JPS6265344A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS6265344A
JPS6265344A JP20422585A JP20422585A JPS6265344A JP S6265344 A JPS6265344 A JP S6265344A JP 20422585 A JP20422585 A JP 20422585A JP 20422585 A JP20422585 A JP 20422585A JP S6265344 A JPS6265344 A JP S6265344A
Authority
JP
Japan
Prior art keywords
wiring
interconnection
hole
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20422585A
Other languages
Japanese (ja)
Inventor
Tokio Kato
加藤 登季男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20422585A priority Critical patent/JPS6265344A/en
Publication of JPS6265344A publication Critical patent/JPS6265344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To reduce a through-hole resistance in a multilayer interconnection by a method wherein, when the lower interconnection and the upper interconnection are connected through the penetrated hole of the interlayer insulating film, the surface of the lower interconnection is first etched on condition that sputter-etching takes place, subsequently the upper interconnection is formed on condition that the upper interconnection is deposited. CONSTITUTION:A through hole 5 is opened in an organic coated film 4 by a normal photo etching method and a second layer Al film is formed using an Al bias sputtering device. In this case, the situation that Al is deposited comes varying according to whether it is etched or deposited by bias voltage of a power source (b) is first made larger to perform sputter-etching on the surface of the first layer Al electrode 3 of the through hole part on the side of an electrode B. Subsequently, when the bias voltage (b) [or the bias at a power source (a)] is dropped, the Al is transferred to the condition that it is deposited, the Al from a sputter etching electrode A is sputter to the side of the electrode B and the Al is deposited on the surface of the first layer Al electrode 3 to form a second layer Al interconnection 9.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置における多層配線形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for forming multilayer wiring in a semiconductor device.

〔背景技術〕[Background technology]

ICJPLSI等の半導体集積回路装置において、1チ
ツプあ1こりの素子数が増加するに伴い、素子間を接続
するAl(アルミニウム)配線は一層構造では無理であ
り、たとえば上下2層またはそれ以上の多層構造が採用
されている。この2層以上の配線間には絶縁被膜が介在
し、上下の配線間の電気的導通な上記絶縁被膜にあけた
スルーホール(透孔)を通じて行っている。
In semiconductor integrated circuit devices such as ICJP LSI, as the number of elements per chip increases, the Al (aluminum) wiring that connects the elements cannot be formed in a single layer structure. structure has been adopted. An insulating film is interposed between the two or more layers of wiring, and electrical continuity between the upper and lower wirings is achieved through a through hole formed in the insulating film.

上記絶縁被膜には表面平坦化に有利な高耐熱性のポリイ
ミド系高分子樹脂、たとえばポリイミド・インインドロ
・キナゾリンジオンが用いられる。
For the insulating coating, a highly heat-resistant polyimide polymer resin, such as polyimide-in-indolo-quinazolinedione, which is advantageous for surface flattening, is used.

このような有機樹脂の層間絶縁膜は、下層の配線を形成
しfこ基板上に樹脂のフェスを塗布し、熱硬化させて形
成するが、そのあと、ヒドラジンヒトラード溶液などの
エッチ液を用いて通常のホト工、fングの技術によりス
ルーホールを形成する。
Such an organic resin interlayer insulating film is formed by forming the lower layer wiring, applying a resin face on the substrate, and curing it with heat. Then, through holes are formed using conventional photolithography and f-ng techniques.

このようにして形成され1こスルーホール部は、側面に
耐熱性が劣化し1こ反応層が存在し、下層配線表面には
不所望な絶縁膜が形成される。このため、この上に上層
の配線のためのA1を形成した場合、スルーホール部で
の電気的抵抗、丁なわち、RTH(スルーホール)抵抗
が大きくなって半導体装置が正常に動作しない不良が発
生する。
The through-hole portion formed in this manner has deteriorated heat resistance and a reaction layer is present on the side surface, and an undesired insulating film is formed on the surface of the lower wiring. Therefore, if A1 is formed for the upper layer wiring on top of this, the electrical resistance at the through-hole portion, that is, the RTH (through-hole) resistance will increase, causing a defect that prevents the semiconductor device from operating normally. Occur.

