention relates to an ultra-high pressure sintered material that has excellent toughness and heat and wear resistance, and is particularly suitable for use as a material for cutting tools. Generally used for cutting tools used to cut ferrous metal materials such as cast iron, non-ferrous metal materials such as aluminum, aluminum alloys, copper, and copper alloys, and non-metallic materials such as plastics, rubber, graphite, and ceramics. are required to have properties such as high hardness, excellent wear resistance, toughness, and thermal and chemical stability. In recent years, in order to satisfy such demands, ultra-high pressure sintered materials whose main component is diamond have been proposed, and the ultra-high pressure sintered materials have high hardness not only at room temperature but also at relatively high temperatures, and have excellent properties. Because it exhibits wear resistance, it is used as a material for finishing cutting tools under harsh conditions such as impact. It is true that the above-mentioned cutting tool made of ultra-high pressure sintered material enables high-speed cutting when cutting the above-mentioned ferrous metal materials and non-ferrous metal materials, making it difficult for built-up edges to stick and providing an excellent finished surface. This gives you the advantage of being able to In this way, the conventional ultra-high pressure sintered materials mentioned above are mainly composed of diamond which has extremely high hardness, so they can be used as cutting tools for cutting the above-mentioned ferrous metal materials, non-ferrous metal materials, and non-metal materials. Although it shows excellent wear resistance when used,
Because it does not have sufficient toughness, chipping wear is likely to occur during cutting due to this lack of toughness, and as a result, the excellent wear resistance that it originally has cannot be fully demonstrated, and the Currently, it cannot be used for cutting that involves a rise in temperature because it does not have high-temperature oxidation resistance. From the above-mentioned viewpoint, the present inventors have determined that toughness,
In order to obtain materials for cutting tools that have both high-temperature oxidation resistance (heat resistance) and wear resistance, we conducted research focusing on diamond. carbides of group metals, and one or more types of carbonitrides of group 4a and 5a metals (hereinafter collectively referred to as metal carbonitrides, TiC, ZrC,
HfC, VC, TaC, NbC, Mo2C , WC, Cr3C2 ,
TiCN, ZrCN, HfCN, VCN, TaCN, and
When ultra-high pressure sintering is performed using a blend of powder consisting of NbCN) as the raw material powder, there is no mutual contact between the diamond particles and the carbon/nitride particles of the above metals, and the diamond particles and the above metals are not in contact with each other. A sintered material with a dense structure is obtained in which the carbon/nitride particles are adjacent to each other, and the components constituting each particle are diffused at the grain boundaries to form strong interparticle bonds. and the resulting sintered material combines the excellent wear resistance provided by the diamond particles with the excellent toughness and heat resistance provided by the metallic carbon/nitride particles. I got it. Therefore, the ultra-high pressure sintered material of the present invention was made based on the above knowledge, and in terms of volume %, diamond: more than 80% to 90%, metal carbon/nitride and inevitable impurities: 10 to 20
It is characterized by having a composition consisting of less than %. Next, in the ultra-high pressure sintered material of this invention,
The reason why the component composition range is limited as described above will be explained. (a) Diamond As is well known, diamond itself has a Mohs hardness of 10 and a Knoop hardness of 8000 kg/mm 2 or more.
It is a substance with the highest hardness among existing substances, but if its content is less than 80% by volume, the desired extremely high wear resistance cannot be achieved, but if it is contained in excess of 90% by volume. , the degree of contact between diamond particles increases,
