JPS6114106B2 - - Google Patents

Info

Publication number
JPS6114106B2
JPS6114106B2 JP53133296A JP13329678A JPS6114106B2 JP S6114106 B2 JPS6114106 B2 JP S6114106B2 JP 53133296 A JP53133296 A JP 53133296A JP 13329678 A JP13329678 A JP 13329678A JP S6114106 B2 JPS6114106 B2 JP S6114106B2
Authority
JP
Japan
Prior art keywords
powder
diamond
cutting
ultra
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53133296A
Other languages
Japanese (ja)
Other versions
JPS5562849A (en
Inventor
Fumihiro Ueda
Kenichi Nishigaki
Taijiro Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13329678A priority Critical patent/JPS5562849A/en
Publication of JPS5562849A publication Critical patent/JPS5562849A/en
Publication of JPS6114106B2 publication Critical patent/JPS6114106B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた靭性および耐熱耐摩耗性
を有し、特に切削工具用材料として使用するのに
適した超高圧焼結材料に関するものである。 一般に、鋳鉄などの鉄系金属材料や、アルミニ
ウム、アルミニウム合金、銅、および銅合金など
の非鉄金属材料、さらにプラスチツク、ゴム、黒
鉛、セラミツクなどの非金属材料などの切削に使
用される切削工具には、高硬度、すぐれた耐摩耗
性、靭性、および熱的化学的安定性などの特性を
備えることが要求されている。 近年、かかる要求を満足すべく、主成分がダイ
ヤモンドからなる超高圧焼結材料が提案され、前
記超高圧焼結材料は常温は勿論のこと、比較的高
温においても高硬度を有し、すぐれた耐摩耗性を
示すことから、衝撃の加わるような苛酷な条件下
での仕上げ切削工具用材料として使用されてい
る。 確かに、上記超高圧焼結材料製切削工具によれ
ば、上記鉄系金属材料や非鉄金属材料の切削に際
して高速切削が可能となるために、構成刃先がつ
きにくく、すぐれた仕上げ面が得られるという利
点がもたらされる。 このように上記従来超高圧焼結材料は、主成分
が著しく高い硬さを有するダイヤモンドで構成さ
れているために、上記鉄系金属材料や非鉄金属材
料、および非金属材料の切削に切削工具として使
用した場合に、すぐれた耐摩耗性を示すものの、
十分な靭性を備えたものではないため、この靭性
不足が原因で切削時にチツピング摩耗を起し易
く、この結果本来具備しているすぐれた耐摩耗性
を十分発揮することができず、また十分な高温耐
酸化性を備えていないため、温度上昇を伴なう切
削には使用することができないのが現状である。 本発明者等は、上述のような観点から、靭性、
高温耐酸化性(耐熱性)、および耐摩耗性を兼ね
備えた切削工具用材料を得べく、ダイヤモンドに
着目して研究を行なつた結果、ダイヤモンド粉末
に、周期律表の4a,5a、および6a族金属の炭化
物、窒化物、炭窒化物、および硼化物のうちの1
種または2種以上(以下、これらを総称して金属
の炭・窒・硼化物という)からなる粉末と、同じ
く周期律表の4a,5a、および6a族の金属のけい化
物のうちの1種または2種以上(以下これらを総
称して金属のけい化物という)からなる粉末とを
配合したものを原料粉末として使用し、超高圧焼
結を行なうと、ダイヤモンド粒子同志、上記金属
の炭・窒・硼化物粒子同志、および上記金属のけ
い化物粒子同志の相互接触がなく、ダイヤモンド
粒子、上記金属の炭・窒・硼化物粒子、および上
記金属のけい化物粒子とが相互に隣接し合い、し
かもその粒界では前記各粒子を構成する成分の拡
散が生じて強固な粒子間結合が形成されている緻
密な組織の焼結材料が得られ、この結果得られた
焼結材料は、ダイヤモンド粒子によつてもたらさ
れるすぐれた耐摩耗性と、金属の炭・窒・硼化物
粒子および金属のけい化物粒子によつてもたらさ
れるすぐれた靭性および高温耐酸化性(耐熱性)
とを兼ね備えるという知見を得たのである。 したがつて、この発明の超高圧焼結材料は、上
記知見にもとづいてなされたもので、容量%で、 ダイヤモンド:80%超〜85%、 金属の炭・窒・硼化物:10〜15%未満、 金属のけい化物および不可避不純物:5〜10%
未満、 からなる組成を有することに特徴がある。 ついで、この発明の超高圧焼結材料において、
成分組成範囲を上述のように限定した理由を説明
する。 (a) ダイヤモンド ダイヤモンド自体は、周知のようにモース硬
さ:10、ヌープ硬さ:8000Kg/mm2以上を有し、現
存する物質中、最も高い硬さを有する物質である
が、その含有量が80容量%以下では、所望の耐摩
耗性を確保することができず、一方85容量%を超
えて含有させると、ダイヤモンド粒子相互間の接
触度合が大きくなり、特に靭性に富んだ金属の
炭・窒・硼化物粒子および特に高温耐酸化性(耐
熱性)にすぐれた金属のけい化物粒子と、ダイヤ
モンド粒子との強固な粒子間結合が不十分とな
り、この結果靭性低下をきたして切削時にチツピ
ング摩耗が生じやすくなることから、その含有量
を80容量%〜85容量%と定めた。 また、この発明の超高圧焼結材料の製造に際し
て、原料粉末として使用されるダイヤモンド粉末
は、すぐれた焼結性を確保する目的で、平均粒径
50μm以下、一般には10μm以下の粉末粒径をも
つものを使用するのが好ましく、さらに市販のメ
タルコートのダイヤモンド粉末を原料粉末として
使用してもよい。 (b) 金属の炭・窒・硼化物 例えば、炭化チタン(以下TiCで示す)は融
点:3147℃、微少硬さ:3000Kg/mm2(荷重
100g)、窒化チタン(以下TiNで示す)は融点:
3205℃、微少硬さ:2000Kg/mm2、硼化チタン(以
下TiB2で示す)は融点:2980℃、微少硬さ:
3400Kg/mm2をそれぞれ有するように、金属の炭・
窒・硼化物はいずれも高融点高硬度を有すると共
に、ダイヤモンドに比して高温における耐酸化性
にすぐれた物質であり、しかも金属の炭・窒・硼
化物には、上述のように焼結時にダイヤモンド粒
子および金属のけい化物粒子との間に粒界拡散を
生じさせて強固な粒子間結合を形成する作用があ
るほか、それ自体が焼結性にすぐれたものである
ため、ダイヤモンド粒子間を金属のけい化物粒子
と共存した状態で埋めた緻密な組織を形成する作
用があるが、その含有量が10容量%未満では、相
対的にダイヤモンドの含有量が多くなり過ぎて前
記作用に所望の効果を得ることができず、この結
果靭性低下をきたすようになり、一方その含有量
が15容量%以上になると、相対的にダイヤモンド
の含有量が少なくなり過ぎて、ダイヤモンドのも
つ高硬度を焼結材料に充分反映することができ
ず、この結果耐摩耗性低下をきたすようになるこ
とから、その含有量を10〜15容量%未満に定め
た。 また、この発明の超高圧焼結材料の製造に際し
て、原料粉末として使用される金属の炭・窒・硼
化物粉末は微粉のものが好ましく、平均粒径10μ
