JPS6263126A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS6263126A
JPS6263126A JP60204135A JP20413585A JPS6263126A JP S6263126 A JPS6263126 A JP S6263126A JP 60204135 A JP60204135 A JP 60204135A JP 20413585 A JP20413585 A JP 20413585A JP S6263126 A JPS6263126 A JP S6263126A
Authority
JP
Japan
Prior art keywords
suction
intake
passage
independent
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60204135A
Other languages
Japanese (ja)
Inventor
Akimitsu Koike
小池 昌充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60204135A priority Critical patent/JPS6263126A/en
Publication of JPS6263126A publication Critical patent/JPS6263126A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To make propergation of a pressure wave performable almost uniformly, by forming a curved part of a suction pipe into a sectional flat form, in case of a device which installs the suction pipe connecting a suction port of each cylinder to a surge tank and having the upward curved part. CONSTITUTION:In case of a suction device which connects a suction port 4 of each cylinder 2 to a suction expansion chamber 10 extending in a cylinder train direction interconnectly via each independent suction passage 8, each interconnecting part 16, interconnecting each of these suction passages 8 mutually via branch holes 15 extending in parallel with the suction expansion chamber 10 and being branched off from each independent suction passage 8, is connected to the point midway in each independent suction passage 8. Each of these independent suction passages 8 is constituted of suction pipes 9 consisting of an upstream side part 9a and a downstream side part 9b to be curved along a circumferential surface of a surge tank 11 constituting the suction expansion chamber 10. And, the curved part of the suction pipe 9 is formed so as to become a flat form causing the passage section to make the length in the cylinder train direction a long diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果により出力の向上を図るよう
にしたエンジンの吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that is designed to improve output through the dynamic effect of intake air.

(従来技術) 従来から、エンジンの吸気装置において、吸気開始に伴
って生じる負圧の圧力波が吸気通路上流側の大気または
吸気拡大室への開口端で反射され正圧の圧力波となって
吸気ポート方向に戻されることを利用し、上記正圧の圧
力波が吸気弁の閉弁寸前に吸気ポートに達して吸気を燃
焼室に押し込むようにする。いわゆる吸気の慣性効果に
よって吸気の充填効率を高めるようにしたものがある。
(Prior art) Conventionally, in an engine intake system, a negative pressure wave generated with the start of intake is reflected at the open end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and becomes a positive pressure wave. Taking advantage of the fact that the air is returned toward the intake port, the positive pressure wave reaches the intake port just before the intake valve closes and forces the intake air into the combustion chamber. Some devices are designed to increase the filling efficiency of intake air using the so-called inertia effect of intake air.

例えば特開昭56−115819号公報に記載されるよ
うに、エンジンの回転数に応じて吸気通路の長さ等を変
えるようにし、例えば、各気筒別の吸気通路を上流部で
2叉に分岐させて長い通路と短い通路とを形成し、これ
らの通路の上流端を吸気拡大室等に開口させるとともに
、短い通路に開閉弁を設けて、高回転域でこの開閉弁を
開くことにより吸気通路の有効長さを短縮するようにし
く上記公報の第6図参照)、低回転域と高回転域とでそ
れぞれ吸気の慣性効果を高めるようにした吸気装置が知
られている。
For example, as described in Japanese Unexamined Patent Publication No. 56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is branched into two at the upstream part. The upstream ends of these passages are opened to the intake expansion chamber, etc., and an on-off valve is provided in the short passage, and this on-off valve is opened in the high rotation range to open the intake passage. An intake device is known in which the effective length of the engine is shortened (see FIG. 6 of the above-mentioned publication) and the inertia effect of intake air is enhanced in both the low rotation range and the high rotation range.

ところで、低回転域で吸気の慣性効果を得るためには吸
気通路の通路長さを長くする必要があるのであるが、上
記従来の吸気装置においては、エンジンルーム内でのス
ペース面での制約から、吸気管は吸気ポートからエンジ
ン本体外方に延びエンジン本体上方に湾曲してサージタ
ンクと連通ずるようになっている。ところが、上記吸気
管の吸気通路は断面が略円形状で、そのような吸気管湾
曲部分の吸気通路の内周側と外周側とでは曲率半径が異
なるので、吸気通路の通路長さに差を生じ、圧力波の伝
播が吸気通路の断面の各部分において異なり、均一とな
らないという問題がある。また。
By the way, in order to obtain the inertial effect of intake air in the low rotation range, it is necessary to increase the length of the intake passage, but in the conventional intake system described above, due to space constraints in the engine room, it is necessary to increase the length of the intake passage. The intake pipe extends from the intake port to the outside of the engine body, curves upward from the engine body, and communicates with the surge tank. However, the intake passage of the above-mentioned intake pipe has a substantially circular cross section, and the radius of curvature differs between the inner and outer circumferential sides of the intake passage in the curved portion of the intake pipe. There is a problem in that the propagation of the pressure waves is different in each part of the cross section of the intake passage and is not uniform. Also.