これを解決する方法として、本発明者は、下層Al配線
の上に形成し1こポリイミド系樹脂等の高耐熱性有機被
膜にスルーホールをあけた後、このスルーホールをスパ
ッタリングによりエッチ除去し、その後、真空を破るこ
とな(連続して上層の配線形成のためのAlスパッタを
行うことを提案している。特開昭55−59741 最近のように半導体デバイスの高密度化、超微細化に伴
い、配線幅が4μm以下となり、層間被膜のスルーホー
ル径も3μm以下になってくるとスルーホール抵抗も急
激に大きくなり上記し1こ技術では問題の解決に不充分
である。
As a method to solve this problem, the present inventor formed a through hole in a highly heat-resistant organic film such as a polyimide resin formed on the lower layer Al wiring, and then etched and removed the through hole by sputtering. After that, it is proposed to perform continuous Al sputtering to form upper layer wiring without breaking the vacuum. JP 55-59741 Accordingly, when the wiring width becomes 4 .mu.m or less and the through-hole diameter of the interlayer coating becomes 3 .mu.m or less, the through-hole resistance increases rapidly, and the above-mentioned technique 1 is insufficient to solve the problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記し1こ問題を克服するためになされたもの
である。本発明の一つの目的は多層配線におけるスルー
ホール抵抗を低減する技術の提供にある。
The present invention has been made to overcome the above-mentioned problems. One object of the present invention is to provide a technique for reducing through-hole resistance in multilayer wiring.

本発明の他の目的はバイアス・スパッタリング技術を使
って多層配線を形成する技術を提供することにある。本
発明の前記ならびにそのほかの目的と新規な特徴は本明
細書の記述および添付図面からあきらかになろう。
Another object of the present invention is to provide a technique for forming multilayer wiring using bias sputtering technique. The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明子れば下記のとおりである。
A brief summary of typical inventions disclosed in this application is as follows.

すなわち、基板上に下層のAノ配線を形成し1こ上に層
間膜として高耐熱性有機被膜を形成し、この有機被膜に
スルーホールをあけた後、A1バイアス・スパッタリン
グ装置内に挿入して最初にAlがスパッタされる条件で
下層の1配線表面をエッチし、ひきつづいてA1がデポ
ジットするスパッタ条件で下層Affl配線に上記スル
ーホールを通して接続する上記A1配線を形成すること
により上記A石層間に異物が介在することなくスルーホ
ール抵抗を低減し、もって半導体装置の高集積化ととも
に歩留向」−を実現するものである。
That is, a lower layer A wiring is formed on the substrate, a highly heat-resistant organic film is formed as an interlayer film on top of the wiring, a through hole is made in this organic film, and the wire is inserted into an A1 bias sputtering device. First, the surface of the lower layer 1 wiring is etched under conditions where Al is sputtered, and then the A1 wiring is connected to the lower layer Affl wiring through the through hole under sputtering conditions where A1 is deposited, thereby forming the A1 wiring between the A stone layers. The through-hole resistance is reduced without the presence of foreign matter, thereby achieving higher integration of semiconductor devices and improved yields.

〔実施例〕〔Example〕

第1図乃至第7図は本発明の一実施を示すA42層配線
形成プロセスの工程断面図である。
1 to 7 are process cross-sectional views of an A42 layer wiring forming process showing one implementation of the present invention.

以下、各工程にしたがって説明する。Each step will be explained below.

(1)Si基版10表面に酸化物(Si01)膜2ヶ介
してAfflをスパッタリング(蒸N)し、通常のホト
エツチング法により所要とするバターニングを行って第
1図に示すように第1層A!配11!3を形成する。
(1) Affl is sputtered (vaporized N) onto the surface of the Si substrate 10 through two oxide (Si01) films, and the required patterning is performed by a normal photoetching method to form a first pattern as shown in FIG. Layer A! Form arrangement 11!3.

