JPH0434939A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0434939A
JPH0434939A JP14069790A JP14069790A JPH0434939A JP H0434939 A JPH0434939 A JP H0434939A JP 14069790 A JP14069790 A JP 14069790A JP 14069790 A JP14069790 A JP 14069790A JP H0434939 A JPH0434939 A JP H0434939A
Authority
JP
Japan
Prior art keywords
metal
film
wiring
intermetallic compound
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14069790A
Other languages
Japanese (ja)
Inventor
Kimimaro Yoshikawa
公麿 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14069790A priority Critical patent/JPH0434939A/en
Publication of JPH0434939A publication Critical patent/JPH0434939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electromigration resistance, a micro processing operability on wirings of a submicron size by forming a thin film wiring of first metal, and forming one of second high melting point metal and transition metal and intermetallic compound with the first metal on the upper and side surfaces of the wirings in a self-alignment manner. CONSTITUTION:A silicon oxide film 2 is formed, for example, on a P-type silicon substrate 1, an Al target is sputtered in an argon plasma by a DC magnetron sputtering to deposit an Al film. With photoresist as a mask the Al film is dry etched by using CCl4 gas to form Al wirings 3. The Ti target is sputtered in the argon plasma, and a Ti film 4 is deposited. In this case, an intermetallic compound 5 of Al3Ti is formed on the surfaces (upper and side surfaces) of the wiring 3 in a self-alignment manner. Unreacted Ti is selectively etched by using mixture solution of NH4OH, H2O2, H2O.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装1に関し、特に高信頼度の配線構造を
有する半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device 1, and particularly to a semiconductor device having a highly reliable wiring structure.

〔従来の技術〕[Conventional technology]

半導体集積回路の配線は、アルミニウム(Affl)を
主成分とするターゲツト材をスパッタ法により堆積して
から、選択エツチングする方法が一般的である。
Wiring in semiconductor integrated circuits is generally formed by depositing a target material mainly composed of aluminum (Affl) by sputtering and then selectively etching it.

半導体基板上に形成されたA(配線において、配線に含
まれているA(がシリコン基板中に異常拡散するアロイ
スパイクと称する不良モードがあり、つぎのような防止
法が実用化されている6A、C中に1%前後のSiを予
め混合したターゲットを用いて、DCマグネトロンスパ
ッタ法によりSi基板表面に配線金属をスパッタする方
法がある。
There is a failure mode called alloy spike in which A (contained in the wiring) abnormally diffuses into the silicon substrate formed on a semiconductor substrate, and the following prevention method has been put into practical use. There is a method of sputtering wiring metal onto the surface of a Si substrate by DC magnetron sputtering using a target in which approximately 1% Si is mixed in C in advance.

Si基板表面にCVD法によりポリシリコン薄膜を成長
させ、さらにその上に純粋のAJをスパッタする方法が
ある。
There is a method of growing a polysilicon thin film on the surface of a Si substrate by the CVD method, and then sputtering pure AJ thereon.

さらにエレクトロマイグレーションと称する不良モード
を防止して、配線の寿命を伸ばすため数%の銅を混合し
たターゲットを用いるスパッタ法(1,Ames、 F
、M、d’Heurle、 R,E、Horstman
n、 IBM Journal of Re5earc
h and Development、 pp、461
゜JuIy、 1970)がある。
Furthermore, in order to prevent a failure mode called electromigration and extend the life of the wiring, a sputtering method (1, Ames, F
, M. d'Heurle, R.E. Horstman
n, IBM Journal of Re5earc
h and Development, pp, 461
゜JuIy, 1970).

AJの表面にTiなどの高融点金属薄膜積層させる構造
(D、S、Gardner、 R,B、Beyers、
 T、L、MichaIka、に、C,Saraswa
t、 J、P、McVittie and J、D、M
eindl、 IEEE Trans、 on Ele
ctron Devices、 ED−32(2)、F
eb、1985 )がある。
A structure in which a thin film of a high melting point metal such as Ti is laminated on the surface of the AJ (D, S, Gardner, R, B, Beyers,
T., L., Michaika, and C., Saraswa.
T, J, P, McVittie and J, D, M
eindl, IEEE Trans, on Ele
ctron Devices, ED-32(2), F
eb, 1985).