The strong interparticle bond between the metal carbon/nitride particles, which have excellent heat resistance and high toughness, and the diamond particles becomes insufficient, resulting in a decrease in toughness and making chipping wear more likely to occur during cutting. The content was determined to be more than 80% by volume to 90% by volume. In addition, in the production of the ultra-high pressure sintered material of this invention, the diamond powder used as the raw material powder has an average particle size of 50 μm or less, generally 10 μm or less, in order to ensure excellent sinterability. It is preferable to use diamond powder with a metal coating, and commercially available metal-coated diamond powder may also be used as the raw material powder. (b) Metallic carbon/nitride For example, TiC has a melting point of 3147°C and a micro-Vickers hardness of 3000 Kg/mm 2 (load of 100 g), and TaC has a melting point of 3985°C and a micro-Vickers hardness of 2380
Kg/mm 2 , and TiCN has a decomposition temperature of 3050°C and a microvitkers hardness of 2600 Kg/mm 2 , so metal carbons and nitrides both have high melting points and high hardness, and are hard compared to diamond. It is a substance with excellent oxidation resistance at high temperatures, and as mentioned above, metal carbon and nitrides create strong interparticle bonds by causing grain boundary diffusion with diamond particles during sintering. In addition to having the effect of forming a
It has the effect of forming a dense structure filled with nitride particles, but if the content is less than 10%, the diamond content becomes relatively too large and the desired effect cannot be obtained. As a result, the toughness decreases, and on the other hand, when the diamond content exceeds 20%, the diamond content becomes relatively less than 80%, and the high hardness of diamond is not fully reflected in the sintered material. As a result, the desired extremely high wear resistance could not be secured, so the content was set to less than 10 to 20% by volume. Further, in producing the ultra-high pressure sintered material of the present invention, the metal carbon/nitride powder used as the raw material powder is preferably fine powder, with an average particle size of 10
It is desirable to use fine powder of micrometers or less. Further, the ultra-high pressure sintered material of the present invention can be manufactured by a conventional powder metallurgy method using a known ultra-high pressure and ultra-high temperature generator. That is, diamond powder as a raw material powder and metal carbon/nitride powder are blended in a predetermined ratio, and this blended powder is mixed for a long time in a mixer such as an iron ball mill to form a homogeneous mixed powder. Powder, for example,
It is sealed in a container made of steel or high melting point metal in an ultra-high pressure and high temperature generator as described in Publication No. 23463, and the pressure and temperature are raised to achieve a maximum pressure of 54 to 70 Kb and a maximum temperature of 1400 to 1800°C. It can be produced by a basic process consisting of holding at a pressure and temperature range for a few minutes to several tens of minutes, then cooling and finally releasing the pressure. Next, the ultra-high pressure sintered material of the present invention will be explained using examples. Examples As raw material powders, commercially available diamond powder, TiC powder, ZrC powder, HfC powder, VC powder, all having a predetermined average particle size within the range of 1 to 3 μm,
TaC powder, NbC powder, Mo2C powder, WC powder,
Prepare Cr 3 C 2 powder, TiCN powder, ZrCN powder, HfCN powder, VCN powder, TaCN powder, and NbCN powder, blend these raw powders to the composition shown in Table 1, and apply this blended powder to WC. After mixing for 4 hours using acetone as a solvent in a ball mill made of base cemented carbide, the mixture was dried. Then,
This mixed powder was packed into a stainless steel (JIS/SUS304) tube with a diameter of 10 mmφ and a height of 10 mm, and lids made of WC-based cemented carbide (P20) were welded to both ends of the tube while vacuuming. , the tube was sealed. In this way, the tube filled with the above mixed powder and sealed,
By attaching it to a known ultra-high pressure and high temperature generator and holding it for 10 minutes at a maximum applied pressure of 60 Kb and a maximum heating temperature of 1450°C for sintering, cooling and releasing the pressure, the Ultra-high pressure sintered materials 1 to 17 of the present invention having the same composition as the blended composition were produced. The resulting ultra-high pressure sintered materials 1 to 17 of the present invention
All had a dense structure in which diamond grains and metal carbon/nitride grains were uniformly dispersed.