単純に吸気管の内径(通路径)を小さくすることも考え
られるが、吸気充填効率が低下するので望ましくない。
Although it is conceivable to simply reduce the inner diameter (passage diameter) of the intake pipe, this is not desirable because the intake air filling efficiency decreases.

(発明の目的) そこで、本発明は、吸気管の湾曲部分の吸気通路におい
て、内周側および外周側にかかわりなく、圧力波の伝播
をほぼ均一にすることができるエンジンの吸気装置を提
供することを目的とするものである。
(Objective of the Invention) Therefore, the present invention provides an engine intake device that can make the propagation of pressure waves substantially uniform in the intake passage of the curved portion of the intake pipe, regardless of whether it is on the inner circumferential side or the outer circumferential side. The purpose is to

(発明の構成) 本発明は、上記目的を達成するために、吸気管の湾曲部
分を、吸気通路の断面が出力軸方向の長さを長径とする
偏平状になるように形成していることを特徴とする。偏
平状とすることにより、吸気管の湾曲部分での内周側と
外周側との曲率半径の差が小さくなり、吸気管内の吸気
通路の通路長さの差が減少し、圧力波の伝播が吸気通路
の断面の各部位においてほぼ均一となり、吸気の動的効
果が効率よく得られる。
(Structure of the Invention) In order to achieve the above object, the present invention provides that the curved portion of the intake pipe is formed so that the cross section of the intake passage has a flat shape whose major axis is the length in the output axis direction. It is characterized by The flat shape reduces the difference in the radius of curvature between the inner and outer sides of the curved portion of the intake pipe, reduces the difference in the length of the intake passage in the intake pipe, and reduces the propagation of pressure waves. The cross section of the intake passage is substantially uniform at each location, and the dynamic effect of intake air can be efficiently obtained.

(実施例) 以下、本発明の実施例について図面に基づいて詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

本発明を4気筒エンジンの適用した場合の実施例を示す
第1図において、1はエンジン本体で、その長手方向(
紙面に対し鉛直方向)に第1〜第4気筒2が直列状に形
成されており、同方向に沿って出力軸(図示せず)が設
けられている。この各気筒2にはそれぞれピストン(図
示せず)の上方に燃焼室3が形成され、この燃焼室3に
吸気ポート4および排気ポート5が開口し、これら両ポ
ート4,5にそれぞれ吸気弁6および排気弁7が装設さ
れている。
In FIG. 1 showing an embodiment in which the present invention is applied to a four-cylinder engine, reference numeral 1 denotes an engine body, and the longitudinal direction (
The first to fourth cylinders 2 are formed in series in a direction perpendicular to the plane of the paper, and an output shaft (not shown) is provided along the same direction. Each cylinder 2 has a combustion chamber 3 formed above a piston (not shown), an intake port 4 and an exhaust port 5 opening in this combustion chamber 3, and intake valves 6 in both ports 4 and 5, respectively. and an exhaust valve 7 are installed.

上記各気筒2の各吸気ポート4には、気筒2ごとに互い
に独立した独立吸気通路8を構成する吸気管9の下流端
が接続されている。一方、吸気管9の上流端はエンジン
本体1の外方に延び、エンジン本体1の上方に湾曲して
気筒列方向(出力軸方向)と平行に延びる吸気拡大室1
0を構成するサージタンク11に連通されている。なお
、各独立吸気通路8の通路長さはほぼ同一長さに設定さ
れている。
Each intake port 4 of each cylinder 2 is connected to the downstream end of an intake pipe 9 that constitutes an independent intake passage 8 for each cylinder 2. On the other hand, the upstream end of the intake pipe 9 extends outward from the engine body 1, and an intake expansion chamber 1 curves upwardly in the engine body 1 and extends parallel to the cylinder row direction (output shaft direction).
It is connected to a surge tank 11 that constitutes 0. Note that the passage lengths of each independent intake passage 8 are set to be approximately the same length.

上記サージタンク11には吸気導入管12を介して外気
が導入され、この吸気導入管12には吸入空気量を制御
するスロットル弁13が配設されている。また、上記各
独立吸気通路8の下流端近傍部には燃料噴射弁14が配
設されている。
Outside air is introduced into the surge tank 11 through an intake air introduction pipe 12, and this intake air introduction pipe 12 is provided with a throttle valve 13 for controlling the amount of intake air. Further, a fuel injection valve 14 is disposed near the downstream end of each independent intake passage 8 .

