JPS626670B2 - - Google Patents

Info

Publication number
JPS626670B2
JPS626670B2 JP2491480A JP2491480A JPS626670B2 JP S626670 B2 JPS626670 B2 JP S626670B2 JP 2491480 A JP2491480 A JP 2491480A JP 2491480 A JP2491480 A JP 2491480A JP S626670 B2 JPS626670 B2 JP S626670B2
Authority
JP
Japan
Prior art keywords
drain
impurity concentration
channel region
insulating film
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2491480A
Other languages
English (en)
Other versions
JPS56146276A (en
Inventor
Masamizu Konaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP2491480A priority Critical patent/JPS56146276A/ja
Publication of JPS56146276A publication Critical patent/JPS56146276A/ja
Publication of JPS626670B2 publication Critical patent/JPS626670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 本発明はノーマリ・オフ形で3極管(Triode
―Like)特性を有する絶縁ゲート型電界効果ト
ランジスタ(以下MOSFETと称す)に関するも
のである。
第1図は1966年にJ.A.GEURSTによつて報告
されたMOSFETのピンチオフ近傍における理論
の説明図で、ソース、ドレインの深さが非常に浅
くドレイン電流が非常に薄い層を流れ、かつゲー
ト電極がチヤネルに対して対称的に存在する場合
の理想的なMOSFETの概略図である。図中、Tp
はゲート酸化膜厚、Lはソース・ドレイン間の
距離(チヤネル長)である。このMOSFETにお
いてGEURSTは第2図に示す様にL/Tpxを変
えるとドレイン電流ID―ドレイン電圧VD特性が
飽和型から非飽和型(Triode―Like)になるこ
とを報告している。GEURSTの理論はMOSFET
の理想的な構造で論じられているが、現実的には
ゲート電極は1つでありソース、ドレインの深さ
は0.3μm位は存在し、又ソース・ドレイン間に
流れる電流は非常に薄い層を流れるとは限らな
い。例えば高集積化を目的とする短チヤネル
MOSFETにおいては印加されたドレイン電圧に
よつてソース・ドレイン間にパンチスルーが起こ
り、ゲート酸化膜―基板界面よりかなり深い位置
を流れ、第3図に示す如く通常のMOSFETの特
性Aと比べサブスレツシヨールド領域の特性が悪
化した特性Bのようになる。更にパンチスルー状
態では電流がゲート酸化膜―基板界面より深い位
置を流れるためゲート電圧によるドレイン電流の
可制御性が悪く、第4図に示す如く変換コンダク
タンスgnが小さくなるという不都合さを招く。
第5図は前述のパンチスルーによるドレイン電
流のリーク電流を抑制するためにチヤネル領域の
深い部分のソース・ドレイン間全てに基板と同じ
導電型の高不純物濃度埋込み層を設けた従来のN
チヤネルMOSFETの構造を示した概略断面図で
ある。図中1は例えば低濃度不純物をもつP型シ
リコン基板、2はシリコン基板1の一主面を熱酸
化して形成されたゲート絶縁膜(SiO2)、3はゲ
ート絶縁膜2の表面に形成されたゲート電極であ
る多結晶シリコン層、4,5はそれぞれシリコン
基板1の表面部にN型不純物を選択的に拡散する
ことにより形成されたソース及びドレイン領域、
6はシリコン基板1の表面部を酸化することによ
り形成された素子間分離用のフイールド酸化膜、
7はチヤネルストツパー、8はパンチスルー抑制
のための高濃度埋込み層、そして9はとり囲まれ
た基板と同じ不純物濃度のチヤネル領域である。
この構造にあつては従来実効チヤネル長Leff
ゲート酸化膜厚Tpxの比はLeff/Tpx≒50以上と
選ばれ、従つて第6図に示す如く電流―電圧特性
は飽和型を示していたが、更に高集積化を図るた
め素子の微細化を速めると、ソース及びドレイン
の基板に対する接合電位でさえゲート・ドレイン
間のパンチスルーが起つてしまう。これを阻止す
る様にチヤネル領域9の表面不純物濃度を増大さ
せると、キヤリアの移動度が低下したり、ドレイ
ン耐圧の低下を招く。また高濃度における接合電
位によつて生ずる空乏層幅以下に実効チヤネル長
を小さく設定すると、従来の飽和型の電流―電圧
特性は到底実現不可能な領域となつてしまう。こ
こに飽和型の特性を得る限界が見られる。
本発明は低濃度の半導体基板を用い、ソース・
ドレイン間の実効チヤネル長Leffとゲート酸化
膜厚Tpxとの比(Leff/Tpx)を小さく設定し、
チヤネル領域の内部に基板と同じ導電型の高不純
物濃度埋込み層を設けると共に表面部にも同じ導
電型の不純物濃度層を設けることによつてノーマ
リ・オフ形の3極管特性の最適化を図つた微細
MOSFETを提供するものである。
この発明に係るMOSFETの基本構造は第5図
と異ならない。この発明においてはこの第5図の
構造で微細化を進めたときに良好な3極管特性を
得るべく、(1)基板1およびチヤネル領域9の不純
物濃度を4×1015/cm2以下とすること、(2)高不純
物濃度埋込み層8のチヤネル領域9表面からの深
さを0.4μm以下とすること、(3)ゲート絶縁膜2
の膜厚Tpxを1000〜3000Åに選びかつこの膜厚と
実効チヤネル長LeffのLeff/Tpxを10以下にする
こと、(4)チヤネル領域とゲート絶縁膜の界面にチ
ヤネル領域と同じ導電型で厚さが0.1μm以下、
不純物濃度が1×1016〜5×1016/cm3の不純物濃
度層を設けたこと、を骨子としている。
まず、上記(1)〜(3)の条件を満たすことによつて
良好な3極管特性が得られることを以下にデータ
に基づいて詳細に説明する。
第5図に示す構造において可制御性の良い3極
管特性のMOSFETを得るには、埋込み層8によ
り深い位置におけるパンチスルーを抑制し、一方
チヤネル領域9では積極的にパンチスルーが起こ
りやすい様に例えば基板不純物濃度を下げると共
に、ソース、ドレインの拡散深さxjを大きく、
ゲート絶縁膜厚を厚くすることが望ましい。チヤ
ネル領域9の表面濃度NSF1が高い場合やゲート
絶縁膜厚Tpxが薄すぎる場合には非常に大きいド
レイン電圧領域において3極管特性が現われるの
で回路構成にあつては高電源電圧が必要となり不
都合となる。更にゲート絶縁膜厚Tpxが薄い場合
は従来の表面反転電流(チヤネル電流)が流れ易
くなるため、第7図に示す如く3極管特性に歪み
を生ずる。一方埋込み層8の位置が深すぎる場合
やゲート絶縁膜厚Tpxが厚すぎる場合にはドレイ
ン電流のゲート電圧による可制御性が悪くまた
MOSFETの変換コンダクタンスgn=ΔID/Δ
Gが小さくなるためデバイスとして好ましくな
い。従つて好ましい3極管特性をもつデバイスを
得るにはそのデバイスパラメータの最適化が必要
である。第8図はP型基板1の不純物濃度Nsub
=5×1014/cm3、高濃度埋込み層8の厚さとその
濃度をそれぞれx2=0.5μm、NSF2=2×1016
cm3、その位置すなわちチヤネル領域9の表面から
の距離をx1=0.3μm、ゲート絶縁膜Tpx=2000
Å、実効チヤネル長Leff=1μm、ソース、ド
レイン拡散層の深さxj=0.3μmのデバイスパラ
メータをもつMOSFETに基板バイアスVSVB
0V、ドレイン電圧VD、そしてゲート電圧VG
印加した時のドレイン電流―ドレイン電圧特性を
示している。ドレイン電流IDはチヤネル幅Wで
規格化してある。この構造にあつてはソース、ド
レイン拡散層深さxjは深い程望ましく、拡散層
深さの多少の変動に対してドレイン電流は殆んど
変わらないという特徴がある。またxjが大きい
ため回路を構成するに必要なコンタクトに関しそ
のつき抜けによる不良が起きないという利点があ
る。
第9図は高濃度埋込み層8の位置x1をパラメー
タとし、x2=1.5μm、xj=0.8μmの他は第8図
の場合と同様の条件としてドレイン電流―ゲート
電圧特性を求めた結果である。この図からx1がお
よそ0.5μm以上になるとドレイン電流が指数関
数的に依存せず裾をひく特性を示し、これはデバ
イスのスイツチングにおいて漏洩電流の増大を招
き好ましくない結果となる。従つて裾をひく特性
が現われるドレイン電流ID/Wの最小値を〜
10-12A/μmと設定するとx1はおよそ0.47μm
(≡x1nax)となる。
次に第10図にx1naxのドレイン電圧VD依存
性を示す。他のパラメータは第9図の場合と同じ
である。この様にx1naxはVDの増大に従つて低
下するから電源電圧VDD=10Vとするとx1nax
0.4μm以下とする必要があることが判る。一
方、3極管特性が現われる目安となるドレイン電
流ID/W=10- 7A/μmにおけるドレイン電圧
Dのチヤネル領域表面濃度NSF1依存性を第11
図に示す。先と同様にVDの最大値を電源電圧VD
=10VとするとNSF1は〜4×1015/cm3以下であ
る必要があることが判る。これらの結果はソー
ス、ドレインの拡散深さxjに殆んど依存しない
ことが確められている。
ここでx1naxの減少に従つて3極管特性が高ド
レイン電圧側へ移動するためチヤネル領域表面濃
度NSF1を低下させなければならないことは言う
までもない。実際問題x1naxの最小は製造プロセ
スによつて制約される。
第12図にはゲート絶縁膜厚Tpxに対する変換
コンダクタンスgn≡ΔID/ΔVGを示した。他
のパラメータは第8図の例と同じである。この図
から明らかな様にgnはTpxの増加につれて減少
し従つてTpxの小さいもの程望ましいが、先に述
べた様に3極管特性がドレイン電圧の大きい方に
移動し実際ドレイン耐圧が表面破壊を起こす様に
なるため3極管特性は得られなくなる。その限界
はTpx≒1000Åであり従つてLeff/Tpx10が必
要である。またTpxが厚い場合にはゲート・ドレ
イン間の浮遊容量が小さくなるため望ましいが、
第11図から明らかな様にgnが低下するため必
要とするデバイス特性のgnの最小値でTpxの最
大限界が決まる。またゲート絶縁膜厚が厚い場合
には酸化成長時間がかかり過ぎる等の製造上の問
題もありTpxはおよそ3000Å(1000℃ドライ酸化
でおよそ14時間かかる)以下が妥当である。
以上から、前述の(1)〜(3)の条件を満たすことに
より好ましい3極管特性のMOSFETが得られる
ことが明らかになつた。ところで、こうして得ら
れたMOSFETの特性は第8図から明らかなとお
りオーマリ・オン形である。従つてこの
MOSFETを用いて第13図に示すようにインバ
ータ11を構成すると、負の入力に対して出力が
正に反転して得られることになり、このまま次段
のインバータ12に入力することはできず、その
間にレベルシフト回路13を設けなければならな
い。これは、MOS集積回路の一層の高集積化に
とつて、チツプ面積の増大をもたらすため不都合
である。そこでこの発明においては、前述の(1)〜
(3)の条件に加えて(4)の条件を与えることにより、
ノーマリ・オフ形で最適化した3極管特性を実現
している。つまりこの発明に係るMOSFETで
は、第5図の構造に加えて、第14図に示すよう
にチヤネル領域9のゲート絶縁膜2との界面に、
厚さ0.1μm以下で不純物濃度1×1016〜5×
1016/cm3のp+型層10を設ける。これにより好ま
しいノーマリ・オフ形の3極管特性が得られるこ
とを以下にデータに基づいて説明する。
第14図において、基板1の不純物濃度Nsub
