JPH078814Y2 - Engine intake and exhaust pipe structure - Google Patents

Engine intake and exhaust pipe structure

Info

Publication number
JPH078814Y2
JPH078814Y2 JP1986053869U JP5386986U JPH078814Y2 JP H078814 Y2 JPH078814 Y2 JP H078814Y2 JP 1986053869 U JP1986053869 U JP 1986053869U JP 5386986 U JP5386986 U JP 5386986U JP H078814 Y2 JPH078814 Y2 JP H078814Y2
Authority
JP
Japan
Prior art keywords
passage
intake
engine
opening
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986053869U
Other languages
Japanese (ja)
Other versions
JPS62165435U (en
Inventor
竹徳 大塚
房利 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1986053869U priority Critical patent/JPH078814Y2/en
Publication of JPS62165435U publication Critical patent/JPS62165435U/ja
Application granted granted Critical
Publication of JPH078814Y2 publication Critical patent/JPH078814Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、吸気または排気の脈動圧を利用して吸気効率
または排気効率を高めエンジンの出力を向上させるよう
にしたエンジンの吸排気管構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an intake / exhaust pipe structure for an engine, which utilizes intake or exhaust pulsating pressure to increase intake efficiency or exhaust efficiency and improve engine output. It is a thing.

(従来技術) 従来、例えばエンジンの吸気装置においては、吸気開始
に伴って生じる負圧波が当該エンジンの吸気通路上流側
の大気またはサージタンク(拡大室)の開口端で反射さ
れ、正圧波となって吸気ポート方向に戻されることを利
用し、上記正圧波が吸気弁の閉弁寸前に吸気ポートに達
して吸気が押し込まれる、いわゆる吸気の慣性効果によ
り吸気の充填効率を高めるようにしたものがある。
(Prior Art) Conventionally, for example, in an intake system of an engine, a negative pressure wave generated at the start of intake is reflected by the atmosphere on the upstream side of the intake passage of the engine or the open end of a surge tank (expansion chamber) to become a positive pressure wave. By using the fact that the positive pressure wave reaches the intake port just before the intake valve is closed and the intake air is pushed in, the so-called intake inertia effect enhances the intake charging efficiency. is there.

ところで、この場合に、上記吸気通路の長さや形状が一
定であると、当該吸気通路に生じる圧力波の振動周期と
上記吸気弁の開閉周期との上記マッチングにより吸気慣
性効果が高められるのは特定の速度領域にのみ限られる
ことになる。このため、例えば特開昭60-164619号公報
にみられるように、エンジンの回転数領域に応じて上記
吸気通路の長さ等を変え得るようにし、例えばエンジン
の複数の各気筒別の吸気通路を上流部で2又に分岐させ
て長い第1の通路と短い第2の通路とを形成し、これら
の各通路の上流端をそれぞれサージタンク又は吸気拡大
室に開口させるとともに、上記短い第2の通路側開口部
に開閉弁を設けて、高回転域ではこの開閉弁を開くこと
により吸気通路の有効長さを短縮するようになすととも
に、低回転域では上記開閉弁を閉じて吸気通路の有効長
さを延長し、こうして低速域と高速域とでそれぞれエン
ジン回転数領域に応じて吸気の慣性効果を高めるように
したエンジンの吸気装置が提案されている。
By the way, in this case, if the length or shape of the intake passage is constant, it is specified that the intake inertia effect is enhanced by the matching between the vibration cycle of the pressure wave generated in the intake passage and the opening / closing cycle of the intake valve. Will be limited only to the speed range. Therefore, for example, as disclosed in Japanese Patent Laid-Open No. 60-164619, the length of the intake passage can be changed according to the engine speed range, and the intake passage for each cylinder of the engine can be changed. Is bifurcated upstream to form a long first passage and a short second passage, and the upstream ends of these passages are opened to the surge tank or the intake expansion chamber, respectively, and the short second passage is formed. An opening / closing valve is provided at the passage-side opening of the intake valve so that the effective length of the intake passage is shortened by opening this opening / closing valve in the high rotation range, and the opening / closing valve is closed in the low rotation range to close the intake passage. An engine intake system has been proposed in which the effective length is extended and thus the inertial effect of intake air is enhanced in the low speed region and the high speed region depending on the engine speed region.

一方、上記のように、エンジンの吸気装置を構成した場
合において、特に上記サージタンク又は吸気拡大室の容
積をあまり大きくせずにエンジンの低回転域で吸気慣性
効果を充分に得ようとすると、次式(ヘルムホルツの共
鳴式)から明らかなように上記吸気通路の長さLを特に
大きくする必要がある。
On the other hand, in the case where the engine intake device is configured as described above, particularly when the intake inertia effect is sufficiently obtained in the low engine speed range without increasing the volume of the surge tank or the intake expansion chamber too much, As is clear from the following equation (Helmholtz resonance equation), it is necessary to particularly increase the length L of the intake passage.

