JPS6266646A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6266646A
JPS6266646A JP20700085A JP20700085A JPS6266646A JP S6266646 A JPS6266646 A JP S6266646A JP 20700085 A JP20700085 A JP 20700085A JP 20700085 A JP20700085 A JP 20700085A JP S6266646 A JPS6266646 A JP S6266646A
Authority
JP
Japan
Prior art keywords
film
wiring
layer
wirings
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20700085A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshida
正之 吉田
Tatsuo Noguchi
達夫 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20700085A priority Critical patent/JPS6266646A/en
Publication of JPS6266646A publication Critical patent/JPS6266646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce wiring capacity by forming wirings of a multilayer structure in the step of an insulating film and a through hole portion, and of a single layer structure in the flat portion to prevent the wirings from being stepwisely disconnected. CONSTITUTION:Polysilicon wirings 12 and then selectively N<+> type source and drain are formed through a gate oxide film on a P-type Si substrate 11, and a P<+> type substrate connecting layer 13 is formed. An SiO2 film 14 is accumulated, and a window 15 is opened. Then, an aluminum film 16, an MoSi film 17 are superposed by sputtering to form a wiring pattern 18. A resist mask 19 is coated to isotropically etch the film 17 with CF4+O2 gas. The mask 19 is removed, an SiO2 film 20 is superposed, selectively opened, and aluminum wirings 21 are attached to complete an FET. According to this configuration, the wirings 18' of 2-layer of the films 16, 17 in the film 14 and of single layer of the film 16 in other flat portion are formed on the window 15 and the wirings 12, the film 17 prevents the wirings 18' from being stepwisely disconnected in the step on the window 15 and the wirings 12 to reduce wiring capacity, thereby accelerating the operation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体基板上48に寺すに関し、特に配線の形
成に改良を施したものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor substrate 48, and particularly improves the formation of wiring.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、従来の配線技術は大部分がAtの単層配線
であるが、種々の積層配線も知られている。例えば、積
層配線としては、多結晶シリコン層(下層)/高融点金
属シリサイド層(上層)からなる2層配線、あるいはチ
タン層(下層) / At層(上層)からなる2層配線
等が知られている。ここで、前者では、高融点金属シリ
サイド層は多結晶シリコン層の抵抗を下げるために存在
する。一方、後者では、チタン層はAtのシリコン基板
への進入、あるいはシリコン基板中のStの紅層への進
入を防ぐため、又はAt層と前記基板との接触抵抗を小
さくするために存在する。
As is well known, conventional wiring techniques are mostly At single-layer wiring, but various types of laminated wiring are also known. For example, as laminated wiring, two-layer wiring consisting of a polycrystalline silicon layer (lower layer)/a refractory metal silicide layer (upper layer), or a two-layer wiring consisting of a titanium layer (lower layer)/At layer (upper layer), etc. are known. ing. Here, in the former case, the refractory metal silicide layer exists to lower the resistance of the polycrystalline silicon layer. On the other hand, in the latter case, the titanium layer exists in order to prevent At from entering the silicon substrate or St from entering the red layer in the silicon substrate, or to reduce the contact resistance between the At layer and the substrate.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術によれば、以下に示す問題点を
有する。
However, the conventional technology has the following problems.