=5×1014/cm3、ゲート絶縁膜2の膜厚Tpx
2000Å、実効チヤネル長Leff=1.μm、ソース、
ドレイン拡散層深さxj=0.3μm、高濃度埋込み
層8の不純物濃度NSF2=2×1016/cm3、同じく
界面からの距離x1=0.47μm、同じく厚さx2=0.5
μm、p+型層10の不純物濃度NSF0=2×
1016/cm3、同じく厚さx0=0.05μmとしたときの
ドレイン電流―ドレイン電圧特性を第15図に示
す。図から明らかとなとおり、特性はノーマリ・
オフ形となつている。
ところで、チヤネル領域9の全てをp+型層1
0と同様に高濃度にする従来のチヤネルドープ構
造では、ドレイン電流―ドレイン電圧特性の傾斜
が緩くなり、またソース、ドレイン接合容量が増
大するという不都合が生ずる。第16図はp+
層10の不純物濃度NSF0をパラメータにとり、
その厚さx0とΔID/ΔVD・Wの関係を示したも
のである。この図から、およそx0が0.1μm以下
でNSF0が1×1016/cm3以上の斜線を施した領域
がΔID/ΔVD・Wを大きくする上で好ましいこ
とが判る。
一方、gn≡ΔID/ΔVGとNSF0の関係を示す
と第17図のようになり、NSF0の増加と共にgn
が低下する。実用上好ましいgnの範囲をgn
0.1mとすると結局、NSF0は1×1016〜5×
1016/cm3が好ましい範囲ということになる。
こうして最適化されたノーマリ・オフ形の3極
管特性を示すMOSFETは、高入力インピーダン
ス、低出力インピーダンス素子として使用するこ
とができ、論理回路構成上もインバータ間にイベ
ルシフト回路等余分な回路を必要とせず、変換コ
ンダクタンスgnも大きく、大電流領域において
電流電圧特性が殆んど直線的な特性となるため歪
みが小さい動作が行なえ、またその特性はソー
ス、ドレイン拡数深さxjに殆んど依存せず、ゲ
ート絶縁膜厚Tpxが厚いため製造上の制御性が良
好でゲート耐圧不良も少なく、その上高周波化、
高速度化が図れるため優れたスイツチング特性が
得られる等の従来のバイポーラトランジスタや
MOSFETに比べて極めて優れた特徴を有する。
勿論この発明はnチヤネルのみならずpチヤネル
でも同様の効果を得ることが出来る。
【図面の簡単な説明】
第1図は理想化されたMOSFETの概略図、第
2図はチヤネル長Lとゲート酸化膜Tpxとの比
(L/Tpx)をパラメータにとりドレイン電流の
ドレイン電圧依存性を理論的にGEURSTが求め
た結果を示した図、第3図はサブスレツシヨール
ド領域におけるドレイン電流のゲート電圧依存性
を示した図、第4図は短チヤネルMOSFETのパ
ンチスルーが起きている時のID―VD特性図、第
5図はパンチスルーを抑制した従来のMOSFET
の概略断面図、第6図はパンチスルーを抑制した
従来の飽和形ID―VD特性図、第7図はゲート膜
厚が薄すぎたため3極管特性に歪みが生じたID
―VD特性図、第8図は本発明によつて一部最適
化されたMOSFETでの3極管特性を示した図、
第9図は高濃度埋込み層の位置をパラメータにと
りドレイン電流のゲート電圧依存性を示した図、
第10図は高濃度埋込み層の位置の最大x1nax
ドレイン電圧依存性を示した図、第11図は3極
管特性の目安となるドレイン電流ID/W=
10-5A/μmにおけるドレインに電圧VDの表面
濃度NSF1依存性を示した図、第12図はゲート
絶縁膜厚Tpxに対する変換コンダクタンスgn
示した図、第13図はノーマリ・オン形の
MOSFETの回路構成上の問題を説明するための
図、第14図はこの発明の一実施例のMOSFET
を示す概略断面図、第15図はこのMOSFETの
D―VD特性図、第16図および第17図は第1
4図のp+型層10の好ましい不純物濃度と厚み
の範囲を求めるための実験データを示す図であ
る。 1…p型シリコン基板、2…ゲート絶縁膜、3
…ゲート電極、4…ソース領域、5…ドレイン領
域、6…フイールド酸化膜、7…チヤネルストツ
パー、8…高不純物濃度埋込み層、9…チヤネル
領域、10…p+型層。