但しa:音速 f:通路断面積 V:膨張室容積 L:通路長 ところが、自動車におけるエンジンルームのスペースは
物理的に限られており、必然的にエンジンのコンパクト
化が要求される。従って、一般に上記吸気通路は例えば
第7図に示すように略コの字状に折り曲げた状態で設置
されるのが通常である。
However, a: sound velocity f: cross-sectional area of passage V: volume of expansion chamber L: length of passage However, the space of the engine room in an automobile is physically limited, and inevitably a compact engine is required. Therefore, in general, the intake passage is normally installed in a state of being bent in a substantially U shape as shown in FIG. 7, for example.

すなわち、該第7図において、符号Eはエンジンであ
り、このエンジンEの吸気ポート60には吸気マニホール
ド50を介して通路距離の長い第1の吸気通路51が接続さ
れ、さらに該第1の吸気通路51はコの字状に湾曲され、
その先端には圧力波反転部として機能するサージタンク
54が設けられている。
That is, in FIG. 7, reference numeral E is an engine, a first intake passage 51 having a long passage distance is connected to an intake port 60 of the engine E through an intake manifold 50, and the first intake passage 51 is further connected. The passage 51 is curved in a U shape,
A surge tank that functions as a pressure wave reversal part at its tip
54 is provided.

一方、通路距離の短い第2の通路55は、その通路空間を
圧力波反転用の吸気拡大室となすとともに上記第1の通
路51の直管部に連通して開口し、該開口部52位置に上述
の開閉弁53が設けられている。
On the other hand, the second passage 55 having a short passage distance forms its passage space as an intake expansion chamber for pressure wave reversal, and communicates with the straight pipe portion of the first passage 51 to open, and the opening 52 position The on-off valve 53 described above is provided in the.

(考案が解決しようとする問題点) ところが、第7図図示のように第1の吸気通路51をコの
字状に折り曲げると、当該吸気通路に少なくとも2つの
湾曲部A,Bが形成されることになり(しかもその湾曲部
A,Bの湾曲半径は当該第1の吸気通路51が占有する設置
スペースを小さくしようとすればする程小さなものとな
る)、その結果、吸気流は当該湾曲部A,Bの内周側にお
いて剥離を生じて符号Vで示すようにうず流を発生し、
実質的な流路面積が小さくなり吸気流に対する抵抗とな
る。このような通路湾曲部における作動流体のうず流発
生と該うず流発生による抵抗増大は吸気通路だけでな
く、排気通路においても同様に発生する。すわなち、エ
ンジンにおいては、排気側においても作動流体(排気ガ
ス)の脈動圧を利用して排気効率を高めることが行われ
ることがあるが、その場合に、上記吸気通路の例で説明
した如く、排気通路としてそれぞれ圧力反転部に連通す
る第1の排気通路と第2の排気通路を設け、しかも通路
長さの長い排気通路側を湾曲させて形成した場合には、
その湾曲部の内周側において排気の剥離によるうず流が
発生し、排気抵抗増大(排気効率低下)の原因となるこ
とが考えられる。
(Problems to be solved by the invention) However, when the first intake passage 51 is bent in a U shape as shown in FIG. 7, at least two curved portions A and B are formed in the intake passage. (And the curved part
The bending radii of A and B become smaller as the installation space occupied by the first intake passage 51 is made smaller), and as a result, the intake flow is at the inner peripheral side of the bending portions A and B. Separation occurs and a vortex flow is generated as indicated by symbol V,
Substantially the flow passage area becomes small, which becomes a resistance to the intake air flow. The generation of the eddy flow of the working fluid in the curved passage and the increase in resistance due to the generation of the eddy flow occur not only in the intake passage but also in the exhaust passage. That is, in the engine, the pulsating pressure of the working fluid (exhaust gas) may be used on the exhaust side to improve the exhaust efficiency, and in that case, the example of the intake passage has been described. As described above, when the first exhaust passage and the second exhaust passage communicating with the pressure reversing portion are provided as the exhaust passages, and the exhaust passage side having a long passage length is curved and formed,
It is conceivable that eddy flow occurs due to separation of exhaust gas on the inner peripheral side of the curved portion, which causes increase in exhaust resistance (exhaust efficiency decrease).