即ち、Atをはじめとする配線には周囲との容量が存在
し、これが配線中の信号の伝達を妨げ、LSIの動作ス
ピードを低下させる。この配線容量には、第2図に示す
如く配線1の底面とシリコン基板2との間の容31”1
%配線1の側面とシリコン基板2との容RCz、配線1
,1相互間の容量C3がある。なお、3は5i02膜で
ある。一方、素子の微細化に伴なって配線幅は縮小され
てきているが、配線厚みおよび配線長は縮小されていな
い。前者は配線のオープン不良およびエレクトロマイグ
レーション等の影響を考慮しているためで、コンタクト
ホールや段差部の配線膜厚の薄い所で全体の膜厚が決定
される。また、後者は素子密度の増大に伴うものである
。ところで、前記C1,C鵞、C3の3つの容量のうち
、素子の微細化につれて減少するのはC1のみで、C2
は減少しない。C3は、配線のスペースが微細化される
ので逆に急激に増加する。従って、全配線容量は微細化
に伴って増加し、素子の高速化の妨げとなる。
That is, wiring including At has a capacitance with its surroundings, which impedes signal transmission through the wiring and reduces the operating speed of the LSI. This wiring capacitance includes a capacitance 31"1 between the bottom surface of the wiring 1 and the silicon substrate 2, as shown in FIG.
% Capacity RCz between side surface of wiring 1 and silicon substrate 2, wiring 1
, 1 there is a capacitance C3 between them. Note that 3 is a 5i02 film. On the other hand, although the wiring width has been reduced with the miniaturization of elements, the wiring thickness and wiring length have not been reduced. The former is because the influence of open wiring defects, electromigration, etc. is taken into account, and the overall film thickness is determined at locations where the wiring film thickness is thin at contact holes and step portions. Moreover, the latter is associated with an increase in element density. By the way, among the three capacitances C1, C3, and C3, only C1 decreases as the element becomes smaller, and C2
does not decrease. On the contrary, C3 rapidly increases as the wiring space becomes finer. Therefore, the total wiring capacitance increases with miniaturization, which becomes an obstacle to increasing the speed of the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、配線の段切
れ等の不良を回避しつつ、配線容量を低減して素子を高
速動作化し得る半導体装置の製造方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce wiring capacitance and increase the speed of element operation while avoiding defects such as disconnection of wiring. .

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に設けられた絶縁膜の段差部及
びコンタクトホール部では多層構造で、その他の平坦部
では単層構造の配線を設けることKよシ、段差部での配
線の段切れ等の不良を回避するとともに、配線容量を低
減して素子を高速動作化することを図ったことを骨子と
する。
The present invention provides wiring with a multilayer structure in the stepped portions and contact hole portions of an insulating film provided on a semiconductor substrate, and a single layer structure in other flat portions, and breaks in the wiring at the stepped portions. The main idea is to avoid such defects as well as to reduce wiring capacitance and increase the speed of operation of the device.

本発明において、段差部としては前記絶縁膜内に埋設さ
れた多結晶シリコンからなる配線等が挙げられる。
In the present invention, examples of the stepped portion include wiring made of polycrystalline silicon buried in the insulating film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例に係るMOSトランジスタを製
造工程順に第1図(−)〜(d)を参照して説明する。
Hereinafter, a MOS transistor according to an embodiment of the present invention will be described in order of manufacturing steps with reference to FIGS. 1(-) to 1(d).

(1)  まず、P型のシーリコン基板11に素子領域
を形成した後、ゲート酸化膜を介して多結晶シリコンか
らなるゲート電極(図示せず)を形成した。また、これ
と同時に多結晶シリコンからなる配線(以下、ポリ配線
)12を形成した。
(1) First, an element region was formed on a P-type silicon substrate 11, and then a gate electrode (not shown) made of polycrystalline silicon was formed via a gate oxide film. At the same time, a wiring 12 made of polycrystalline silicon (hereinafter referred to as poly wiring) was formed.