Claims (1)

    【特許請求の範囲】
  1. 1 半導体基板にこれと逆導電型のソース、ドレ
    イン領域を設け、その間のチヤネル領域上にゲー
    ト絶縁膜を介してゲート電極を設けると共に、前
    記チヤネル領域の内部に前記基板と同じ導電型の
    高不純物濃度埋込み層を設けてなる絶縁ゲート型
    電界効果トランジスタにおいて、前記基板および
    チヤネル領域の不純物濃度を4×1015/cm3以下と
    し、前記高不純物濃度埋込み層の深さを0.4μm
    以下とし、前記ゲート絶縁膜の膜厚Tpxを1000〜
    3000Åとしてこれと実効チヤネル長Leffの比Lef
    /Tpxを10以下に設定すると共に、前記チヤネ
    ル領域とゲート絶縁膜の界面にチヤネル領域と同
    じ導電型で厚さが0.1μm以下、不純物濃度が1
    ×1016〜5×1016/cm3の不純物濃度層を設けたこ
    とを特徴とする絶縁ゲート型電界効果トランジス
    タ。
JP2491480A 1980-02-29 1980-02-29 Insulating gate type field-effect transistor Granted JPS56146276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2491480A JPS56146276A (en) 1980-02-29 1980-02-29 Insulating gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2491480A JPS56146276A (en) 1980-02-29 1980-02-29 Insulating gate type field-effect transistor

Publications (2)

Publication Number Publication Date
JPS56146276A JPS56146276A (en) 1981-11-13
JPS626670B2 true JPS626670B2 (ja) 1987-02-12

Family

ID=12151428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2491480A Granted JPS56146276A (en) 1980-02-29 1980-02-29 Insulating gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS56146276A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208500A1 (de) * 1982-03-09 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Spannungsfester mos-transistor fuer hoechstintegrierte schaltungen
JPS59107560A (ja) * 1982-12-13 1984-06-21 Hitachi Ltd 半導体集積回路装置
JPS6010780A (ja) * 1983-06-30 1985-01-19 Fujitsu Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
JPS56146276A (en) 1981-11-13

Similar Documents

Publication Publication Date Title
JP3110262B2 (ja) 半導体装置及び半導体装置のオペレーティング方法
US4967246A (en) Structure of insulated gate bipolar transistors
JPH1012887A (ja) トランジスタ素子及びその製造方法
US3946424A (en) High frequency field-effect transistors and method of making same
US6825507B2 (en) Semiconductor device having high electron mobility comprising a SiGe/Si/SiGe substrate
JPS63266882A (ja) 縦型絶縁ゲ−ト電界効果トランジスタ
US4665423A (en) MIS variable resistor
US7713821B2 (en) Thin silicon-on-insulator high voltage auxiliary gated transistor
US6563193B1 (en) Semiconductor device
JPS626670B2 (ja)
CN111129131B (zh) 平面栅igbt器件
JPH04264776A (ja) 半導体装置
JPS6241428B2 (ja)
US4450468A (en) Gallium arsenide ISL gate with punched-through bipolar driver transistor
JPS6123669B2 (ja)
JPS626352B2 (ja)
JPS626669B2 (ja)
JP3503094B2 (ja) 絶縁ゲート型静電誘導トランジスタ
JP2982049B2 (ja) 絶縁ゲート型静電誘導トランジスタ
JPH0812917B2 (ja) Misトランジスタの動作方法およびmisトランジスタ
KR20000074360A (ko) 저항기로서의 엘디디 모스페트 및 그 제조방법
JPH06209106A (ja) 半導体装置
JPH08316469A (ja) 高耐圧半導体装置
JPH0468792B2 (ja)
JPH03145163A (ja) サイリスタ