基板シリコンとAJとの間にバリアメタルとしてT i
−W膜をはさむ方法(R,B、Ghate、 J、B、
BIair、 C,R,Fuller、 G、E、Mc
guire、 Th1n 5olid Films、 
53.117.(1978) )が提案されている。
Ti as a barrier metal between the substrate silicon and AJ
- Method of sandwiching W film (R, B, Ghate, J, B,
B.I.air, C.R., Fuller, G.E., Mc.
guire, Th1n 5olid Films,
53.117. (1978)) have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体集積回路の高速化、高集積化に伴なうパターンの
微細化により、配線の電流密度の増大によるエレクトロ
マイグレーションや、絶縁膜にはさまれた配線の応力に
よるストレスマイグレーションなどによる電極配線の劣
化が問題になっている。
As semiconductor integrated circuits become faster and more highly integrated, patterns become finer, resulting in deterioration of electrode wiring due to electromigration due to increased current density in wiring, stress migration due to stress on wiring sandwiched between insulating films, etc. has become a problem.

サブミクロンサイズの配線にはエレクトロマイグレーシ
ョン耐性、ストレスマイグレーション耐性、微細加工性
を備えた構造が求められている。
Submicron-sized interconnects require structures that have electromigration resistance, stress migration resistance, and microfabricability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装1は、半導体基板の一主面に絶縁膜を
介して第1の金属からなる薄膜配線が形成され、第2の
高融点金属と遷移金属とのうち1つと前記第1の金属と
からなる金属間化合物が、前記配線の上面と側面とに自
己整合的に形成されているものである。
In the semiconductor device 1 of the present invention, a thin film wiring made of a first metal is formed on one principal surface of a semiconductor substrate via an insulating film, and one of a second high melting point metal and a transition metal and the first An intermetallic compound made of metal is formed in a self-aligned manner on the upper surface and side surface of the wiring.

〔作用〕[Effect]

第1の金属からなる配線の上面と側面とに、第1の金属
と第2の高融点金属または遷移金属との金属間化合物が
自己整合的に形成されているため、機械的、熱的に安定
した金属間化合物により第1の金属からなる配線金属が
外部応力から守られ、表面から発生し易い亀裂に起因す
る断線を抑制することができる。
Since an intermetallic compound of the first metal and the second high melting point metal or transition metal is formed in a self-aligned manner on the top and side surfaces of the wiring made of the first metal, it is mechanically and thermally The stable intermetallic compound protects the wiring metal made of the first metal from external stress, and can suppress disconnection due to cracks that tend to occur from the surface.

〔実施例〕〔Example〕

本発明の第1の実施例について、第1図(a)〜(c)
を参照して説明する。
Regarding the first embodiment of the present invention, FIGS. 1(a) to (c)
Explain with reference to.

はじめに第1図(a)に示すように、P型シリコン基板
1の表面にシリコン酸化膜2を形成し、DCマグネトロ
ンスパッタにより、アルゴンプラズマ中でA!2ターゲ
ット(図示せず)をスパッタして、厚さ5000人のA
l膜を堆積する。
First, as shown in FIG. 1(a), a silicon oxide film 2 is formed on the surface of a P-type silicon substrate 1, and A! 2 targets (not shown) were sputtered to a thickness of 5000 mm.
Deposit the l film.

つぎにフォトレジストをマスクとして、CClI4ガス
を用いてAl膜をドライエツチングしてA1配線3を形
成する。
Next, using the photoresist as a mask, the Al film is dry etched using CClI4 gas to form the A1 wiring 3.

つぎに第1図(b)に示すように、基板温度を300℃
に保ってアルゴンプラズマ中でTiターゲット(図示せ
ず)をスパッタして、厚さ500人のTi膜4を堆積す
る。
Next, as shown in Figure 1(b), the substrate temperature was increased to 300°C.
A Ti film 4 having a thickness of 500 nm is deposited by sputtering a Ti target (not shown) in an argon plasma at a constant temperature.

このときAJ2配線3の表面(上面および側面)に自己
整合的にAJ3 Tiの金属間化合物5が形成される。
At this time, an intermetallic compound 5 of AJ3 Ti is formed on the surface (upper surface and side surface) of the AJ2 wiring 3 in a self-aligned manner.

そのあと第1図(c)に示すように、NH4OH: H
202: H20=1 : 5 : 5の混合液を用い
て、未反応のTiを選択的にエツチングする。
Then, as shown in Figure 1(c), NH4OH: H
202: Unreacted Ti is selectively etched using a mixture of H20=1:5:5.

つぎに本発明の第2の実施例について、第2図(a)〜
(d)を参照して説明する。
Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to (d).

はじめに第2図(a)に示すように、P型シリコン基板
1の表面に酸化シリコン膜2を形成し、DCマグネトロ
ンスパッタ法により、基板温度を200℃に保ってアル
ゴンプラズマ中でTiターゲット(図示せず)をスパッ
タすることにより、厚さ500人のTi膜4を形成し、
引き続いて同一スパッタ装置内でA1−1%5t−0,
5%CUターゲット(図示せず)をスパッタして、厚さ
0.5ミクロンのAJ−3i−Cu膜6を形成する。
First, as shown in Fig. 2(a), a silicon oxide film 2 is formed on the surface of a P-type silicon substrate 1, and a Ti target (Fig. A Ti film 4 with a thickness of 500 nm is formed by sputtering (not shown).
Subsequently, A1-1%5t-0,
A 0.5 micron thick AJ-3i-Cu film 6 is formed by sputtering a 5% CU target (not shown).

つぎに第2図(b)に示すように、フォトレジスト(図
示せず)をマスクとして、CCjl、ガスを用いてAJ
−3L−Cu膜6をドライエツチングしてAJ−St−
Cu配線6aを形成する。
Next, as shown in FIG. 2(b), using a photoresist (not shown) as a mask, AJ is applied using CCjl and gas.
-3L-Cu film 6 is dry etched to AJ-St-
A Cu wiring 6a is formed.

つぎに第2図(c)に示すように、DCマグトロンスパ
ッタ法により、基板温度を200℃に保って全面に厚さ
500人のTi膜7を堆積する。
Next, as shown in FIG. 2(c), a Ti film 7 with a thickness of 500 nm is deposited over the entire surface by DC magtron sputtering while keeping the substrate temperature at 200°C.

このときAJ−5i−Cu配線6aの表面(上面、側面
、下面)に自己整合的に厚さ1000人のAJ3Tiの
金属間化合物5が形成される。
At this time, an AJ3Ti intermetallic compound 5 having a thickness of 1000 layers is formed in a self-aligned manner on the surface (upper surface, side surface, and lower surface) of the AJ-5i-Cu wiring 6a.

このあと第2図(d)に示すように、NH4OH:H2
0□;H20=1:5:5の混合液を用いて、未反応の
Tiを選択的にエツチングする。
After this, as shown in Figure 2(d), NH4OH:H2
0□: Unreacted Ti is selectively etched using a mixed solution of H20=1:5:5.

〔発明の効果〕〔Effect of the invention〕

本発明の配線は、融点が高く高温でも安定で、機械的に
も強い金属間化合物に被覆されている。
The wiring of the present invention is coated with an intermetallic compound that has a high melting point, is stable even at high temperatures, and is mechanically strong.

そのためエレクトロマイグレーションやストレスマイグ
レーションに強いアルミ配線構造を得ることができた。
As a result, we were able to obtain an aluminum wiring structure that is resistant to electromigration and stress migration.

さらに金属間化合物が自己整合的に形成されるので、サ
ブミクロンサイズの微細構造にも対応できる塑性変形の
起りにくい配線を形成することができる。
Furthermore, since the intermetallic compound is formed in a self-aligned manner, it is possible to form wiring that is resistant to plastic deformation and can accommodate submicron-sized microstructures.

半導体集積回路の高速化、高集積化に伴なう配線の微細
化による電流密度の増大に起因するエレクトロマイグレ
ーションや、多層配線などの絶縁膜にはさまれた配線の
応力によるストレスマイグレーションなどの問題を解決
して電極配線の信頼性を向上させ、超高集積回路の実現
に役立つことが期待される。
Problems such as electromigration caused by increased current density due to the miniaturization of interconnects as semiconductor integrated circuits become faster and more highly integrated, and stress migration caused by stress in interconnects sandwiched between insulating films such as multilayer interconnects. It is expected that this method will improve the reliability of electrode wiring and help realize ultra-highly integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の第1の実施例を工程順
に示す断面図、第2図(a)〜(d)は本発明の第2の
実施例を工程順に示す断面図である。 1・・・P型シリコン基板、2・・・酸化シリコン膜、
3・・・A1配線、4・・・Ti膜、5・・・Aj13
Ti金属間化合物、6−A ffl −1%5i−0,
5%Cu膜6a・−AI−Si−Cu配線、7−T i
膜。
FIGS. 1(a) to (C) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to (d) are cross-sectional views showing the second embodiment of the present invention in the order of steps. It is a diagram. 1... P-type silicon substrate, 2... silicon oxide film,
3...A1 wiring, 4...Ti film, 5...Aj13
Ti intermetallic compound, 6-A ffl-1%5i-0,
5% Cu film 6a・-AI-Si-Cu wiring, 7-Ti
film.