つづいて、前記基板11に高濃度のヒ素及びボロンをレ
ジストをマスクとしてイオン注入し、アニールを行って
N+型のソース・ドレイン領域(いずれも図示せず)を
形成するとともに、基板1とのコンタクトのためP型の
拡散層13を形成した。次いで、全面に厚さ1μmの5
102膜Z4を堆補した後、前記拡散層13上のStO
□膜14全14的に除去し、コンタクトホール15を形
成した。次いで、全面に厚さ3000XのAt層16を
スパッターにより形成した後、厚さ5ooolのモリブ
デンシリサイド(MoSi)層17をスパッターにより
形成した。更に、前記MoSi層17及びAt層16を
同時に選択的に除去して2層配線I8を形成した(第1
図(11)図示)。
Next, highly concentrated arsenic and boron are ion-implanted into the substrate 11 using a resist as a mask, and annealing is performed to form N+ type source/drain regions (none of which are shown), as well as contact with the substrate 1. Therefore, a P-type diffusion layer 13 was formed. Next, a 1 μm thick layer of 5
After depositing the 102 film Z4, the StO
□The entire film 14 was removed to form a contact hole 15. Next, an At layer 16 with a thickness of 3000× was formed on the entire surface by sputtering, and then a molybdenum silicide (MoSi) layer 17 with a thickness of 500× was formed by sputtering. Furthermore, the MoSi layer 17 and the At layer 16 were selectively removed at the same time to form a two-layer wiring I8 (first
Figure (11) shown).

(2)  次に、前記拡散層13及びポリ配線12に対
応する前記Mo11層17上、即ち下地に段差のある部
分にレジスト19を形成した。つづいて、このレジスト
19をマスクとして前記Mo51層17をCF4+02
系のガスで等方性ドライエツチングした。これにより、
レジスト19で榎われている部分のみAt@16とMo
51層1702層構造となシ、レジスト19で覆われて
いない部分はAt層16の1層構造となる配線18′を
形成した(第1図(b)図示)。次いで、前記レジスト
19を剥離した(第1図(c)図示)。更に、全面に層
間絶縁膜として厚さ1.5μmの5tO2膜20を堆積
した後、スルーホール(図示せず)を形成した。しかる
後、全面に厚さ1μmの紅を蒸着し、パターニングして
第2層目のAt配線21を形成し、MOSトランジスタ
を製造した(第1図(d)図示)。
(2) Next, a resist 19 was formed on the Mo11 layer 17 corresponding to the diffusion layer 13 and the poly wiring 12, that is, on a portion with a step on the base. Next, using this resist 19 as a mask, the Mo51 layer 17 is coated with CF4+02.
Isotropic dry etching was performed using the same gas. This results in
Only the parts covered by resist 19 are At@16 and Mo
A wiring 18' having a structure of 51 layers, 1702 layers, and a single layer structure of an At layer 16 was formed in the portion not covered with the resist 19 (as shown in FIG. 1(b)). Next, the resist 19 was peeled off (as shown in FIG. 1(c)). Furthermore, after depositing a 5tO2 film 20 with a thickness of 1.5 μm as an interlayer insulating film on the entire surface, through holes (not shown) were formed. Thereafter, a 1 μm thick red coating was deposited on the entire surface and patterned to form a second layer of At wiring 21, thereby manufacturing a MOS transistor (as shown in FIG. 1(d)).

本発明に係るMOS )ランジスタは、第1図(d)に
示す如く、5I02膜I4のコンタクトホール15部及
びポリ配線12上の5102膜14上にAt層16とM
oSi層I7の2層構造でかつその他の平坦部でAt層
16の1層構造の配線18′を設けた構造となりている
。従りて、本発明によれば、コンタクトホール15部や
ポリ配線12の存在する段差部でMo81層17の存在
により配線1B’の段切れを防止できるとともに、配線
18′の容量を低減して素子の高速動作化を図ることが
できる。
As shown in FIG. 1(d), the MOS transistor according to the present invention has an At layer 16 and an M
The structure has a two-layer structure of the oSi layer I7 and a single-layer structure of the At layer 16 with wiring 18' in the other flat portion. Therefore, according to the present invention, the presence of the Mo81 layer 17 at the contact hole 15 portion and the stepped portion where the polyline wire 12 is present can prevent the interconnection 1B' from breaking, and reduce the capacitance of the interconnection 18'. The device can operate at high speed.