【表】【table】

【表】 つぎに、この本発明超高圧焼結材料1〜17、並
びに主成分がダイヤモンドからなる市販の超高圧
焼結材料から、切断および研磨手段によつて切削
用切刃を切出し、この切刃をWC基超硬合金製チ
ツプに銀ろうを使用してろう付けし、これをドリ
ル本体に取りつけて穴あけ用ドリルとし、これを
用いて、 被削材:鋳鉄(FC−30)、 加工速度:150m/min、 の条件で鋳鉄の穴あけ加工試験を行ない、使用寿
命に至るまでの穴あけ加工個数を測定すると共
に、その穴あけ面の仕上げ面粗さを測定した。こ
れらの測定結果を第1表に示した。 第1表に示される結果から、本発明超高圧焼結
材料1〜17は、いずれもすぐれた耐摩耗性と、靭
性および耐熱性を有するので、著しく長期に亘つ
てすぐれた切削性能を発揮するのに対して、上記
市販の超高圧焼結材料は、靭性不足が原因で、チ
ツピング摩耗を起し、比較的短かい使用寿命しか
示さないものであつた。 また、上記本発明超高圧焼結材料1〜17、並び
に上記市販の超高圧焼結材料より、SNGN432の
形状をもつた切削チツプを切出し、 被削材:アルミナセラミツクス(硬さ:
Hv1650)、 切削速度:50m/min、 送り:0.02m/rev.、 切込み:0.15mm、 切削油:なし、 の条件でアルミナセラミツクスの仕上げ面加工試
験を行ない、切刃の逃げ面摩耗幅が0.3mmに至る
までの切削時間を測定した。この測定結果を第1
表に示した。 第1表に示される結果から明らかなように、本
発明超高圧焼結材料1〜17は、いずれも長い切削
時間を示し、このことは本発明超高圧焼結材料が
すぐれた耐摩耗性と、靭性および耐熱性とを具備
することを示し、一方上記市販の超高圧焼結材料
は、靭性不足が原因の欠損が切刃に発生し、比較
的短かい使用寿命しか示さないものであつた。 上述のように、この発明の超高圧焼結材料は、
すぐれた靭性、高温耐酸化性(耐熱性)、および
耐摩耗性を兼ね備えているので、特に切削工具用
材料として使用した場合にすぐれた切削性能を発
揮するのである。
[Table] Next, a cutting edge was cut out from the ultra-high pressure sintered materials 1 to 17 of the present invention and a commercially available ultra-high pressure sintered material whose main component is diamond by a cutting and polishing means. The blade is brazed to a WC-based cemented carbide chip using silver solder, and this is attached to the drill body to create a drilling drill.Work material: cast iron (FC-30), machining speed. A drilling test was conducted on cast iron under the conditions of : 150 m/min, and the number of holes drilled until the end of the service life was measured, as well as the finished surface roughness of the drilled surface. The results of these measurements are shown in Table 1. From the results shown in Table 1, the ultra-high pressure sintered materials 1 to 17 of the present invention all have excellent wear resistance, toughness, and heat resistance, and therefore exhibit excellent cutting performance over an extremely long period of time. On the other hand, the commercially available ultra-high pressure sintered materials suffer from chipping wear due to insufficient toughness and have a relatively short service life. Further, cutting chips having a shape of SNGN432 were cut from the above-mentioned ultra-high pressure sintered materials 1 to 17 of the present invention and the above-mentioned commercially available ultra-high pressure sintered materials.
Hv1650), Cutting speed: 50m/min, Feed: 0.02m/rev., Depth of cut: 0.15mm, Cutting oil: None, alumina ceramic finishing surface machining test was conducted under the following conditions, and the flank wear width of the cutting edge was 0.3 The cutting time up to mm was measured. This measurement result is the first
Shown in the table. As is clear from the results shown in Table 1, all of the ultra-high pressure sintered materials 1 to 17 of the present invention exhibit long cutting times, which indicates that the ultra-high pressure sintered materials of the present invention have excellent wear resistance. On the other hand, the above-mentioned commercially available ultra-high-pressure sintered materials suffered from defects on the cutting edge due to lack of toughness, and exhibited only a relatively short service life. . As mentioned above, the ultra-high pressure sintered material of this invention is
Because it has excellent toughness, high-temperature oxidation resistance (heat resistance), and wear resistance, it exhibits excellent cutting performance especially when used as a material for cutting tools.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド:80%超〜90%、 周期律表の4a、5a、および6a族金属の炭化物、
並びに同4aおよび5a族金属の炭窒化物のうちの1
種または2種以上(以下、これらを総称して金属
の炭・窒化物という)および不可避不純物:10〜
20%未満、 からなる組成(以上容量%)、並びにダイヤモン
ド粒子同志および金属の炭・窒化物粒子同志の相
互接触がなく、ダイヤモンド粒子と金属の炭・窒
化物粒子とが相互に隣接し合い、かつその粒界で
は前記各粒子を構成する成分の拡散が生じて強固
な粒子間結合が形成されている緻密な組織を有す
ることを特徴とする靭性を具備する切削工具用耐
熱耐摩耗性超高圧焼結材料。
[Claims] 1. Diamond: more than 80% to 90%, carbides of metals from groups 4a, 5a, and 6a of the periodic table;
and one of the carbonitrides of group 4a and 5a metals.
Species or two or more species (hereinafter collectively referred to as metal carbon/nitrides) and unavoidable impurities: 10~
less than 20% (volume %), and there is no mutual contact between diamond particles and metal carbon/nitride particles, and diamond particles and metal carbon/nitride particles are adjacent to each other, A heat-resistant, wear-resistant, ultra-high-pressure cutting tool with toughness characterized by having a dense structure in which the components constituting each particle diffuse at the grain boundaries and form strong interparticle bonds. Sintered material.
JP13329578A 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity Granted JPS5562848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13329578A JPS5562848A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13329578A JPS5562848A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Publications (2)

Publication Number Publication Date
JPS5562848A JPS5562848A (en) 1980-05-12
JPS627148B2 true JPS627148B2 (en) 1987-02-16

Family

ID=15101305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13329578A Granted JPS5562848A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Country Status (1)

Country Link
JP (1) JPS5562848A (en)

Also Published As

Publication number Publication date
JPS5562848A (en) 1980-05-12

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
CN106881671A (en) A kind of multi-layered brazing diamond tool and preparation method thereof
Santhanam Application of transition metal carbides and nitrides in industrial tools
IE913092A1 (en) Using thermally-stable diamond or cbn compacts as tips for¹rotary drills
JPS63125602A (en) Hard alloy for tool
JPS627148B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JPS6125762B2 (en)
JPS6031604B2 (en) Throw-away tip for milling made of super hard alloy
JP3520787B2 (en) Cutting tool using brazing filler metal with excellent bondability between cBN-based ultra-high pressure sintered compact and base cemented carbide
JPS6146429B2 (en)
JP2000052085A (en) High performance super high pressure cutting tool of brazing type composed of diamond group super high pressure sintered compact and substrate hard metal
JPS6126511B2 (en)
JPS6141866B2 (en)
JPS61147841A (en) Hyperfine-grained sintered hard alloy
JP3358477B2 (en) Cutting tool with excellent brazing joint strength with cutting edge piece
JP2019065330A (en) Composite sintered body
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JPS6143306B2 (en)
JPS6119591B2 (en)
JPS6143307B2 (en)
JP3762278B2 (en) Cemented carbide and method for producing the same
JPS6114106B2 (en)
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride