JPS6269407A - Surface roughing of transparent conducting film - Google Patents

Surface roughing of transparent conducting film

Info

Publication number
JPS6269407A
JPS6269407A JP60209367A JP20936785A JPS6269407A JP S6269407 A JPS6269407 A JP S6269407A JP 60209367 A JP60209367 A JP 60209367A JP 20936785 A JP20936785 A JP 20936785A JP S6269407 A JPS6269407 A JP S6269407A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
island
roughening
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60209367A
Other languages
Japanese (ja)
Inventor
松岡 継文
行雄 中嶋
白玖 久雄
渡邊 金雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60209367A priority Critical patent/JPS6269407A/en
Publication of JPS6269407A publication Critical patent/JPS6269407A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はSnO,,1n103或いはそれらの混合物で
あるインジウム錫酸化物(I To>に代表される透光
性導電酸化物(T CO)からなる透明導電膜の粗面化
方法に関し、斯る方法により粗面化された透明導電膜は
例え、ば光起電力装置の受光面電極として利用される。
Detailed Description of the Invention (a) Industrial Application Field The present invention is directed to a translucent conductive oxide (TCO) typified by indium tin oxide (ITO), which is SnO, 1n103, or a mixture thereof. Regarding the method for roughening a transparent conductive film, the transparent conductive film roughened by this method is used, for example, as a light-receiving surface electrode of a photovoltaic device.

(ロ)従来の技術 半導体接合を備える非晶質ンリコン系の半導体層を光活
性層とする光起電力装置は既に知られており、その基本
構成は透光性の基板上に、透光性受光面゛電極層、半導
体光活性層、背面電極店を、−の順序に積層しである。
(b) Conventional technology A photovoltaic device in which a photoactive layer is an amorphous phosphor-based semiconductor layer equipped with a semiconductor junction is already known, and its basic configuration is to place a transparent substrate on a transparent substrate. The light-receiving surface electrode layer, the semiconductor photoactive layer, and the back electrode layer are laminated in the order of -.

斯る光起電力装置の光重変換効率を向上せしめるべく、
特開昭58−57756号公報や第44回応用物理学会
学術講演会(昭和58年9月25L]〜28日)予稿集
25P −L −28351頁等に開示さτしたように
、光入射側の受光面′π極者の表面にO,t/1m以上
25μm以下の凹凸を設は粗面(テクスヂュア)化し、
入射光の光路長を艮くすると共に光活性層中に封し込め
る試みがある。
In order to improve the light weight conversion efficiency of such a photovoltaic device,
As disclosed in JP-A-58-57756 and the Proceedings of the 44th Japan Society of Applied Physics Academic Conference (September 25L to 28, 1981), page 25P-L-28351, the light incident side The surface of the light-receiving surface of
Attempts have been made to increase the optical path length of incident light and confine it within a photoactive layer.

然し乍ら、上記受光面電極の粗面化は受光面電極の成膜
の過程に於いて行なわれろために、均一な凹凸を設ける
ことが難しいと言う欠点がある。
However, since the surface roughening of the light-receiving surface electrode is carried out during the process of film formation of the light-receiving surface electrode, there is a drawback that it is difficult to provide uniform irregularities.

また、特開昭59−75678号公報に開示された透明
導電膜の粗面化は、斯る透明導電膜を形成後エツチング
を施すことにより行なうものであるが、この方法によっ
て均一な凹凸を設けることは難しい。
Further, the surface roughening of the transparent conductive film disclosed in JP-A-59-75678 is carried out by etching after forming the transparent conductive film. That's difficult.

(ハ)発明が解決しようとする問題点 本発明は上述の如く透明導電膜の表面に均一な凹凸が用
意に得られない点を解決しようとするものである。
(c) Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned problem in which uniform irregularities cannot be easily obtained on the surface of a transparent conductive film.

(ニ) 問題点を解決するための手段 本発明透明導電膜の粗面化方法は、透光性導電酸化物の
透明導電膜を一主面に配置した基板を用意し、上記透明
導電膜上に該導電膜のエッチング工程時マスクとして作
用する島状部分を点在せしめ、斯る島状部分から露出し
た上記透明導電膜をその途中までエツチングして粗面化
したことを特徴とする。
(d) Means for Solving Problems The method for roughening the surface of a transparent conductive film of the present invention involves preparing a substrate on which a transparent conductive film of a light-transmitting conductive oxide is disposed on one principal surface, and roughening the transparent conductive film on the transparent conductive film. The transparent conductive film is characterized in that island-shaped portions are interspersed therein which act as masks during the etching process of the conductive film, and the transparent conductive film exposed from the island-shaped portions is etched halfway to roughen the surface.

(ホ) 作用 」二連の如く透明導電膜のエツチング工程に先立って該
透明導電膜上にマスクとして作用する島状部分を点在せ
しめることによって、斯る島状部分により覆われた透明
導電膜部分はエツチング除去されることなく残存する。
(e) Effect: By interspersing island-like parts that act as a mask on the transparent conductive film prior to the etching process of the transparent conductive film, the transparent conductive film covered with such island-like parts can be removed. The portion remains without being etched away.

(へ) 実施例 第1図乃至第3図は本発明透明導電膜の粗面化方法を工
程別に示しており、第1図の工程では、ガラス等の透光
性且つ絶縁性の基板(1)の−主面上のほぼ全面を覆う
べくSnO,、IntOs、ITO等のTCOからなる
透明導電膜(2)が電子ビーム蒸着法、スパッタリング
、熱CDV法等の周知の方法により膜厚約1800人〜
5000人程度形成きれる。
(f) Example FIGS. 1 to 3 show the method for roughening the transparent conductive film of the present invention step by step. In the step of FIG. 1, a transparent and insulating substrate (1 ) A transparent conductive film (2) made of TCO such as SnO, IntOs, ITO, etc. is formed to a film thickness of about 1800 nm by a well-known method such as electron beam evaporation, sputtering, or thermal CDV to cover almost the entire main surface of the Man~
Approximately 5,000 people can be formed.

第2図の工程では、上記はぼ平坦な透明導電膜(2)上
に、該透明溝tllllj(2)のエツチング工程時に
マスクとして作用するCr、O=やT i Os等の金
属酸化物からなる島状部分(3)(3)・・・が点在し
て形成きれる。斯る島状部分(3)(3)・・・は酸素
雰囲気中での金属体をソース或いはターゲットとする反
応性蒸着法やスパッタリング法により形成され、形成過
程初期の段階では被着(基板)面に対して一定膜厚の膜
状とならずクラスタ的に散逸することによって島状に形
成されるために、均一な島状部分<3 )(3)・・・
が容易に得られる。
In the step shown in FIG. 2, a metal oxide such as Cr, O= or TiOs, which acts as a mask during the etching process of the transparent groove tllllj (2), is deposited on the almost flat transparent conductive film (2). The island-like portions (3) (3)... are scattered and formed. These island-shaped portions (3) (3)... are formed by reactive vapor deposition or sputtering using a metal body as a source or target in an oxygen atmosphere, and at the early stage of the formation process, the deposited (substrate) Because it is not formed into a film with a constant thickness on the surface but is formed into an island by dissipating in clusters, the island-like portion is uniform<3) (3)...
can be easily obtained.

本実施例に於いてはCr@Os及びTi Otのマスク
として作用する粒径200〜500人の島状部分(3)
(3)・・・を下記の条件により作製した。
In this example, the island-like part (3) with a particle size of 200 to 500 people acts as a mask for Cr@Os and TiOt.
(3) ... was produced under the following conditions.

・ Cr1Os・・・反応性蒸着法 ソ   −   ス  :   Cr 雰  囲  気 :   Ol、 2X10−5Tor
r基板時間=300〜400℃ 蒸着時間: 2〜10分 ・ Ti Os  ・・・スパッタリングターケラト 
:Ti 雰 囲 気:  Ar+O,,02分圧3 X 1O−
5Torr以上 基板温度二 〜200℃ スパッタリング時間:2〜10分 第3図の工程では、透明導電膜(2)上に島状部分(3
)(3)・・・を点在配置した基板(1)が上記透明導
電膜(2)に対してのみ蝕刻性のあるエツチング液中に
浸積諮れることによって、当該島状部分(3)(3)・
・・から露出状態にある透明導電膜(2)の露出部分が
選択的にエツチング除去される。このエツチング工程に
於いて使月される具体的なエツチング液はIn、O,や
ITOのインジウム系についてはHCR二HtO: F
eCl s −500CC: 5000::100gで
あり、透明4電膜(2)に対して蝕刻性を呈するものの
Cr*O+やT108の島状部分(3)(3)・・・を
エツチングするに至らず、従って斯るエツチング工程で
は上記島状部分(3)(3)・・・が被覆状態にある透
明導電膜(2)の耐エツチングマスクとして作用する。
・Cr1Os...Reactive vapor deposition method Source: Cr Atmosphere: Ol, 2X10-5 Tor
rSubstrate time = 300~400℃ Vapor deposition time: 2~10 minutes・TiOs...Sputtering terkelat
:Ti Atmosphere: Ar+O,,02 partial pressure 3 x 1O-
5 Torr or higher substrate temperature 2 to 200°C Sputtering time: 2 to 10 minutes In the process shown in Fig. 3, an island-shaped portion (3
)(3)... is immersed in an etching solution that etches only the transparent conductive film (2), thereby forming the island-like portions (3). (3)・
. . . The exposed portion of the transparent conductive film (2) is selectively etched away. The specific etching liquid used in this etching process is HCR2HtO:F for In, O, and indium-based ITO.
eCl s -500CC: 5000::100g, and although it exhibits etching properties for the transparent 4-electrode film (2), it did not reach the point where it etched the Cr*O+ and T108 island-like portions (3) (3)... Therefore, in such an etching step, the island-shaped portions (3), (3), etc. act as an etching-resistant mask for the covered transparent conductive film (2).

従って、斯る透明導電膜(2)のエツチング処理をその
厚み方向の途中までとすることによって、第3図に示す
如く透明導電@(2)の露出部分のみがエツチング除去
されて、透明導電膜(2)乃至島状部分(3)<3)・
・・の露出表面は粗面化きれ高低、差約200人〜20
00人の凹凸表面(4)が付与きれる。
Therefore, by etching the transparent conductive film (2) to the middle of its thickness, only the exposed portion of the transparent conductive film (2) is etched away, as shown in FIG. (2) to island-like portion (3)<3)・
The exposed surface of ... is roughened and the height difference is about 200 ~ 20
The uneven surface (4) of 00 people can be applied completely.

一方、Sno!の如きスズ系の透明導電膜上2)のエツ
チング工程にあっては、上記インジウム系の透明導電膜
(2)のエツチング液を用いてはエツチング除去するこ
とはできない。通常期るスズ系のエツチング工程には、
エツチング液のHCNと反応して活性化水素を発生する
Znが予め被エツチング表面に付R−aれる。そこで、
このスズ系透明導電膜(2)のエツチングに際しては島
状部分(3)(3)・・・を形成する第2図の工程後に
、予め膜厚がほぼ均一となる約数1000人〜数μm蒸
若される。斯る膜厚がほぼ一定なZnの蒸着膜により斑
なく活性水素の発生を得ることができ、均一な粗面化を
施すことができる。
On the other hand, Sno! In the etching process for the tin-based transparent conductive film (2), it is impossible to remove the film using the etching solution for the indium-based transparent conductive film (2). In the tin-based etching process that normally takes place,
Zn, which reacts with HCN of the etching solution to generate activated hydrogen, is applied in advance to the surface to be etched. Therefore,
When etching this tin-based transparent conductive film (2), after the process shown in FIG. Being steamed and young. With such a deposited Zn film having a substantially constant thickness, active hydrogen can be generated evenly, and the surface can be uniformly roughened.

尚、斯るZnの蒸着膜を利用したエツチングは、インジ
ウム系の透明導電膜(2)にも適用可能である。
Note that etching using such a deposited Zn film can also be applied to an indium-based transparent conductive film (2).

第4図は本発明粗面化方法により凹凸表面(4)が付与
された透明導電膜(2)を受光面電極とした光起電力装
置の基本構造を示している。即ち、(1)〜(4)は既
に説明した基板〜凹凸表面であり、斯る凹凸表面(4)
の背面側に、その内部に膜面に平行なpin、pn、p
i、pinpin等の半導体接合を持つアモルファスシ
リコン系の半導体光活性層(5)と、Aj!、Ag、T
CO//l、T CO/ A g等の#Lm或いは積層
構造の背面電極(6)と、がこの順序で積層しである。
FIG. 4 shows the basic structure of a photovoltaic device in which a transparent conductive film (2) provided with an uneven surface (4) by the surface roughening method of the present invention is used as a light-receiving surface electrode. That is, (1) to (4) are the substrate to the uneven surface described above, and the uneven surface (4)
On the back side of the
An amorphous silicon-based semiconductor photoactive layer (5) having semiconductor junctions such as i, pinpin, etc., and Aj! ,Ag,T
#Lm such as CO//l, TCO/Ag, or a back electrode (6) having a laminated structure are laminated in this order.

而して、エツチング工程時にマスクとして作用したCr
、O,或いはTie、の島状部分(3)(3)・・・は
受光面側がTCOの透明導電膜(2)と接し、背面がア
モルファスシリコン系の半導体光活性層(5)と当接す
る。光起電力装置に於いて留意tへきは、光電変換動作
に必要な光を光電変換動作する半導体光活性層(5)に
多く導くこと、換言すると、受光面側での光反射量を抑
圧することである。上記構成にある光起電力装置との屈
折率を見てみると、基板(1)の代表的な材料である青
板ガラスの屈折率は1.45〜1.6であり、次いでT
COの透明導電膜(2)のそれは約2.0程度であり、
そして島状部分(3)(3)・・・を構成するCr、O
,若しくはTi1lの各々の屈折率は約2.5と約2.
6である。一方、光電変換動作するアモルファスシリコ
ン系の半導体光活性層(5)の屈折率的3,4〜4.0
であり、従って、透明導電膜(2)のエツチング工程時
にマスクとして作用する島状部分(3)(3)・・・と
して透明導電膜(2)の屈折率より大きい材料、即ちT
COに対してCr、O,若しくはTi1tを選択すれば
、屈折率が界面に於いて大きく変化することに起因する
界面反射を極めて小さくすることができる。
Therefore, the Cr that acted as a mask during the etching process
, O, or Tie, the light-receiving surface side of the island-shaped portions (3) (3)... is in contact with the TCO transparent conductive film (2), and the back surface is in contact with the amorphous silicon-based semiconductor photoactive layer (5). . The important thing to keep in mind when using a photovoltaic device is to guide a large amount of the light necessary for the photoelectric conversion operation to the semiconductor photoactive layer (5) that performs the photoelectric conversion operation, in other words, to suppress the amount of light reflection on the light receiving surface side. That's true. Looking at the refractive index of the photovoltaic device having the above configuration, the refractive index of blue plate glass, which is a typical material for the substrate (1), is 1.45 to 1.6, followed by T.
That of the CO transparent conductive film (2) is about 2.0,
And Cr and O that constitute the island-like parts (3) (3)...
, or Ti1l have a refractive index of about 2.5 and about 2.5, respectively.
It is 6. On the other hand, the refractive index of the amorphous silicon-based semiconductor photoactive layer (5) that performs photoelectric conversion is 3.4 to 4.0.
Therefore, during the etching process of the transparent conductive film (2), a material having a refractive index higher than that of the transparent conductive film (2), that is, T
If Cr, O, or Tilt is selected for CO, interface reflection caused by a large change in refractive index at the interface can be made extremely small.

(ト) 発明の効果 本発明透明導電膜の粗面化方法は以上の説明から明らか
な如く、透明導電膜上に点在上しめられた島状部分は該
導電膜のエッチング工程時耐エツチングのマスクとして
作用するので、斯るエツチングを上記透明導電膜の途中
までとすることによって、島状部分から露出した透明導
電膜の露出部分のみがエツチング除去きれる結果、均一
な凹凸表面を容易に形成することができる。また、上記
島状部分として透明導電膜の屈折率より大きい材料を選
択すれば、例えば光起電力装置の半導体光活性層の如く
更に大きな変化が緩和され界面反射を抑圧することがで
き、上述の如さ光起電力装置にあっては充電変換効率を
上昇せしめる。
(g) Effects of the Invention As is clear from the above explanation, the method for roughening the surface of a transparent conductive film of the present invention is such that the island-like portions dotted on the transparent conductive film have a high etching resistance during the etching process of the conductive film. Since it acts as a mask, by etching halfway through the transparent conductive film, only the exposed portions of the transparent conductive film exposed from the island-like portions can be etched away, making it easy to form a uniform uneven surface. be able to. Furthermore, if a material with a higher refractive index than the transparent conductive film is selected for the island-shaped portion, as in the case of a semiconductor photoactive layer of a photovoltaic device, even larger changes can be alleviated and interface reflections can be suppressed. In a photovoltaic device, charging conversion efficiency is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明粗面化方法を工程別に示す要
部拡大断面図、第4図は本発明粗面化方法により粗面化
きれた透明導電膜を組込んだ光起電力装置の要部拡大断
面図、である。 (1)・・・基板、(2)・・・透明導1膜、(3)・
・・島状部分、(4)・・・凹凸表面。
Figures 1 to 3 are enlarged cross-sectional views of main parts showing each step of the surface roughening method of the present invention, and Figure 4 is a photovoltaic device incorporating a transparent conductive film whose surface has been roughened by the surface roughening method of the present invention. FIG. 3 is an enlarged cross-sectional view of the main parts of the device. (1)...Substrate, (2)...Transparent conductive film, (3)...
... Island-shaped portion, (4) ... Uneven surface.