事実、本発明によれば、平坦部での配線18′の膜厚を
従来の1μmから3000Xに薄くすることができる(
第3図参照)。従って、前述した容t Cxは半分程度
に、C3は約1/3に低減できる。それ故、配線間隔が
小さくなった場合でも、第5図に示す如く配線容量は従
来技術はど増大しない。また、第6図に示す如く、デザ
インルールを横軸にとった場合、従来技術では配線容量
が大きく素子の速度がそれほど向上しないのに対し、本
発明では飛躍的に向上する。
In fact, according to the present invention, the thickness of the wiring 18' on the flat part can be reduced from the conventional 1 μm to 3000X (
(See Figure 3). Therefore, the aforementioned capacity tCx can be reduced to about half, and C3 can be reduced to about 1/3. Therefore, even if the wiring spacing becomes small, the wiring capacitance does not increase much in the prior art as shown in FIG. Further, as shown in FIG. 6, when design rules are plotted on the horizontal axis, the conventional technology has a large wiring capacitance and the device speed does not improve much, whereas the present invention dramatically improves the speed.

一方、配線1B’の信頼性の点では、第4図に示す如く
段切れの起こりやすいコンタクトホール部22、及び下
地にポリ配線23が走るような段差部24のみ上層のM
o51層を残すことで段切れを防止できる。
On the other hand, in terms of the reliability of the wiring 1B', as shown in FIG.
By leaving the o51 layer, breakage can be prevented.

更に、本発明によれば、上層のMo81層17を等方工
、チングすることで急激な段差を軽減し、5102膜2
0を隔てだ2層以上の配線の段切れも防止できる。
Furthermore, according to the present invention, by isotropically etching the upper Mo81 layer 17, a sharp step difference is reduced, and the 5102 film 2
It is also possible to prevent disconnection of wiring in two or more layers separated by 0.

なお、上記実施例では、コンタクトホール部及び段差部
で配線18′がMoSi層とM層の2層構造をとる場合
について述べたが、これに限らず、3層以上の構造とし
てもよい。
In the above embodiment, a case has been described in which the wiring 18' has a two-layer structure of the MoSi layer and the M layer in the contact hole portion and the stepped portion, but the structure is not limited to this, and may have a structure of three or more layers.

また、上記実施例では、2層(Mo81層とAt層)構
造の配線18を形成した後、平坦部のMo11層を選択
的に除去して配@xs’を形成したが、これに限らない
。例えば、平坦部のMo11層を選択的に除去した後、
上記2層を同時に選択的に除去して配線18′を形成し
てもよい。
Further, in the above embodiment, after forming the wiring 18 having a two-layer (Mo81 layer and At layer) structure, the Mo11 layer in the flat part was selectively removed to form the wiring @xs', but the present invention is not limited to this. . For example, after selectively removing the Mo11 layer in the flat part,
The wiring 18' may be formed by selectively removing the two layers at the same time.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、コンタクトホール部
及び段差部での配線の段切れを防止するとともに、配線
容量を低減して素子の高速動作化をなし得る半導体装置
を提供できる。
As described in detail above, according to the present invention, it is possible to provide a semiconductor device that can prevent disconnection of wiring at contact hole portions and step portions, reduce wiring capacitance, and achieve high-speed operation of elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(d)は本発明の一実施例に係るMOS
トランジスタを製造工程順に示す断面図、第2図は従来
技術による配線容量を説明するための半導体装置の断面
図、第3図は本発明による配線容量を説明するための半
導体装置の断面図、第4図は本発明に係る半導体装置の
パターン平面図、第5図は配線容量と配線間隔との関係
を示す特性図、第6図は速度とデザインルールとの関係
を示す特性図である。 11・・・P型のシリコン基板、12・・・ポリ配線、
14.20・・・SiO□膜、15・・・コンタクトホ
ール、I6・・・AtI@、17・・・MoSi R,
1g + 18’・・・配線、21・・・At配線。 出願人代理人  弁理士 鈴 江 武 彦第1図 第1図 第3図 配稗省隔 第5図 す゛ずイフルール 第6図
FIGS. 1(,) to (d) show a MOS according to an embodiment of the present invention.
2 is a cross-sectional view of a semiconductor device for explaining wiring capacitance according to the prior art; FIG. 3 is a cross-sectional view of a semiconductor device for explaining wiring capacitance according to the present invention; FIG. FIG. 4 is a pattern plan view of a semiconductor device according to the present invention, FIG. 5 is a characteristic diagram showing the relationship between wiring capacitance and wiring spacing, and FIG. 6 is a characteristic diagram showing the relationship between speed and design rule. 11... P-type silicon substrate, 12... Poly wiring,
14.20...SiO□ film, 15...Contact hole, I6...AtI@, 17...MoSi R,
1g + 18'... wiring, 21... At wiring. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 1 Figure 3 Dimensions Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、この半導体基板上に設けられた、段差部
又はコンタクトホールの少なくとも一方を有する絶縁膜
と、前記絶縁膜上に設けられた配線とを具備し、前記配
線が絶縁膜の段差部及びコンタクトホール部で多層構造
をなし、その他の平坦部で単層構造をなすことを特徴と
する半導体装置。
It comprises a semiconductor substrate, an insulating film provided on the semiconductor substrate and having at least one of a step portion or a contact hole, and a wiring provided on the insulating film, wherein the wiring is connected to the step portion and the contact hole of the insulating film. A semiconductor device characterized by having a multilayer structure in a contact hole portion and a single layer structure in other flat portions.
JP20700085A 1985-09-19 1985-09-19 Semiconductor device Pending JPS6266646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20700085A JPS6266646A (en) 1985-09-19 1985-09-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20700085A JPS6266646A (en) 1985-09-19 1985-09-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6266646A true JPS6266646A (en) 1987-03-26

Family

ID=16532530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20700085A Pending JPS6266646A (en) 1985-09-19 1985-09-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6266646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236346A (en) * 1987-03-24 1988-10-03 Nec Corp Manufacture of semiconductor device
JPH01286331A (en) * 1988-05-11 1989-11-17 Nec Corp Manufacture of integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236346A (en) * 1987-03-24 1988-10-03 Nec Corp Manufacture of semiconductor device
JPH01286331A (en) * 1988-05-11 1989-11-17 Nec Corp Manufacture of integrated circuit

Similar Documents

Publication Publication Date Title
US6221714B1 (en) Method of forming a contact hole in a semiconductor substrate using oxide spacers on the sidewalls of the contact hole
US6278172B1 (en) Semiconductor device having high-density capacitor elements and manufacturing method thereof
JPH07211873A (en) Anti-fuse element
KR0180287B1 (en) Interconnection structure of semiconductor device
JPS6266646A (en) Semiconductor device
US6103591A (en) Semiconductor device with air gaps between interconnections and method of forming the same
JP2001298154A (en) Semiconductor device and its manufacturing method
JP3167455B2 (en) Semiconductor device and manufacturing method thereof
JP2000208620A (en) Production of semiconductor device
JPH04296041A (en) Semiconductor device and manufacture thereof
JP2950620B2 (en) Semiconductor device
JP2720657B2 (en) Semiconductor device and manufacturing method thereof
JPH04109654A (en) Semiconductor device and manufacture thereof
JPH0955474A (en) Semiconductor memory device and its manufacture
JPH0917868A (en) Wiring connection structure of semiconductor integrated circuit device and its manufacturing method
JPS60177652A (en) Manufacture of semiconductor device
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
JPH08274098A (en) Semiconductor device and its manufacture
JPH0542139B2 (en)
JPH05259408A (en) Semiconductor device and fabrication thereof
JPS59189657A (en) Manufacture of semiconductor device
JPH07142476A (en) Fabrication of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JP2000021980A (en) Semiconductor device and its manufacture
JPH0320035A (en) Manufacture of semiconductor device