Claims (1)

【特許請求の範囲】 1、半導体基板の一主面に絶縁膜を介して第1の金属か
らなる薄膜配線が形成され、第2の高融点金属と遷移金
属とのうち1つと前記第1の金属とからなる金属間化合
物が、前記配線の上面と側面とに自己整合的に形成され
ていることを特徴とする半導体装置。 2、半導体基板の一主面に形成された絶縁膜の上に、第
1の金属からなる薄膜配線を形成する工程と、全面に第
2の高融点金属と遷移金属とのうち1つからなる薄膜を
堆積する工程と、前記半導体基板を熱処理して前記薄膜
配線の上面と側面とに前記第1の金属と前記第2の金属
とからなる金属間化合物を形成する工程と、前記絶縁膜
上の前記第2の金属膜を選択的に除去する工程とからな
ることを特徴とする半導体装置の製造方法。
[Claims] 1. A thin film wiring made of a first metal is formed on one main surface of a semiconductor substrate via an insulating film, and one of a second high melting point metal and a transition metal and the first A semiconductor device characterized in that an intermetallic compound made of a metal is formed in a self-aligned manner on an upper surface and a side surface of the wiring. 2. Forming a thin film wiring made of a first metal on an insulating film formed on one main surface of the semiconductor substrate, and forming a thin film wiring made of a second high melting point metal or a transition metal on the entire surface. a step of depositing a thin film; a step of heat-treating the semiconductor substrate to form an intermetallic compound consisting of the first metal and the second metal on the top and side surfaces of the thin film wiring; selectively removing the second metal film.
JP14069790A 1990-05-30 1990-05-30 Semiconductor device and manufacture thereof Pending JPH0434939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14069790A JPH0434939A (en) 1990-05-30 1990-05-30 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14069790A JPH0434939A (en) 1990-05-30 1990-05-30 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0434939A true JPH0434939A (en) 1992-02-05

Family

ID=15274641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14069790A Pending JPH0434939A (en) 1990-05-30 1990-05-30 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0434939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181139A (en) * 1994-12-26 1996-07-12 Nec Corp Semiconductor device and manufacture thereof
US6224942B1 (en) * 1999-08-19 2001-05-01 Micron Technology, Inc. Method of forming an aluminum comprising line having a titanium nitride comprising layer thereon
JP2009011745A (en) * 2007-07-09 2009-01-22 Toshiba Consumer Electronics Holdings Corp Drawer type kitchen equipment drier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373646A (en) * 1986-09-17 1988-04-04 Toshiba Corp Semiconductor device
JPH0370137A (en) * 1989-07-20 1991-03-26 Hyundai Electron Ind Co Ltd Element linking metal wiring layer in semiconductor integrated circuit and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373646A (en) * 1986-09-17 1988-04-04 Toshiba Corp Semiconductor device
JPH0370137A (en) * 1989-07-20 1991-03-26 Hyundai Electron Ind Co Ltd Element linking metal wiring layer in semiconductor integrated circuit and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181139A (en) * 1994-12-26 1996-07-12 Nec Corp Semiconductor device and manufacture thereof
US6224942B1 (en) * 1999-08-19 2001-05-01 Micron Technology, Inc. Method of forming an aluminum comprising line having a titanium nitride comprising layer thereon
JP2009011745A (en) * 2007-07-09 2009-01-22 Toshiba Consumer Electronics Holdings Corp Drawer type kitchen equipment drier

Similar Documents

Publication Publication Date Title
US4937652A (en) Semiconductor device and method of manufacturing the same
JPH05206135A (en) Manufacture of semiconductor device
US5583074A (en) Semiconductor circuit
JPH0434939A (en) Semiconductor device and manufacture thereof
US5851920A (en) Method of fabrication of metallization system
JPH02125447A (en) Semiconductor device and manufacture thereof
JPS60115221A (en) Manufacture of semiconductor device
JP3099406B2 (en) Multilayer wiring structure of integrated circuit
JP2655504B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0418760A (en) Semiconductor device
JPH053254A (en) Method of forming laminated wiring
JPS62241373A (en) Semiconductor device
JP2985183B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0258228A (en) Semiconductor integrated circuit
JPH08153791A (en) Semiconductor device and manufacture thereof
JPH0547764A (en) Semiconductor device and its manufacture
JPS62165342A (en) Semiconductor device
JPH0467622A (en) Manufacture of semiconductor device
JPH02140955A (en) Semiconductor device
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JPH08124877A (en) Manufacture of semiconductor integrated circuit
JPS62291948A (en) Metal thin film miring and manufacture thereof
KR950005265B1 (en) Metal wiring method of semiconductor device
JPS59189657A (en) Manufacture of semiconductor device
JPS6265344A (en) Formation of multilayer interconnection