Claims (3)

【特許請求の範囲】[Claims] (1)透光性導電酸化物の透明導電膜を一主面に配置し
た基板を用意し、上記透明導電膜上に該導電膜のエッチ
ング工程時マスクとして作用する島状部分を点在せしめ
、斯る島状部分から露出した上記透明導電膜をその途中
までエッチングして粗面化したことを特徴とする透明導
電膜の粗面化方法。
(1) preparing a substrate on which a transparent conductive film of a light-transmitting conductive oxide is disposed on one principal surface, dotting island-shaped portions on the transparent conductive film to act as a mask during the etching process of the conductive film; A method for roughening a surface of a transparent conductive film, characterized in that the transparent conductive film exposed from the island-shaped portion is etched halfway to make the surface rough.
(2)上記島状部分の屈折率は透明導電膜の屈折率より
大きいことを特徴とする特許請求の範囲第1項記載の透
明導電膜の粗面化方法。
(2) The method for roughening the surface of a transparent conductive film according to claim 1, wherein the refractive index of the island-shaped portion is larger than the refractive index of the transparent conductive film.
(3)上記透明導電膜はCr_2O_3若しくはSnO
_2であることを特徴とした特許請求の範囲第2項記載
の透明導電膜の粗面化方法。
(3) The transparent conductive film is Cr_2O_3 or SnO
_2. The method for roughening a transparent conductive film according to claim 2, characterized in that: _2.
JP60209367A 1985-09-20 1985-09-20 Surface roughing of transparent conducting film Pending JPS6269407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60209367A JPS6269407A (en) 1985-09-20 1985-09-20 Surface roughing of transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60209367A JPS6269407A (en) 1985-09-20 1985-09-20 Surface roughing of transparent conducting film

Publications (1)

Publication Number Publication Date
JPS6269407A true JPS6269407A (en) 1987-03-30

Family

ID=16571762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60209367A Pending JPS6269407A (en) 1985-09-20 1985-09-20 Surface roughing of transparent conducting film

Country Status (1)

Country Link
JP (1) JPS6269407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106472A (en) * 1987-10-20 1989-04-24 Sanyo Electric Co Ltd Solar cell
US6514674B1 (en) 1999-03-11 2003-02-04 Canon Kabushiki Kaisha Method of forming an optical element
JP2012040878A (en) * 2006-12-13 2012-03-01 National Institute Of Advanced Industrial Science & Technology Mold for optical element having nanostructure, mold for nanostructure, and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106472A (en) * 1987-10-20 1989-04-24 Sanyo Electric Co Ltd Solar cell
US6514674B1 (en) 1999-03-11 2003-02-04 Canon Kabushiki Kaisha Method of forming an optical element
JP2012040878A (en) * 2006-12-13 2012-03-01 National Institute Of Advanced Industrial Science & Technology Mold for optical element having nanostructure, mold for nanostructure, and optical element

Similar Documents

Publication Publication Date Title
US11469336B2 (en) Photodiode, method for preparing the same, and electronic device
JPS61288473A (en) Photovoltaic device
JPS61141185A (en) Manufacture of photovoltaic element
JPS6269407A (en) Surface roughing of transparent conducting film
JPS61241983A (en) Photovoltaic device
JPS6269408A (en) Surface roughing of transparent conducting film
JPS61288314A (en) Working of light transmitting conducting oxide layer
JPH01227307A (en) Transparent electric conductor
JP3229705B2 (en) Photovoltaic device
JPH05343715A (en) Thin film solar cell
JPS62123781A (en) Photoelectric conversion element
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPS63102109A (en) Transparent conducting film
JP3196155B2 (en) Photovoltaic device
JPS5898985A (en) Thin film solar battery
JPS61116886A (en) Manufacture of photovoltaic device
JP2994716B2 (en) Photovoltaic device
JPS60216585A (en) Solar cell element
JPS58111379A (en) Thin-film solar cell
JP2892921B2 (en) Photovoltaic device
JPS5943101B2 (en) Amorphous semiconductor solar cell
JPS59152673A (en) Manufacture of photoelectric converter
JPS5840167B2 (en) liquid crystal display device
JPS6043868A (en) Photovoltaic device
JP3203104B2 (en) Photovoltaic device