m以下の微細な粉末を使用するのが望ましい。 (c) 金属のけい化物 例えば、Ti5Si3は融点:2120℃を有するよう
に、金属のけい化物は、いずれも高融点を有し、
しかもダイヤモンドおよび金属の炭・窒・硼化物
に比して高温における耐酸化性にすぐれた物質で
あり、さらに、この金属のけい化物は、ダイヤモ
ンドおよび金属の炭・窒・硼化物に比して軟質で
あるため、超高圧焼結中に容易に変形すると共
に、粒子間で辷りを生じてダイヤモンド粒子およ
び金属の炭・窒・硼化物粒子間を緻密に埋め、こ
の結果靭性向上が図られるようになる作用がある
が、その含有量が5容量%未満では、金属の炭・
窒・硼化物と同様に相対的にダイヤモンドの含有
量が多くなり過ぎて前記作用に所望の効果を得る
ことができないことから靭性低下をきたすように
なり、また、同様にその含有量が10容量%以上に
なると、相対的にダイヤモンドの含有量が少なく
なり過ぎて、ダイヤモンドのもつ高硬度を焼結材
料に十分反映することができず、この結果耐摩耗
性低下をきたすようになることから、その含有量
を5〜10容量%未満に定めた。 また、この発明の超高圧焼結材料の製造に際し
て、原料粉末として使用される金属のけい化物粉
末は微細なものが好ましく、平均粒径10μm以下
の微細粉末の使用が望ましい。 さらに、この発明の超高圧焼結材料は、通常の
粉末冶金法により、公知の超高圧超高温発生装置
を使用して製造することができる。 すなわち、原料粉末としてのダイヤモンド粉
末、金属の炭・窒・硼化物粉末、および金属のけ
い化物粉末を所定割合に配合し、この配合粉末を
鉄製ボールミルなどの混合機において長時間混合
して均質な混合粉末とし、ついでこの混合粉末
を、例えば特公昭36−23463号公報に記載される
ような超高圧高温発生装置における鋼製あるいは
高融点金属製の容器内に封入し、圧力および温度
を上げ、最高圧力:54〜70kb、最高温度:1400
〜1800℃の範囲内の圧力および温度に数分〜数1
分保持した後、冷却し、最終的に圧力を解放する
ことからなる基本的工程によつて製造することが
できる。 つぎに、この発明の超高圧焼結材料を実施例に
より説明する。 実施例 1 原料粉末として、それぞれ市販の平均粒径3μ
mのダイヤモンド粉末:83容量%、同3.0μmの
TiC粉末:10容量%、および同2μmのTi5Si3
末:7容量%とを配合し、この配合粉末を超硬合
金製のボールミル中で溶媒としてアセトンを使用
して4時間混合した後、乾燥した。ついで、この
混合粉末を、直径10mmφ×高さ10mmのステンレス
鋼(JIS・SUS304)製管内に詰め、真空引きしな
がら超硬合金(P20)製の蓋を前記管の両側端部
に溶接し、前記管を密封した。 このように上記混合粉末を充填密封した管を、
公知の超高圧高温発生装置に装着し、最高付加圧
力:60kb、最高加熱温度:1450℃の条件で10分
間保持して焼結した後、冷却し、圧力解放を行な
うことによつて第1表に示される成分組成をもつ
た本発明超高圧焼結材料(以下本発明材料とい
う)1を製造した。 この結果得られた本発明材料1は、ダイヤモン
ド、TiC、およびTi5Si3が均一に分散した緻密な
組織を有するものであつた。 ついで、比較の目的で、第1表に示されるよう
に、この発明の範囲から外れた成分組成を有する
比較超高圧焼結材料(以下比較材料という)1〜
6を、第1表に示される最終成分組成になるよう
に原料粉末の配合割合を変える以外は、上記本発
明材料1の製造に適用したと同一の条件で製造し
た。 つぎに、上記本発明材料1、比較材料1〜6お
よび同様に比較の目的で用意した従来公知の主成
分がダイヤモンドからなる超高圧焼結材料(以下
従来材料という)から、切断および研磨手段によ
つて切削用切刃を切出し、この切刃を炭化タング
ステン基超硬合金製チツプに銀ろうを使用してろ
う付けすることにより本発明材料製切削工具1、
比較材料製切削工具1〜6、および従来材料製切
削工具をそれぞれ製造した。
The present invention relates to an ultra-high pressure sintered material that has excellent toughness and heat and wear resistance, and is particularly suitable for use as a material for cutting tools. Generally used for cutting tools used to cut ferrous metal materials such as cast iron, non-ferrous metal materials such as aluminum, aluminum alloys, copper, and copper alloys, and non-metallic materials such as plastics, rubber, graphite, and ceramics. are required to have properties such as high hardness, excellent wear resistance, toughness, and thermal and chemical stability. In recent years, in order to satisfy such demands, ultra-high pressure sintered materials whose main component is diamond have been proposed, and the ultra-high pressure sintered materials have high hardness not only at room temperature but also at relatively high temperatures, and have excellent properties. Because it exhibits wear resistance, it is used as a material for finishing cutting tools under harsh conditions such as impact. It is true that the above-mentioned cutting tool made of ultra-high pressure sintered material enables high-speed cutting when cutting the above-mentioned ferrous metal materials and non-ferrous metal materials, making it difficult for built-up edges to stick and providing an excellent finished surface. This brings about the advantage of In this way, the conventional ultra-high pressure sintered materials mentioned above are mainly composed of diamond which has extremely high hardness, so they can be used as cutting tools for cutting the above-mentioned ferrous metal materials, non-ferrous metal materials, and non-metal materials. Although it shows excellent wear resistance when used,