(2)第1層Al配線3上に層間絶縁膜用の南機被膜、
たとえばポリイミド・イソインドロ・キナゾリンジオン
膜4を形成し、アニールして熱硬化させろ。(第2図) (3)通常のホトエツチング法により有機被膜4にスル
ーホール5をあけろ。このホトエツチングはウェットエ
ッチ又はドライエッチのいずれを採用してもよい。(第
3図) (4)Aノバイアス・スパッタリング装置を使用して$
2層It膜を形成する。このiバイアス・スパッタリン
グ装置は第4図に示すように接地した真空容器6内に設
置した上St極AをA−eとし、対向する下部電極B上
にSi基板1な設置し、容器の一方のロアからArを注
入し他方の口8より真空吸引しながら、上部電極Aと下
部電極にそれぞれ高周波電源電圧a、bを印加するもの
である。
(2) A southern coating for an interlayer insulating film on the first layer Al wiring 3;
For example, form a polyimide isoindolo quinazolinedione film 4 and heat cure it by annealing. (Fig. 2) (3) Drill through holes 5 in the organic film 4 using the usual photoetching method. This photoetching may be performed by either wet etching or dry etching. (Fig. 3) (4) Using A Novias sputtering equipment
A two-layer It film is formed. As shown in FIG. 4, this i-bias sputtering apparatus has an upper St electrode A installed in a grounded vacuum container 6 as A-e, and an Si substrate 1 installed on the opposing lower electrode B, and one side of the container. While Ar is injected from the lower part of the electrode and vacuum is suctioned from the other port 8, high frequency power supply voltages a and b are applied to the upper electrode A and the lower electrode, respectively.

この場合、Si基板が設置されアこ電極Bにも、電源す
によって直流的に負の自己バイアスが印加される。
In this case, the Si substrate is installed and a negative self-bias is applied to the electrode B in terms of direct current by the power source.

このような配置によりAr+は電極Aのlだけでなく、
第1層A4配紛をもスパッタするので、第2層のAl形
成と第1層人、8のエツチングを同時に進行することが
できる。(第5図)この場合、AAのデボジフトされる
状況は第8図に示すようにバイアス電圧によってエッチ
またはデポジットのいずれかに変ってくる。すなわち、
バイアス電圧を大きく丁れば試料側(下部電極)B側の
A1層表面がエッチされ、バイアス電圧を小さく丁れば
上記電極AからのAAが下部電極B側へデポジットされ
ろ。
Due to this arrangement, Ar+ is not only at l of electrode A, but also at
Since the first layer A4 powder is also sputtered, the formation of the second layer Al and the etching of the first layer 8 can proceed at the same time. (FIG. 5) In this case, the state in which AA is deposited changes to either etch or deposit depending on the bias voltage, as shown in FIG. That is,
If the bias voltage is set high, the surface of the A1 layer on the sample side (lower electrode) B side will be etched, and if the bias voltage is set low, AA from the electrode A will be deposited on the bottom electrode B side.

そこで、最初は第4図に示すようにエツチングされる条
件、丁なわあ電源すのバイアス電圧を太き(して電極B
側でスルーホール部の第1層AI3電極表面をスパッタ
エッチする。
Therefore, at first, as shown in Figure 4, under the etching conditions, the bias voltage of the power source was increased (and the electrode B
On the side, the surface of the first layer AI3 electrode in the through-hole portion is sputter-etched.

(51引キ続いて、(A−&バイアス・スパッタリング
装置から資料をとり出丁ことなく)バイアス電圧(b)
を(又は電源aでのバイアス)を下げることで第6図に
示すようにA1がデポジットされろ条件に移行し、スパ
ッタエッチ電極人からのA!を電極B側ヘスバッタし半
導体チップ上の第1層A4’lC極3表面にA石をデポ
ジットすることにより第1層Al配線(電極)9?:形
成する。(@7図) 〔効 果〕 以上実施例で説明し1こ本発明によれば、下記のように
効果が得られる。
(51 pulls, then (A- & without taking out the material from the bias sputtering device) bias voltage (b)
(or the bias at the power supply a), the condition shifts to the condition where A1 is deposited as shown in FIG. 6, and A! By depositing A stone on the surface of the first layer A4'lC pole 3 on the semiconductor chip, the first layer Al wiring (electrode) 9? :Form. (@Figure 7) [Effects] According to the present invention, which has been explained in the examples above, the following effects can be obtained.