(問題点を解決するための手段) 本考案は、上記の問題を解決することを目的としてなさ
れたもので、圧力反転部と気筒とを接続し、その途中に
少なくとも1つの湾曲部を形成してなる第1の通路と、
一端側が開閉弁を介して上記第1の通路に連通し他端側
が圧力反転部に連通するとともに上記第1の通路よりも
吸気通路長が短かい第2の通路とを備え、上記気筒の吸
気又は排気行程で発生する脈動圧を利用し、かつ所定の
エンジン回転域における上記開閉弁の開閉により上記エ
ンジンの複数の回転域で当該回転域に対応した吸気過給
又は強制排気を行なうようにしたエンジンの吸排気管構
造において、上記第1の通路に対し同第1の通路の上記
湾曲部内周側において上記第2の通路の一端側を連通せ
しめる一方、上記開閉弁を該連通部に臨む位置に配設し
てなるものである。
(Means for Solving Problems) The present invention has been made for the purpose of solving the above problems, and connects a pressure reversal portion and a cylinder, and forms at least one bending portion in the middle thereof. And the first passage,
An intake passage of the cylinder is provided, which has a second passage, one end side of which communicates with the first passage through an on-off valve and the other end of which communicates with the pressure reversing portion and which has an intake passage length shorter than that of the first passage. Alternatively, the pulsating pressure generated in the exhaust stroke is used, and the intake / supercharging or forced exhaust corresponding to the rotation range is performed in a plurality of rotation ranges of the engine by opening / closing the opening / closing valve in a predetermined engine rotation range. In the intake / exhaust pipe structure of the engine, one end side of the second passage is connected to the first passage on the inner peripheral side of the curved portion of the first passage, while the opening / closing valve is located at a position facing the communication portion. It is arranged.

(作用) 上記の手段によると、先ず第1の通路に対する第2の通
路の接続部が、当該第1の通路の湾曲部内周側に位置し
て設けられているので、上記第1の通路の湾曲部内側に
上記第2の通路の通路径に応じた空間部が形成され、そ
れによって第1の通路の通路断面積がうず流を発生する
通路内側に実質的に拡大されることになり、流通抵抗増
大の主因であるうず流は上記第2の通路の開口空間内で
吸収される結果、第1の通路の湾曲部で生じる吸気又は
排気のエネルギー損失(ベンド損失)は最小限に抑制さ
れ吸排気効率の低下が防止されるようになる。
(Operation) According to the above means, first, since the connecting portion of the second passage to the first passage is provided on the inner circumferential side of the curved portion of the first passage, the connecting portion of the first passage is provided. A space corresponding to the passage diameter of the second passage is formed inside the curved portion, whereby the passage cross-sectional area of the first passage is substantially expanded to the inside of the passage generating the eddy flow. The eddy flow, which is the main cause of the increase in flow resistance, is absorbed in the opening space of the second passage, and as a result, the energy loss (bend loss) of intake air or exhaust gas generated in the curved portion of the first passage is suppressed to the minimum. The decrease in intake and exhaust efficiency is prevented.

次に、該構成において、さらに上記第2の通路を開閉す
る開閉弁は、当該第1の通路に対する第2の通路の連通
部に臨んで設置されているので、同開閉弁が第2の通路
の他端上流側に寄せて配置されている場合のように開閉
弁閉時に第2の通路下流端にデッドボリュームが形成さ
れて不必要な圧力反転作用を生じさせることがない。従
って、低速時の確実な吸気慣性効果を得ることができ
る。
Next, in this configuration, since the opening / closing valve that opens / closes the second passage is installed so as to face the communication portion of the second passage with respect to the first passage, the opening / closing valve is the second passage. Unlike the case of being arranged closer to the upstream side of the other end, a dead volume is not formed at the downstream end of the second passage when the on-off valve is closed, and unnecessary pressure reversal action is not caused. Therefore, a reliable intake inertia effect at low speed can be obtained.

(実施例) 第1図〜第3図は、本考案をエンジンの吸気管に適用し
た場合の実施例(第1実施例)を示している。
(Embodiment) FIGS. 1 to 3 show an embodiment (first embodiment) when the present invention is applied to an intake pipe of an engine.

先ず第3図は、同実施例構造全体の概略的な構成を示し
ており、符号Eはエンジンである。該エンジンEは例え
ば4気筒4サイクルエンジンであって、第1図に示すシ
リンダブロック2およびシリンダヘッド3等からなるエ
ンジン本体1に第1〜第4気筒4a〜4dが形成されてい
る。この各気筒4a〜4dにはそれぞれピストン5a〜5dの上
方に位置して燃焼室6a〜6dが形成され、この燃焼室6a〜
6dに吸気ポート7a〜7dおよび排気ポート8a〜8dが開口
し、これらの各ポート7a〜7d,8a〜8dに第1図に示すよ
うに吸気弁9a〜9dおよび排気弁10a〜10dが装備されてい
る。また上記燃焼室6a〜6dには点火プラグ(図示省略)
が装備されている。
First, FIG. 3 shows a schematic configuration of the entire structure of the embodiment, and a symbol E is an engine. The engine E is, for example, a four-cylinder four-cycle engine, and first to fourth cylinders 4a to 4d are formed in an engine body 1 including a cylinder block 2 and a cylinder head 3 shown in FIG. Combustion chambers 6a to 6d are formed in the cylinders 4a to 4d, respectively, above the pistons 5a to 5d, and the combustion chambers 6a to 6d are formed.
The intake ports 7a to 7d and the exhaust ports 8a to 8d are opened in 6d, and the intake valves 9a to 9d and the exhaust valves 10a to 10d are installed in the respective ports 7a to 7d and 8a to 8d as shown in FIG. ing. A spark plug (not shown) is provided in each of the combustion chambers 6a to 6d.
Is equipped with.