Because it does not have sufficient toughness, chipping wear is likely to occur during cutting due to this lack of toughness, and as a result, the excellent wear resistance that it originally has cannot be fully demonstrated, and the Currently, it cannot be used for cutting that involves a rise in temperature because it does not have high-temperature oxidation resistance. From the above-mentioned viewpoint, the present inventors have determined that toughness,
In order to obtain materials for cutting tools that have both high-temperature oxidation resistance (heat resistance) and wear resistance, we conducted research focusing on diamond. one of group metal carbides, nitrides, carbonitrides, and borides
Powder consisting of a species or two or more species (hereinafter collectively referred to as metal carbon/nitrogen/boride) and one of the silicides of metals from groups 4a, 5a, and 6a of the periodic table. Alternatively, when a mixture of two or more types of powder (hereinafter collectively referred to as metal silicides) is used as a raw material powder and ultra-high pressure sintering is performed, the diamond particles are mixed together, and the carbon and nitrogen of the metals are mixed together. - There is no mutual contact between the boride particles and the silicide particles of the above metal, and the diamond particles, the carbon/nitrogen/boride particles of the above metal, and the silicide particles of the above metal are adjacent to each other, and A sintered material with a dense structure in which the components constituting each particle diffuses at the grain boundaries and strong interparticle bonds are formed is obtained. This provides excellent wear resistance, and the excellent toughness and high-temperature oxidation resistance (heat resistance) provided by metal carbon/nitrogen/boride particles and metal silicide particles.
We obtained the knowledge that it combines the following. Therefore, the ultra-high pressure sintered material of the present invention was made based on the above knowledge, and in terms of volume %, diamond: more than 80% to 85%, metal carbon/nitride/boride: 10 to 15%. Less than 5% to 10% of metal silicides and unavoidable impurities
It is characterized by having a composition consisting of less than or equal to: Next, in the ultra-high pressure sintered material of this invention,
The reason why the component composition range is limited as described above will be explained. (a) Diamond As is well known, diamond itself has a Mohs hardness of 10 and a Knoop hardness of 8000 Kg/mm 2 or more, making it the hardest substance in existence. If the content is less than 80% by volume, the desired wear resistance cannot be achieved, while if the content exceeds 85% by volume, the degree of contact between the diamond particles increases, and the carbon of the metal, which is particularly tough, increases.・Nitrogen/boride particles and especially metal silicide particles with excellent high-temperature oxidation resistance (heat resistance) do not have strong interparticle bonds with diamond particles, resulting in decreased toughness and chipping during cutting. Since wear tends to occur, the content was set at 80% to 85% by volume. In addition, in producing the ultra-high pressure sintered material of this invention, the diamond powder used as the raw material powder has an average particle size of