上記各独立吸気通路8の途中には、気筒列方向に吸気拡
大室10と平行に延び、各独立吸気通路8から分岐する
分岐孔15を介して各独立吸気通路8を相互に連通する
連通部16が接続されている6なお、上記各独立吸気通
路12の連通部16よりの分岐箇所から各気筒2までの
通路長さはほぼ同一長さに設定されている。
In the middle of each of the independent intake passages 8, there is a communication section that extends parallel to the intake enlarged chamber 10 in the cylinder row direction and communicates the independent intake passages 8 with each other via a branch hole 15 that branches from each independent intake passage 8. Note that the lengths of the passages from the branch points of the respective independent intake passages 12 from the communication portions 16 to the respective cylinders 2 are set to be approximately the same length.

上記各分岐孔15にはそれぞれ分岐孔15を開閉する開
閉弁17が設けられており、この各開閉弁17は、気筒
列方向に延びるバルブシャフト18に固定され、図示し
ていないがエンジン回転数検出手段等の出力を受ける制
御回路によりアクチュエータを介して一体的に開閉制御
され、それによって上記連通部16による各独立吸気通
路8相互間の連通をエンジン運転状態に応じて制御し、
エンジン回転数が設定値未満の低回転域では閉じられ、
エンジン回転数が設定値以上の高回転域では開かれるよ
うに制御する制御手段を構成している。なお、このよう
なエンジン回転数に応じた開閉弁17の開閉作動は、出
力が要求される少なくとも高負荷時において行われるよ
うにすればよく、低負荷時には開閉弁17が開状態また
は閉状態に保たれるようにしてもよい。
Each branch hole 15 is provided with an on-off valve 17 that opens and closes the branch hole 15, and each on-off valve 17 is fixed to a valve shaft 18 extending in the direction of the cylinder row. Opening and closing are integrally controlled via an actuator by a control circuit receiving the output of the detection means, etc., thereby controlling the communication between the independent intake passages 8 through the communication portion 16 according to the engine operating state,
Closed in the low speed range when the engine speed is less than the set value,
It constitutes a control means that controls the valve to be opened in a high rotation range where the engine rotation speed is higher than a set value. Note that the opening/closing operation of the on-off valve 17 according to the engine speed may be performed at least at high loads when output is required, and the on-off valve 17 may be in the open or closed state at low loads. It may be maintained.

上記各吸気管9の上流側部分9aはサージタンク11の
局面に沿って湾曲し、該サージタンク11と一体成形さ
れ、それによって吸気マニホールド19の上流部分19
aを構成している。この吸気マニホールド19の上流部
分19aは、また、吸気管9の上流側部分9aおよびサ
ージタンク11を構成する構成壁の一部を共用して、連
通部16の上側部分16aを形成している。一方、各吸
気管9の下流側部分9bも一体成形されて吸気マニホー
ルド19の下流部分19bを構成し、それの構成壁の一
部を共用して連通部16の下側部分16bが形成されて
いる。しかして、吸気マニホールド19の上下流部分1
9a、19bを結合することにより、吸気拡大室10と
各気筒2の吸気ポート4とを連通ずる湾曲した各独立吸
気通路8と、各独立吸気通路8から分岐して各独立吸気
通路8を相互に連通ずる連通部16が形成され、吸気系
がコンパクト化されるようになっている。
The upstream portion 9a of each of the intake pipes 9 is curved along the contour of the surge tank 11 and is integrally formed with the surge tank 11, so that the upstream portion 9a of the intake manifold 19
It constitutes a. The upstream portion 19a of the intake manifold 19 also forms an upper portion 16a of the communication portion 16 by sharing a part of the constituent walls of the upstream portion 9a of the intake pipe 9 and the surge tank 11. On the other hand, the downstream portion 9b of each intake pipe 9 is also integrally molded to constitute the downstream portion 19b of the intake manifold 19, and a portion of its constituent wall is shared to form the lower portion 16b of the communication portion 16. There is. Therefore, the upstream and downstream portions 1 of the intake manifold 19
By combining 9a and 19b, each curved independent intake passage 8 that communicates between the intake expansion chamber 10 and the intake port 4 of each cylinder 2, and each independent intake passage 8 that branches from each independent intake passage 8 and connects each independent intake passage 8 to each other. A communication portion 16 is formed to communicate with the air intake system, thereby making the intake system more compact.

また、各独立吸気通路8は、全体に亘って、断面が出力
軸方向の長さを長径とする偏平状に形成されているので
、各吸気管9の湾曲部分は、第4図に示すように、独立
吸気通路8の断面が気筒列方向の長さLlを長径とする
偏平状になっており。
Furthermore, since each independent intake passage 8 is formed in a flat cross section over the entirety with the major axis being the length in the output axis direction, the curved portion of each intake pipe 9 is shaped as shown in FIG. In addition, the cross section of the independent intake passage 8 has a flat shape whose major axis is the length Ll in the cylinder row direction.

独立吸気通路8の内周側と外周側とで通路長さに差がほ
とんど生じなくなっている。したがって。
There is almost no difference in passage length between the inner circumferential side and the outer circumferential side of the independent intake passage 8. therefore.

上記各独立吸気通路12の内周側の通路長さLlと外周
側の通路長さL3は、従来のものに比して、差が小さく
なっている。
The difference between the passage length Ll on the inner circumferential side and the passage length L3 on the outer circumferential side of each independent intake passage 12 is smaller than that of the conventional one.

上記のように構成すれば、各開閉弁17が閉じて連通部
16による各独立吸気通路8相互間の連通が遮断されて
いる状態では、吸気行程で生じる負圧の圧力波が吸気拡
大室10まで伝播されてここで反射され、つまり比較的
長い通路を通して上記負圧の圧力波およびその反射波が
伝播することにより、低回転域においてこのような圧力
波の振動周期が吸気弁6の開閉周期にマツチングするこ
とになり、低回転域での吸気の慣性効果が高められて、
吸気充填効率が高められる。
With the above configuration, when each on-off valve 17 is closed and the communication between the independent intake passages 8 through the communication portion 16 is cut off, the pressure wave of negative pressure generated during the intake stroke is transmitted to the intake expansion chamber 10. In other words, the pressure wave of the negative pressure and its reflected wave propagate through a relatively long passage, so that the oscillation period of the pressure wave becomes equal to the opening/closing period of the intake valve 6 in the low rotation range. As a result, the inertia effect of the intake air in the low rotation range is increased,
Intake air filling efficiency is increased.

一方、上記各開閉弁17が開かれて連通部16により各
独立吸気通路8相互間が連通している状態では、吸気行
程で生じる負圧の圧力波が上記連通部16で反射されて
この負圧の圧力波およびその反射波の伝播に供される通
路長さが短くなることにより、高回転域で吸気の慣性効
果が高められるとともに、この運転域では他の気筒から
伝播される圧力波も連通部16を介して有効に作用する
ことになり、高回転域での充填効率が大幅に高められる
On the other hand, when the on-off valves 17 are opened and the independent intake passages 8 are in communication with each other through the communication portions 16, the pressure waves of negative pressure generated during the intake stroke are reflected by the communication portions 16, and the negative pressure waves are reflected by the communication portions 16. By shortening the length of the passage used for the propagation of pressure waves and their reflected waves, the inertial effect of the intake air is enhanced in the high rotation range, and in this operating range, the pressure waves propagated from other cylinders are also reduced. This effectively acts through the communication portion 16, and the filling efficiency in the high rotation range is greatly increased.

このように、低回転域で開閉弁17を閉じ、高回転域で
開閉弁17を開くようにすることにより、全回転域で吸
気充填効率が高められて出力を向上させることができる
。特に、独立吸気通路8の湾曲部分を偏平状としている
ので、該湾曲部分において内周側と外周側とで従来のよ
うに通路長さの差が大きくならず、独立吸気通路8の内
周側、外周側にかかわらず、圧力波の伝播がほぼ均一と
なり、吸気の慣性効果が高まり、吸気充填効率も向上す
る。
In this way, by closing the on-off valve 17 in the low rotation range and opening the on-off valve 17 in the high rotation range, the intake air filling efficiency can be increased in the entire rotation range, and the output can be improved. In particular, since the curved portion of the independent intake passage 8 is flat, the difference in passage length between the inner circumference side and the outer circumference side of the curved portion does not become large as in the conventional case, and the inner circumference side of the independent intake passage 8 , pressure waves propagate almost uniformly regardless of the outer circumferential side, increasing the inertia effect of intake air and improving intake air filling efficiency.

上記実施例は、独立吸気通路8の通路長さを可変とする
ものに用いた例であるが、それに限定されるものではな
く、吸気ポートからエンジン本体外方に延び、エンジン
本体上方に湾曲してサージタンクと連通ずる吸気管を有
し、吸気の動的効果を利用するエンジンの吸気装置であ
れば、通路長さが一定のものでも差支えない。
Although the above embodiment is an example in which the length of the independent intake passage 8 is variable, the length of the independent intake passage 8 is not limited to this. As long as the engine intake system has an intake pipe that communicates with the surge tank and utilizes the dynamic effect of intake air, the passage length may be constant.

また、上記実施例は多気筒エンジンに用いた例であるが
、単気筒エンジンにも適用することができるのは言うま
でもない。
Moreover, although the above embodiment is an example used for a multi-cylinder engine, it goes without saying that the present invention can also be applied to a single-cylinder engine.

(発明の効果) 本発明は、上記のように、吸気管の湾曲部分を偏平状と
したので、該湾曲部分の内周側と外周側との吸気通路の
通路長さの差が小さくなり、圧力波の伝播をほぼ均一に
できる。
(Effects of the Invention) As described above, in the present invention, since the curved portion of the intake pipe is made flat, the difference in the length of the intake passage between the inner circumferential side and the outer circumferential side of the curved portion is reduced. Propagation of pressure waves can be made almost uniform.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は4気筒エンジン
の吸気装置の全体構成図、第2図は第1図の■−■線に
おける吸気マニホールドの上流部分の断面図、第3図は
第1図の■−■線における概略図、第4図は第1図のm
V−mV線における断面図である。 l・・・・・・エンジン本体、2・・・・・・気筒、4
・・・・・・吸気ポート、9・・・・・・吸気管、11
・・・・・・サージタンク。
The drawings show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram of an intake system for a four-cylinder engine, FIG. 2 is a sectional view of the upstream portion of the intake manifold taken along the line ■-■ in FIG. 1, and FIG. is a schematic diagram along the ■-■ line in Figure 1, and Figure 4 is a schematic diagram along the line m in Figure 1.
It is a sectional view taken along the V-mV line. l...Engine body, 2...Cylinder, 4
...Intake port, 9...Intake pipe, 11
······Surge tank.

Claims (1)

【特許請求の範囲】[Claims] (1)吸気ポートからエンジン本体外方に延び、エンジ
ン本体上方に湾曲してサージタンクと連通する吸気管を
有するエンジンの吸気装置において、上記吸気管の湾曲
部分は、吸気通路の断面が出力軸方向の長さを長径とす
る偏平状に形成されていることを特徴とするエンジンの
吸気装置。
(1) In an engine intake system having an intake pipe that extends from the intake port to the outside of the engine body, curves upwards of the engine body, and communicates with the surge tank, the curved portion of the intake pipe has a cross section of the intake passage that is the output axis. An intake device for an engine, characterized in that it is formed into a flat shape whose major axis is the length in the direction.
JP60204135A 1985-09-13 1985-09-13 Suction device for engine Pending JPS6263126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204135A JPS6263126A (en) 1985-09-13 1985-09-13 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204135A JPS6263126A (en) 1985-09-13 1985-09-13 Suction device for engine

Publications (1)

Publication Number Publication Date
JPS6263126A true JPS6263126A (en) 1987-03-19

Family

ID=16485413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204135A Pending JPS6263126A (en) 1985-09-13 1985-09-13 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS6263126A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733233B2 (en) * 1975-01-23 1982-07-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733233B2 (en) * 1975-01-23 1982-07-15

Similar Documents

Publication Publication Date Title
EP0182223A2 (en) Intake system for internal combustion engine
US4671217A (en) Intake system for internal combustion engine
JPS62210218A (en) Intake device of multi-cylinder internal combustion engine
US4771740A (en) Intake system for internal combustion engine
JPS6263127A (en) Suction device for engine
JPS6263126A (en) Suction device for engine
JPS61157717A (en) Air intake device of multicylinder engine
JPS6263125A (en) Suction device for engine
JPS61157716A (en) Air intake device of multicylinder engine
JPS6267225A (en) Air intake device for engine
JPH078814Y2 (en) Engine intake and exhaust pipe structure
JPH0341056Y2 (en)
JPH0315779Y2 (en)
JPH0353453B2 (en)
JPH0343378Y2 (en)
JPH04214923A (en) Intake device for multiple cylinder engine
JPS60222523A (en) Suction device of engine
JPS61116020A (en) Engine intake-air device
JPH0343379Y2 (en)
JPH0517372B2 (en)
JPH0842349A (en) Intake device of multi-cylinder engine
JPS6296726A (en) Air intake device for multiple cylinder engine
JPH0427370B2 (en)
JPS61252830A (en) Intake device of multicylinder engine
JPH02196125A (en) Intake system for internal combustion engine