上記各気筒4a〜4dの各吸気ポート7a〜7dには、互いに独
立した各気筒別の主吸気通路(実用新案登録請求の範囲
中の第1の通路に該当する)12a〜12dの下流端がそれぞ
れ連通し、これらの各主吸気通路12a〜12dの上流側は第
1図に示すように上方に向けて略コの字状に湾曲され、
その上流端がサージタンク13にそれぞれ共通に接続され
ている。そして、上記サージタンク13には図示しないエ
アクリーナから吸気導入管15を介して外気が導入される
ようになっており、上記吸気導入管15の途中にはスロッ
トル弁17が配設されている。また、上記各主吸気通路12
a〜12dの下流端近傍部には、燃料供給通路18に接続され
た燃料噴射弁19a〜19dが配設されている。
In the intake ports 7a to 7d of the cylinders 4a to 4d, the main air intake passages (corresponding to the first passage in the utility model registration claim) 12a to 12d for the respective cylinders that are independent of each other are provided with the downstream ends. As shown in FIG. 1, the upstream sides of the respective main intake passages 12a to 12d communicate with each other and are curved upward in a substantially U-shape,
The upstream ends thereof are commonly connected to the surge tanks 13, respectively. Then, outside air is introduced into the surge tank 13 from an air cleaner (not shown) via the intake introducing pipe 15, and a throttle valve 17 is arranged in the middle of the intake introducing pipe 15. In addition, each of the above main intake passages 12
Fuel injection valves 19a to 19d connected to the fuel supply passage 18 are disposed near the downstream ends of a to 12d.

そして、上記主吸気通路12a〜12dの上記コの字状の湾曲
部AおよびBの一方、例えば吸気下流側にあるA湾曲部
には、それらの各主吸気通路12a〜12dから分岐する分岐
口21a〜21dを介してそれらの各主吸気通路12a〜12dを相
互に連通させる分岐通路(実用新案登録請求の範囲中の
第2の通路に該当する)22a〜22dが接続されている。な
お、本実施例では吸気系をよりコンパクトに構成するた
めに、当該吸気系に介設した上記サージタンク13内に比
較的大きな容量の吸気拡大室13aを形成する一方、上記
主吸気通路12a〜12dの湾曲部内側空間内に位置するよう
に比較的小さな容量の吸気拡大室20を有する上記分岐通
路22a〜22dを形成し、この分岐通路22a〜22dの下端に上
記各主吸気通路12a〜12dに連通する分岐口21a〜21dを各
々開口させるとともに、この分岐口21a〜21dの形成箇所
から上記各主吸気通路12a〜12dを先ず上方側に湾曲さ
せ、さらにその上流端側を側方に湾曲させて上記サージ
タンク13の吸気拡大室13aの上部に開口させている。ま
た第1図に示すように上記各主吸気通路12a〜12dの上流
側湾曲部分が上記サージタンク13の上下方向周面に沿っ
て略平行に形成されており、予め上記サージタンク13の
吸気拡大室13aとその外方の上記主吸気通路12a〜12dの
上流側湾曲部分並びに分岐通路22a〜22dの吸気拡大室20
を構成する吸気管部分、および上記分岐通路22a〜22dの
分岐口21a〜21dとその外方の下流側主吸気通路12a〜12d
とを構成する吸気管部分がそれぞれ一体に成形され、こ
れら各吸気管部分がフランジ部24を介して相互に連結さ
れることにより、充分にコンパクトに吸気系が形成され
ている。この場合、上記吸気拡大室13aが実用新案登録
請求の範囲中の第1の圧力反転部に、また吸気拡大室20
が同第2の圧力反転部に該当する。
Further, one of the U-shaped curved portions A and B of the main intake passages 12a to 12d, for example, the A curved portion on the intake downstream side, has a branch port that branches from each of the main intake passages 12a to 12d. Branching passages (corresponding to the second passage in the utility model registration claim) 22a to 22d for connecting the respective main intake passages 12a to 12d to each other via 21a to 21d are connected. In this embodiment, in order to make the intake system more compact, the surge expansion chamber 13a having a relatively large capacity is formed in the surge tank 13 provided in the intake system, while the main intake passage 12a to The branch passages 22a to 22d having the intake expansion chamber 20 having a relatively small capacity are formed so as to be located in the inner space of the curved portion 12d, and the main intake passages 12a to 12d are formed at the lower ends of the branch passages 22a to 22d. The branch inlets 21a to 21d communicating with the respective main inlet passages 12a to 12d are first curved upward from the formation positions of the branch inlets 21a to 21d, and the upstream end side thereof is further curved laterally. The surge tank 13 is opened at the upper part of the intake expansion chamber 13a. As shown in FIG. 1, the upstream curved portions of the main intake passages 12a to 12d are formed substantially parallel to each other along the circumferential surface of the surge tank 13 in the vertical direction, and the intake expansion of the surge tank 13 is expanded in advance. The upstream expansion portion of the chamber 13a and the outside main intake passages 12a to 12d and the intake expansion chamber 20 of the branch passages 22a to 22d.
Of the branch passages 22a to 22d and the downstream main intake passages 12a to 12d outside thereof.
The intake pipe parts constituting the above are integrally molded, and these intake pipe parts are connected to each other through the flange part 24, whereby a sufficiently compact intake system is formed. In this case, the intake expansion chamber 13a is the first pressure reversal portion in the scope of utility model registration claim, and the intake expansion chamber 20a
Corresponds to the second pressure reversal section.

そして、上記各分岐口21a〜21dにはそれぞれ開閉弁25a
〜25dが設けられており、この開閉弁25a〜25dは、エン
ジン回転数検出手段の出力を受けて作動する所定の制御
回路(図示省略)により、アクチュエータ26を介し、エ
ンジン回転数が設定値未満の低速域では閉じられ、エン
ジン回転数が設定値以上の高速域では開かれるように制
御されるようになっている。
Further, the opening / closing valve 25a is provided at each of the branch ports 21a to 21d.
25d are provided, and the opening / closing valves 25a to 25d are controlled by a predetermined control circuit (not shown) that operates by receiving the output of the engine speed detecting means, and the engine speed is less than the set value via the actuator 26. It is controlled to be closed in the low speed range and opened in the high speed range where the engine speed is equal to or higher than the set value.

なお、このようなエンジン回転数に応じた開閉弁25a〜2
5dの開閉作動は、少なくともエンジン出力が特に要求さ
れる高負荷時において行なわれるようにすればよく、他
方低負荷時には当該開閉弁25a〜25dが開状態または閉状
態いずれの状態に保たれるようにしてもよい。また、上
記実施例ではサージタンク13の吸気拡大室13aと分岐通
路22a〜22dの吸気拡大室20とを一体的に形成している
が、該吸気拡大室13aと分岐通路22a〜22dの吸気拡大室2
0とは別体に分離させて形成してもよい。
The on-off valves 25a-2
The opening / closing operation of 5d may be performed at least during a high load when engine output is particularly required, while the opening / closing valves 25a to 25d may be maintained in an open state or a closed state at a low load. You may Further, in the above embodiment, the intake expansion chamber 13a of the surge tank 13 and the intake expansion chamber 20 of the branch passages 22a to 22d are integrally formed, but the intake expansion chamber 13a and the intake passages of the branch passages 22a to 22d are expanded. Room 2
It may be formed separately from 0.

この吸気管構造によると、上記各吸気通路12a〜12dの各
分岐口21a〜21dに設けられた上記開閉弁25a〜25dが閉じ
られている状態では、エンジンの各気筒の吸気行程で生
じる負圧波がサージタンク13の吸気拡大室13aまで伝播
されてここで反射され、つまり比較的長い通路を通して
上記負圧波およびその反射波が伝播することにより、低
速域での圧力波の振動周期が吸気弁開閉周期にマッチン
グして吸気の慣性効果が高められる。つまり、この状態
でのエンジン回転数と吸気充填効率との関係は第4図に
曲線Aで示すようになり、低速域で吸気充填効率が充分
に高められる。一方、上記開閉弁25a〜25dが開かれてい
る状態では、後に詳述するように、吸気行程で生じる負
圧波が上記分岐通路22a〜22dの吸気拡大室20で反射され
てこの負圧波および反射波の伝播に供される通路長さが
短かくなることにより、高速域での吸気慣性効果が高め
られるとともに、この運転域では他の気筒から伝播され
る圧力波も有効に作用する。つまり、この状態での高負
荷時におけるエンジン回転数と吸気充填効率との関係は
第4図に曲線Bで示すようになり、高速域での充填効率
が高められる。
According to this intake pipe structure, the negative pressure wave generated in the intake stroke of each cylinder of the engine in the state where the opening / closing valves 25a to 25d provided in the respective branch ports 21a to 21d of the respective intake passages 12a to 12d are closed. Is propagated to the intake expansion chamber 13a of the surge tank 13 and reflected there, that is, the negative pressure wave and its reflected wave propagate through a relatively long passage, so that the oscillation cycle of the pressure wave in the low speed range is increased or decreased. The inertial effect of intake is enhanced by matching the cycle. That is, the relationship between the engine speed and the intake charge efficiency in this state is as shown by the curve A in FIG. 4, and the intake charge efficiency is sufficiently increased in the low speed range. On the other hand, in the state where the on-off valves 25a to 25d are opened, the negative pressure wave generated in the intake stroke is reflected in the intake expansion chamber 20 of the branch passages 22a to 22d and the negative pressure wave and the reflection are generated, as described later in detail. By reducing the length of the passage used for wave propagation, the intake inertia effect in the high speed range is enhanced, and the pressure wave propagated from other cylinders also effectively acts in this operating range. That is, the relationship between the engine speed and the intake charge efficiency at high load in this state is as shown by the curve B in FIG. 4, and the charge efficiency in the high speed range is enhanced.

従って、少なくとも高負荷時に、上記両曲線A,Bが交叉
する点に相当する回転数Noを境にしてそれより低速側で
上記開閉弁25a〜25dを閉じ、それより高速側で上記開閉
弁25a〜25dを開くようにしておくことにより、全回転数
域で吸気の充填効率が高められて効果的にエンジン出力
が向上せしめられる。とくに高速域での吸気充填効率
は、例えば従来のように単に吸気通路を短縮させて吸気
慣性効果を高めるようにした場合(曲線C)と比べて
も、気筒間の連通による相互の圧力伝播作用でより一層
高められることとなる。
Therefore, at least when the load is high, the opening / closing valves 25a to 25d are closed on the lower speed side with the rotation speed No corresponding to the point where the curves A and B intersect, and the opening / closing valve 25a on the higher speed side. By opening ~ 25d, the intake charging efficiency is increased in all speed ranges and the engine output is effectively improved. In particular, the intake charging efficiency in the high-speed range is higher than that in the conventional case where the intake passage is simply shortened to increase the intake inertia effect (curve C), as compared with the conventional case, in which mutual pressure propagation action due to communication between the cylinders occurs. Will be further enhanced in.

そして、その場合において、上記分岐通路22a〜22dは上
記吸気通路12a〜12dの湾曲部Aの内周側に位置して分岐
口21a〜21dが形成されているから、当該分岐口21a〜21d
の存在により上記湾曲部Aの部分の通路断面積は実質的
に拡大されることになり、該湾曲部Aの内周側部分で生
じるうず流は、当該分岐通路22の分岐口21a〜21d部分で
吸収されるようになる。従って、当該各吸気通路12a〜1
2dに上記湾曲部Aが存在していてもそれ程のエネルギー
損失(ベンド損失)を生じることはなく、上記吸気の充
填効率向上の効果をより有効に得ることができる。
In that case, since the branch passages 22a to 22d are located on the inner peripheral side of the curved portion A of the intake passages 12a to 12d and the branch openings 21a to 21d are formed, the branch openings 21a to 21d.
Due to the existence of the curved portion A, the passage cross-sectional area of the portion of the curved portion A is substantially enlarged, and the eddy flow generated in the inner peripheral side portion of the curved portion A is the branch ports 21a to 21d of the branch passage 22. Will be absorbed in. Therefore, each intake passage 12a-1
Even if the curved portion A is present in 2d, such an energy loss (bend loss) does not occur, and the effect of improving the intake charging efficiency can be more effectively obtained.

次に、第5図および第6図は、本考案の第2実施例(吸
気管に適用)を示すもので、サージタンク13下流の上記
各吸気通路12a〜12dの吸気上流側湾曲部Bに分岐通路22
a〜22dの分岐口21a〜21dを形成したことを特徴とするも
のである。
Next, FIG. 5 and FIG. 6 show a second embodiment (applied to the intake pipe) of the present invention, in which the intake upstream side curved portion B of each of the intake passages 12a to 12d downstream of the surge tank 13 is provided. Branch passage 22
It is characterized in that branch ports 21a to 21d of a to 22d are formed.

このように構成しても上記第1実施例の場合と同様に湾
曲部Bの通路断面積を実質的に拡大することができるか
ら、当該湾曲部Bでのエネルギー損失を最小限に抑制す
ることができ、吸気の充填効率向上に寄与することがで
きる。
Even with such a configuration, the passage cross-sectional area of the bending portion B can be substantially enlarged as in the case of the first embodiment, so that the energy loss in the bending portion B can be suppressed to the minimum. It is possible to contribute to the improvement of the intake air charging efficiency.

なお、上記の各実施例では、エンジンの吸気管の場合を
例にとって説明したが、本考案はエンジンの排気管の排
気孔率を向上させる場合にも同様に適用することができ
るのは言うまでもない。
In each of the above embodiments, the case of the intake pipe of the engine has been described as an example, but it goes without saying that the present invention can be similarly applied to the case of improving the exhaust porosity of the exhaust pipe of the engine. .

(考案の効果) 本考案は、以上に説明したように、圧力反転部と気筒と
を接続し、その途中に少なくとも1つの湾曲部を形成し
てなる第1の通路と、一端側が開閉弁を介して上記第1
の通路に連通し他端側が圧力反転部に連通するとともに
上記第1の通路よりも吸気通路長が短かい第2の通路と
を備え、上記気筒の吸気又は排気行程で発生する脈動圧
を利用し、かつ所定のエンジン回転域における上記開閉
弁の開閉により上記エンジンの複数の回転域で当該回転
域に対応した吸気過給又は強制排気を行なうようにした
エンジンの吸排気管構造において、上記第1の通路に対
し同第1の通路の上記湾曲部内周側において上記第2の
通路の一端側を連通せしめる一方、上記開閉弁を該連通
部に臨む位置に配設したことを特徴とするものである。
(Effect of the Invention) As described above, the present invention connects the pressure reversing portion and the cylinder, and forms the at least one curved portion in the middle of the first passage, and the one end side of the opening / closing valve. Through the first
And a second passage having the other end communicating with the pressure reversing portion and having a shorter intake passage length than the first passage, and utilizing the pulsating pressure generated in the intake or exhaust stroke of the cylinder. In the intake / exhaust pipe structure of the engine, the intake supercharging or the forced exhaust corresponding to the rotation range is performed in a plurality of rotation ranges of the engine by opening / closing the opening / closing valve in a predetermined engine rotation range. The one end side of the second passage is made to communicate with the passage of the first passage on the inner peripheral side of the curved portion of the first passage, while the opening / closing valve is arranged at a position facing the communication portion. is there.

従って、本考案によると、先ず第1の通路に対する第2
の通路の接続部が、当該第1の通路の湾曲部内周側に位
置して設けられているので、上記第1の通路の湾曲部内
側に上記第2の通路の通路径に応じた空間部が形成さ
れ、それによって第1の通路の通路断面積がうず流を発
生する通路内側に実質的に拡大されることになり、流通
抵抗増大の主因であるうず流は上記第2の通路の開口空
間内で吸収される結果、第1の通路の湾曲部で生じる吸
気又は排気のエネルギー損失(ベンド損失)は最小限に
抑制され吸排気効率の低下が防止されるようになる。
Therefore, according to the present invention, first the second passage to the first passage is provided.
Since the connecting portion of the passage is provided on the inner side of the curved portion of the first passage, the space portion corresponding to the passage diameter of the second passage is provided inside the curved portion of the first passage. Is formed, whereby the passage cross-sectional area of the first passage is substantially expanded inside the passage generating the eddy flow, and the eddy flow, which is the main cause of the increase in flow resistance, is generated in the opening of the second passage. As a result of being absorbed in the space, energy loss (bend loss) of intake air or exhaust gas that occurs in the curved portion of the first passage is suppressed to a minimum, and a decrease in intake and exhaust efficiency is prevented.

次に、該構成において、さらに上記第2の通路を開閉す
る開閉弁は、当該第1の通路に対する第2の通路の連通
部に臨んで設置されているので、同開閉弁が第2の通路
の他端上流側に寄せて配置されている場合のように開閉
弁閉時に第2の通路下流端にデッドボリュームが形成さ
れて不必要な圧力反転作用を生じさせることがない。従
って、低速時の確実な吸気慣性効果を得ることができ
る。
Next, in this configuration, since the opening / closing valve that opens / closes the second passage is installed so as to face the communication portion of the second passage with respect to the first passage, the opening / closing valve is the second passage. Unlike the case of being arranged closer to the upstream side of the other end, a dead volume is not formed at the downstream end of the second passage when the on-off valve is closed, and unnecessary pressure reversal action is not caused. Therefore, a reliable intake inertia effect at low speed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案の第1実施例に係るエンジンの吸気管
構造の正面図、第2図は、同実施例における通路接続部
の断面図、第3図は、同実施例構造の全体構成を示す概
略平面図、第4図は、同実施例におけるエンジン回転数
領域と吸気充填率との関係を示すグラフ、第5図は、本
考案の第2実施例に係るエンジンの吸気管構造を示す正
面図、第6図は、同実施例における通路接続部の断面
図、第7図は、従来のエンジン吸気管構造の断面図であ
る。 1……エンジン本体 2……シリンダブロック 3……シリンダヘッド 4a〜4d……気筒 7a〜7d……吸気ポート 12a〜12d……主吸気通路(第1の通路) 13……サージタンク(第1の圧力反転部) 20……吸気拡大室(第2の圧力反転部) 21a〜21d……分岐口 22a〜22d……分岐通路(第2の通路) 25a〜25d……開閉弁 A,B……湾曲部
FIG. 1 is a front view of an intake pipe structure for an engine according to a first embodiment of the present invention, FIG. 2 is a sectional view of a passage connecting portion in the same embodiment, and FIG. 3 is an entire structure of the same embodiment. FIG. 4 is a schematic plan view showing the structure, FIG. 4 is a graph showing the relationship between the engine speed range and intake charge ratio in the same embodiment, and FIG. 5 is an intake pipe structure for an engine according to a second embodiment of the present invention. FIG. 6 is a sectional view of a passage connecting portion in the same embodiment, and FIG. 7 is a sectional view of a conventional engine intake pipe structure. 1 ... Engine body 2 ... Cylinder block 3 ... Cylinder head 4a-4d ... Cylinder 7a-7d ... Intake port 12a-12d ... Main intake passage (first passage) 13 ... Surge tank (First passage) 20 ...... Intake expansion chamber (second pressure reversal part) 21a to 21d ...... Branch ports 22a to 22d ...... Branch passages (second passage) 25a to 25d ...... Open / close valves A, B ... … Bent

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧力反転部と気筒とを接続し、その途中に
少なくとも1つの湾曲部を形成してなる第1の通路と、
一端側が開閉弁を介して上記第1の通路に連通し他端側
が圧力反転部に連通するとともに上記第1の通路よりも
吸気通路長が短かい第2の通路とを備え、上記気筒の吸
気又は排気行程で発生する脈動圧を利用し、かつ所定の
エンジン回転域における上記開閉弁の開閉により上記エ
ンジンの複数の回転域で当該回転域に対応した吸気過給
又は強制排気を行なうようにしたエンジンの吸排気管構
造において、上記第1の通路に対し同第1の通路の上記
湾曲部内周側において上記第2の通路の一端側を連通せ
しめる一方、上記開閉弁を該連通部に臨む位置に配設し
たことを特徴とするエンジンの吸排気管構造。
1. A first passage formed by connecting a pressure reversal portion and a cylinder, and forming at least one curved portion in the middle thereof,
An intake passage of the cylinder is provided, which has a second passage, one end side of which communicates with the first passage through an on-off valve and the other end of which communicates with the pressure reversing portion and which has an intake passage length shorter than that of the first passage. Alternatively, the pulsating pressure generated in the exhaust stroke is used, and the intake / supercharging or forced exhaust corresponding to the rotation range is performed in a plurality of rotation ranges of the engine by opening / closing the opening / closing valve in a predetermined engine rotation range. In the intake / exhaust pipe structure of the engine, one end side of the second passage is connected to the first passage on the inner peripheral side of the curved portion of the first passage, while the opening / closing valve is located at a position facing the communication portion. An intake / exhaust pipe structure for an engine characterized by being provided.
JP1986053869U 1986-04-09 1986-04-09 Engine intake and exhaust pipe structure Expired - Lifetime JPH078814Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986053869U JPH078814Y2 (en) 1986-04-09 1986-04-09 Engine intake and exhaust pipe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986053869U JPH078814Y2 (en) 1986-04-09 1986-04-09 Engine intake and exhaust pipe structure

Publications (2)

Publication Number Publication Date
JPS62165435U JPS62165435U (en) 1987-10-21
JPH078814Y2 true JPH078814Y2 (en) 1995-03-06

Family

ID=30880328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986053869U Expired - Lifetime JPH078814Y2 (en) 1986-04-09 1986-04-09 Engine intake and exhaust pipe structure

Country Status (1)

Country Link
JP (1) JPH078814Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138265A (en) * 1983-12-27 1985-07-22 Honda Motor Co Ltd Intake device for v-type multi-cylinder internal- combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine

Also Published As

Publication number Publication date
JPS62165435U (en) 1987-10-21

Similar Documents

Publication Publication Date Title
US4671217A (en) Intake system for internal combustion engine
US4679531A (en) Intake system for internal combustion engine
JP2639721B2 (en) Combustion chamber of internal combustion engine
US4771740A (en) Intake system for internal combustion engine
EP0365016B1 (en) Intake system for V-type engine
US4735177A (en) Intake system for internal combustion engine
US4408576A (en) Intake system of an internal combustion engine
JP5262863B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
US4653440A (en) Intake system for multicylinder internal combustion engine
US4858570A (en) V-type engine
JPH078814Y2 (en) Engine intake and exhaust pipe structure
JPS6256325B2 (en)
JPS60224922A (en) Suction system for multicylinder engine
JP2899734B2 (en) Intake device for internal combustion engine
JPS63215822A (en) Intake device for v-type engine
JPS63314358A (en) Intake manifold for internal combustion engine
JPH0565691B2 (en)
JPH0639054Y2 (en) Engine intake system
JPH0643462Y2 (en) Engine intake system
JPH0639090Y2 (en) Engine intake system
JPS60222523A (en) Suction device of engine
JPH0730911Y2 (en) Intake device for V-type internal combustion engine
JPS6023466Y2 (en) Internal combustion engine intake system
JPH01219315A (en) Variable air intake device for internal combustion engine
JPS60222524A (en) Suction device of engine