It is preferable to use powder having a particle size of 50 μm or less, generally 10 μm or less, and commercially available metal-coated diamond powder may also be used as the raw material powder. (b) Metallic carbon, nitride, and borides For example, titanium carbide (hereinafter referred to as TiC) has a melting point of 3147℃ and a microhardness of 3000Kg/mm 2 (load
100g), titanium nitride (hereinafter referred to as TiN) has a melting point:
3205℃, microhardness: 2000Kg/mm 2 , melting point of titanium boride (hereinafter referred to as TiB 2 ): 2980℃, microhardness:
Metal charcoal and carbon, each having 3400Kg/ mm2
Nitrogen and borides all have high melting points and high hardness, and are substances with better oxidation resistance at high temperatures than diamond.Moreover, metals such as carbon, nitride, and borides have a high melting point and high hardness, and as mentioned above, sintering Sometimes, it has the effect of causing grain boundary diffusion between diamond particles and metal silicide particles to form strong interparticle bonds. It has the effect of forming a dense structure in which diamond coexists with metal silicide particles, but if the diamond content is less than 10% by volume, the diamond content becomes relatively too large, which is not desirable for the above effect. On the other hand, if the content exceeds 15% by volume, the diamond content becomes relatively too small and the high hardness of diamond is lost. The content was set at less than 10 to 15% by volume because it could not be sufficiently reflected in the sintered material, resulting in a decrease in wear resistance. Further, in producing the ultra-high pressure sintered material of the present invention, the metal carbon/nitrogen/boride powder used as the raw material powder is preferably fine powder, with an average particle size of 10 μm.
It is desirable to use fine powder of less than m. (c) Metal silicides All metal silicides have high melting points, for example, Ti 5 Si 3 has a melting point of 2120°C.
Moreover, it is a substance with excellent oxidation resistance at high temperatures compared to diamond and metal carbon, nitride, and borides. Because it is soft, it is easily deformed during ultra-high pressure sintering, and it also creates slippage between particles, densely filling in the spaces between diamond particles and metal carbon, nitride, and boride particles, resulting in improved toughness. However, if the content is less than 5% by volume, metal charcoal and
Similar to nitride and boride, the diamond content becomes relatively too large, making it impossible to obtain the desired effect in the above action, resulting in a decrease in toughness. % or more, the diamond content becomes relatively too small and the high hardness of diamond cannot be fully reflected in the sintered material, resulting in a decrease in wear resistance. Its content was set at less than 5-10% by volume. Further, in producing the ultra-high pressure sintered material of the present invention, the metal silicide powder used as the raw material powder is preferably fine, and it is desirable to use fine powder with an average particle size of 10 μm or less. Further, the ultra-high pressure sintered material of the present invention can be manufactured by a conventional powder metallurgy method using a known ultra-high pressure and ultra-high temperature generator. That is, diamond powder as raw material powder, metal carbon/nitrogen/boride powder, and metal silicide powder are blended in a predetermined ratio, and this blended powder is mixed for a long time in a mixer such as an iron ball mill to form a homogeneous powder. This mixed powder is then sealed in a container made of steel or a high melting point metal in an ultra-high pressure and high temperature generator as described in Japanese Patent Publication No. 36-23463, and the pressure and temperature are increased. Maximum pressure: 54-70kb, maximum temperature: 1400
Several minutes to several 1 at pressure and temperature within the range of ~1800℃
It can be produced by a basic process consisting of holding for a minute, cooling and finally releasing the pressure. Next, the ultra-high pressure sintered material of the present invention will be explained using examples. Example 1 As raw material powder, each commercially available average particle size of 3μ
Diamond powder: 83% by volume, 3.0μm
TiC powder: 10% by volume and 2 μm Ti 5 Si 3 powder: 7% by volume were mixed, and this mixed powder was mixed for 4 hours using acetone as a solvent in a ball mill made of cemented carbide. Dry. Next, this mixed powder was packed into a stainless steel (JIS/SUS304) tube with a diameter of 10 mmφ and a height of 10 mm, and cemented carbide (P20) lids were welded to both ends of the tube while vacuuming. The tube was sealed. The tube filled with the above mixed powder and sealed in this way is
It was installed in a known ultra-high pressure and high temperature generator and sintered at a maximum applied pressure of 60 kb and a maximum heating temperature of 1450°C for 10 minutes, then cooled and released the pressure to produce the results shown in Table 1. An ultra-high pressure sintered material of the present invention (hereinafter referred to as the "present invention material") 1 having the component composition shown in was produced. The resulting material 1 of the present invention had a dense structure in which diamond, TiC, and Ti 5 Si 3 were uniformly dispersed. Next, for the purpose of comparison, as shown in Table 1, comparative ultra-high pressure sintered materials (hereinafter referred to as comparative materials) 1 to 1 having component compositions outside the scope of the present invention were used.
Material No. 6 was produced under the same conditions as applied to the production of Inventive Material 1 above, except that the mixing ratio of the raw material powders was changed so that the final component composition was as shown in Table 1. Next, from the above-mentioned Invention Material 1, Comparative Materials 1 to 6, and a conventionally known ultra-high pressure sintered material whose main component is diamond (hereinafter referred to as conventional material) prepared for the purpose of comparison, cutting and polishing were performed. Then, a cutting edge is cut out, and this cutting edge is brazed to a tungsten carbide-based cemented carbide chip using silver solder, thereby producing a cutting tool 1 made of the material of the present invention.
Cutting tools 1 to 6 made of comparative materials and cutting tools made of conventional materials were manufactured, respectively.

【表】 この結果得られた上記各種切削工具を用いて、 切削速度:250m/min、 送り:0.1mm/rev.、 切り込み:0.7mm、 切削油:使用、 の条件で鋳鉄部材の仕上げ面加工を行ない、上記
各種切削工具が寿命に至るまでに何個の部材を加
工できたかを測定すると共に、その仕上げ面粗さ
を測定した。この結果を第2表に示した。
[Table] Using the various cutting tools obtained above, finish surface machining of cast iron parts under the following conditions: cutting speed: 250 m/min, feed: 0.1 mm/rev., depth of cut: 0.7 mm, cutting oil: used. The number of parts that could be machined with each of the above-mentioned cutting tools until their service life was reached was measured, and the finished surface roughness was also measured. The results are shown in Table 2.

【表】 第2表に示されるように、本発明材料は、これ
を切削工具として使用した場合、この発明の範囲
から外れた成分組成を有する比較材料および従来
材料に比してきわめてすぐれた切削特性、すなわ
ち工具寿命および仕上げ面粗さを示すことが明ら
かである。 実施例 2 配合粉末を、いずれも市販の平均粒径3μmの
ダイヤモンド粉末:82容量%、同2.0μmのTiC
粉末:5容量%、同3.0μmのTaC粉末:6容量
%および同5.0μmのTa5Si3粉末:7容量%から
構成し、焼結保持時間を1時間とする以外は、上
記実施例において本発明材料1の製造の場合と同
一の条件で、実質的に前記配合粉末組成と同一の
最終成分組成をもつた本発明材料2を製造した。 この本発明材料2と、実施例1で示したと同じ
従来材料より、それぞれ実施例1におけると同一
の条件で切削工具を製造し、この切削工具を用い
て、アルミニウム合金部材の穴あけ加工を行な
い、工具寿命に至るまでに何個の部材を加工でき
るかを測定したところ、本発明材料2製の切削工
具が60000個の加工個数を示したのに対して、従
来材料製切削工具は13000個しか示さず、本発明
材料はすぐれた切削特性をもつことが明らかであ
る。 実施例 3 配合粉末を、いずれも市販の平均粒径1.0μm
のダイヤモンド粉末:84容量%、同0.5μmのWC
粉末:10容量%、同2.0μmのMo5Si3粉末:3容
量%、および同3.0μmのTi5Si3粉末:3容量%
から構成し、前記配合粉末の混合を超硬合金製ボ
ールミル中、溶媒としてアセトンを使用して10時
間行なう以外は、上記実施例1において本発明材
料1を製造した場合と同一の条件で、実質的に前
記配合粉末組成と同一の最終成分組成をもつた本
発明材料3を製造した。 ついで、実施例1におけると同様に製造した本
発明材料3製の切削工具および上記従来材料製の
切削工具を用いて、 切削速度:400m/min、 送り:0.1mm/rev.、 切込み:0.2mm、 切削油:なし、 の条件で連続切削試験を行ない、切削工具の逃げ
面摩耗巾が0.2mmに達するまでの切削時間を測定
したところ、本発明材料3製の切削工具は
110minを要したのに対して、従来材料製の切削
工具はきわめて短かい14minで前記摩耗巾に達し
た。この結果から本発明材料はきわめてすぐれた
切削特性をもつことがわかる。 上述のように、この発明の超高圧焼結材料は、
すぐれた靭性、高温耐酸化性(耐熱性)、および
耐摩耗性を兼ね備えているので、特に切削工具用
材料として使用した場合にすぐれた切削性能を発
揮するのである。
[Table] As shown in Table 2, when the material of the present invention is used as a cutting tool, it has an extremely superior cutting ability compared to comparative materials and conventional materials having compositions outside the scope of the present invention. It is clear that the characteristics, namely tool life and finished surface roughness, are shown. Example 2 The blended powders were commercially available diamond powder with an average particle size of 3 μm: 82% by volume, and TiC with an average particle size of 2.0 μm.
Powder: 5% by volume, 3.0 μm TaC powder: 6% by volume, and 5.0 μm Ta 5 Si 3 powder: 7% by volume, except that the sintering holding time was 1 hour. Inventive material 2 was produced under the same conditions as in the production of inventive material 1, having substantially the same final component composition as the blended powder composition. A cutting tool was manufactured from this invention material 2 and the same conventional material as shown in Example 1 under the same conditions as in Example 1, and this cutting tool was used to drill holes in an aluminum alloy member, When measuring the number of parts that could be machined over the life of the tool, the cutting tool made of Inventive Material 2 machined 60,000 pieces, while the cutting tool made from the conventional material only machined 13,000 pieces. It is clear that the material of the invention has excellent cutting properties. Example 3 All blended powders were commercially available with an average particle size of 1.0 μm.
Diamond powder: 84% by volume, same 0.5μm WC
Powder: 10% by volume, 2.0μm Mo5Si3 powder: 3% by volume, and 3.0μm Ti5Si3 powder: 3% by volume
The blended powder was mixed in a cemented carbide ball mill for 10 hours using acetone as a solvent, but under substantially the same conditions as in Example 1 to produce Inventive Material 1. Inventive material 3 having the same final component composition as the above-mentioned blended powder composition was produced. Next, using a cutting tool made of the present invention material 3 manufactured in the same manner as in Example 1 and a cutting tool made of the above-mentioned conventional material, cutting speed: 400 m/min, feed: 0.1 mm/rev., depth of cut: 0.2 mm. A continuous cutting test was conducted under the conditions of , cutting oil: none, and the cutting time until the flank wear width of the cutting tool reached 0.2 mm.
While it took 110 min, cutting tools made from conventional materials reached the wear width in an extremely short 14 min. This result shows that the material of the present invention has extremely excellent cutting properties. As mentioned above, the ultra-high pressure sintered material of this invention is
Because it has excellent toughness, high-temperature oxidation resistance (heat resistance), and wear resistance, it exhibits excellent cutting performance especially when used as a material for cutting tools.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド:80%超〜85%、 周期律表の4a,5aおよび6a族金属の炭化物、窒
化物、炭窒化物、および硼化物のうちの1種また
は2種以上:10〜15%未満、 周期律表の4a,5a,および6a族金属のけい化物
のうちの1種または2種以上:5〜10%未満、 からなる組成(以上容量%)を有することを特徴
とする靭性を具備する耐熱耐摩耗性超高圧焼結材
料。
[Claims] 1. Diamond: more than 80% to 85%, one or more of carbides, nitrides, carbonitrides, and borides of metals from groups 4a, 5a, and 6a of the periodic table: 10% to less than 15%, one or more of silicides of metals of groups 4a, 5a, and 6a of the periodic table: 5% to less than 10% (volume %). A heat-resistant, wear-resistant, ultra-high-pressure sintered material with toughness.
JP13329678A 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity Granted JPS5562849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13329678A JPS5562849A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13329678A JPS5562849A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Publications (2)