バイアススパッタエッチ装置を使って一つの装置内でス
パッタエッチからスパッタデポジットへ連続的に移行す
ることができ、従来のようなエッチとデポジットとの間
で基板設置場所を変えることがなくA4表面の汚染や酸
化がなくなり、より微細なスルーホールであってもスル
ーホール抵抗の低減が可能である。
Using a bias sputter etch system, it is possible to continuously transition from sputter etch to sputter deposit in one system, eliminating the need to change the substrate placement location between etch and deposit, eliminating contamination on the A4 surface. This eliminates oxidation and through-hole resistance, making it possible to reduce through-hole resistance even in finer through-holes.

このようにスルーホール抵抗の低減ができることにより
ICの歩留向上、チップサイズの縮小化の効果が得られ
る。
By reducing the through-hole resistance in this manner, it is possible to improve the yield of ICs and reduce the chip size.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明し1こが、本発明は上記実施例に限定され
るものではなくその要旨を逸脱しない範囲で種々変更可
能である。たとえばバイアス電源は高周波電源(a、b
)に代り、直流電源を用いて随時切り換えろようにする
ことにより、Afflデポジット及びエッチ条件をかえ
ろことができろ。
The invention made by the present inventor has been specifically described above based on Examples. However, the present invention is not limited to the above-mentioned Examples and can be modified in various ways without departing from the gist thereof. For example, the bias power source is a high frequency power source (a, b
) Instead, the Affl deposit and etch conditions can be changed by using a DC power supply and switching them at any time.

又、配線材料としてはAA又はAl3合金(A−g−8
i。
In addition, as a wiring material, AA or Al3 alloy (A-g-8
i.

A−6−8i−Cu)又はA!を他の金属(Ta)との
積層配線(AA/T a/Al? ) 、又はAl以外
の他の金FA (W 、 ws 11 )配線等であっ
ても良い。
A-6-8i-Cu) or A! It may be a laminated wiring (AA/Ta/Al?) with another metal (Ta), or a gold FA (W, ws 11 ) wiring other than Al.

〔利用分野〕。[Application field].

本発明はポリイミド系樹脂等の有機被膜を使用1ろIC
の多層配線形成VC応用した場合、最も効果がある。
The present invention uses an organic film such as a polyimide resin.
It is most effective when applied to multilayer wiring formation VC.

本発明はIC,LSIの多層配線形成全般に適用できろ
The present invention can be applied to general multilayer wiring formation for ICs and LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図、第5図及び第7図は本発明によろ一
実施例において、半導体チップ上で多層配線を形成する
一部プロセスを示す工程断面図である。 第4図及び第6図は本発明による一実施例において、バ
イアススパッタ処理を行う形態を示す工程断面図である
。 第8図はバイアススパッタ処理におけるバイアス電圧と
時間の関係を示す曲線図である。 l・・・Si基板、2・・・Si2.膜、3・・第1層
Al配線、4・・・有機被膜、5・・・スルーホール、
6・・・真空容器、7・・・入口、8・・・出口、9・
・・第2層Al配線。 代理人 弁理士  小 川 勝 男、−一、第  1 
 図 第  2  図 第  3  図 第  4  図 第  5  図 第  6  図 第  7  図 第  8  図 r斗哲□
1 to 3, FIG. 5, and FIG. 7 are process cross-sectional views showing a part of the process of forming multilayer wiring on a semiconductor chip in one embodiment of the present invention. FIGS. 4 and 6 are process cross-sectional views showing a form in which bias sputtering is performed in one embodiment of the present invention. FIG. 8 is a curve diagram showing the relationship between bias voltage and time in bias sputtering processing. l...Si substrate, 2...Si2. Film, 3... First layer Al wiring, 4... Organic film, 5... Through hole,
6... Vacuum container, 7... Inlet, 8... Outlet, 9...
...Second layer Al wiring. Agent: Patent Attorney Katsuo Ogawa, -1, 1st
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure

Claims (1)

【特許請求の範囲】 1、基板上の下層配線と上層配線とを層間絶縁膜の透孔
を通して接続するにあたって、層間絶縁膜に透孔をあけ
た状態でバイアススパッタ装置内に該基板を設置し、最
初にスパッタエッチが生じる条件で下層の配線(透孔部
分)の表面をエッチし、引き続いて上層配線膜がデポジ
ットする条件で下層の配線に接続する上層配線を形成す
ることを特徴とする多層配線の形成方法。 2、上記層間絶縁膜にはポリイミド系樹脂を使用する特
許請求の範囲第1項に記載の多層配線の形成方法。 3、上記配線として、Al又はAl合金膜ないしはAl
又はAl合金と他の金属又は金属化合物との積層膜から
なる配線材料を用いた特許請求の範囲第1項に記載の多
層配線の形成方法。 4、スパッタエッチが生じる条件としては、基板が設置
された電極側のバイアス電圧を大きくし、デポジットす
る条件としては、同バイアス電圧を小さくする特許請求
の範囲第1項に記載の多層配線の形成方法。
[Claims] 1. When connecting lower layer wiring and upper layer wiring on a substrate through a hole in an interlayer insulating film, the substrate is placed in a bias sputtering apparatus with a hole in the interlayer insulating film. , a multilayer method characterized by first etching the surface of the lower layer interconnection (through-hole portion) under conditions that cause sputter etching, and then forming an upper layer interconnection that connects to the lower layer interconnection under conditions that the upper layer interconnection film is deposited. How to form wiring. 2. The method for forming a multilayer wiring according to claim 1, wherein a polyimide resin is used for the interlayer insulating film. 3. As the above wiring, Al or Al alloy film or Al
Alternatively, the method for forming a multilayer wiring according to claim 1, using a wiring material made of a laminated film of an Al alloy and another metal or metal compound. 4. Formation of multilayer interconnection according to claim 1, in which the sputter etching occurs by increasing the bias voltage on the electrode side on which the substrate is placed, and the depositing condition is by decreasing the same bias voltage. Method.
JP20422585A 1985-09-18 1985-09-18 Formation of multilayer interconnection Pending JPS6265344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20422585A JPS6265344A (en) 1985-09-18 1985-09-18 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20422585A JPS6265344A (en) 1985-09-18 1985-09-18 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS6265344A true JPS6265344A (en) 1987-03-24

Family

ID=16486907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20422585A Pending JPS6265344A (en) 1985-09-18 1985-09-18 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS6265344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275654A (en) * 1989-04-17 1990-11-09 Nec Corp Manufacture of semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275654A (en) * 1989-04-17 1990-11-09 Nec Corp Manufacture of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPH04359518A (en) Manufacture of semiconductor device
JP2002009150A (en) Semiconductor device, its manufacturing method and manufacturing equipment
US5316975A (en) Method of forming multilevel interconnections in a semiconductor integrated circuit
US5641993A (en) Semiconductor IC with multilayered Al wiring
JPS6265344A (en) Formation of multilayer interconnection
JPH04290249A (en) Manufacture of semiconductor device
JPH11111842A (en) Multilayered wiring structure and its manufacture
JPH0832244A (en) Multilayer wiring board
JPH04307956A (en) Multilayer interconnection structure of integrated circuit
JP2002353221A (en) Semiconductor device and its manufacturing method
JPH0570301B2 (en)
KR100368090B1 (en) Contact hole formation method of nonsensitive polyimide resin insulation layer
JPH0434939A (en) Semiconductor device and manufacture thereof
GB2169446A (en) Integrated circuit multilevel metallization and method for making same
JPH02183536A (en) Semiconductor device
KR920001913B1 (en) Method of fabricating semiconductor device with pattern layer
JPH04188753A (en) Multilayer interconnection semiconductor device
JP2000269328A (en) Semiconductor device and manufacture thereof
KR890004875B1 (en) Manufacture of electrode on semiconductor body
JPH04326521A (en) Semiconductor integrated circuit device and its manufacture
JPH0697299A (en) Semiconductor device
JPH06177255A (en) Manufacture of semiconductor integrated circuit device
JPS61154048A (en) Wiring and manufacture thereof
JP2000031271A (en) Manufacture of multi-layer interconnection semiconductor device
JPH0794583A (en) Fabrication of semiconductor integrated circuit device