Publication Number Publication Date
JPS5562849A JPS5562849A (en) 1980-05-12
JPS6114106B2 true JPS6114106B2 (en) 1986-04-17

Family

ID=15101329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13329678A Granted JPS5562849A (en) 1978-10-31 1978-10-31 Heattresisting and abrasion resisting superpressure sintering material with tenacity

Country Status (1)

Country Link
JP (1) JPS5562849A (en)

Also Published As

Publication number Publication date
JPS5562849A (en) 1980-05-12

Similar Documents

Publication Publication Date Title
US4647546A (en) Polycrystalline cubic boron nitride compact
EP0499223B1 (en) High toughness cermet and process for preparing the same
JP2001514081A (en) Elongated rotary tool made of cermet containing Co-Ni-Fe binder
US5432132A (en) Silicon nitride based cutting tool insert
Santhanam Application of transition metal carbides and nitrides in industrial tools
US6140262A (en) Polycrystalline cubic boron nitride cutting tool
JP2893886B2 (en) Composite hard alloy material
JPS6114106B2 (en)
JPS6225630B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JPS6146429B2 (en)
JPS644989B2 (en)
JPS6119591B2 (en)
JPS6126511B2 (en)
JPS6143307B2 (en)
JPS6141866B2 (en)
JPS6225632B2 (en)
JPS6119589B2 (en)
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JPS6119588B2 (en)
JPS6141873B2 (en)
JPS6143306B2 (en)