JPS6256325B2 - - Google Patents
Info
- Publication number
- JPS6256325B2 JPS6256325B2 JP56033988A JP3398881A JPS6256325B2 JP S6256325 B2 JPS6256325 B2 JP S6256325B2 JP 56033988 A JP56033988 A JP 56033988A JP 3398881 A JP3398881 A JP 3398881A JP S6256325 B2 JPS6256325 B2 JP S6256325B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- valve
- exhaust
- engine
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005192 partition Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 description 17
- 239000000446 fuel Substances 0.000 description 9
- 230000010349 pulsation Effects 0.000 description 6
- 238000005086 pumping Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0205—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
- F02B27/021—Resonance charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0242—Fluid communication passages between intake ducts, runners or chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0247—Plenum chambers; Resonance chambers or resonance pipes
- F02B27/0252—Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B2075/1804—Number of cylinders
- F02B2075/1824—Number of cylinders six
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/20—Multi-cylinder engines with cylinders all in one line
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Characterised By The Charging Evacuation (AREA)
Description
【発明の詳細な説明】
本発明はデイーゼル機関の吸、排気装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake and exhaust system for a diesel engine.
本発明の目的は、吸、排気管の等価管長による
慣性効果を機関の負荷に応じて変化させ、特に高
負荷域での出力増大と低負荷域での燃費率の向上
を図つたことである。 The purpose of the present invention is to change the inertia effect due to the equivalent length of the intake and exhaust pipes according to the engine load, and to increase the output particularly in the high load range and improve the fuel efficiency in the low load range. .
従来機関の吸気効率を向上するために吸、排気
弁の開閉により吸、排気管内に発生する気柱振動
(脈動)を利用する慣性過給手段は周知である。 BACKGROUND ART Inertial supercharging means that utilizes air column vibration (pulsation) generated in intake and exhaust pipes by opening and closing intake and exhaust valves is well known in order to improve the intake efficiency of conventional engines.
すなわち、吸気管側においては管内に発生する
気柱振動(脈動)による正の圧力の山の部分が吸
気弁の閉じる直前の時点で吸気弁付近に到達する
ように吸気管の長さを選択し、シリンダ内に最も
密度の高い空気を充填させることであり、これを
慣性過給といつている。 In other words, on the intake pipe side, the length of the intake pipe is selected so that the peak of positive pressure due to air column vibration (pulsation) generated in the pipe reaches the vicinity of the intake valve just before the intake valve closes. This is to fill the cylinder with the highest density air, and this is called inertial supercharging.
また、排気管側の気柱振動は、前記吸気管内の
気柱振動よりも大きい。これは排気弁の開いた直
後の流速は一般的に吸気側より速く、したがつて
動圧も大きいからである。しかし定性的な理論は
吸気管の場合と同様であり、排気弁が開くとシリ
ンダ内は急に圧力が降下し、一方、排気弁付近の
排気ポート内は排気吹出しを受けて一度圧力が急
上昇する。その衝撃が排気管内を往復することに
よつて脈動が発生し、その波はしだいに減衰する
が衝撃圧が大きいので、脈動の振幅も大きい。こ
の際、正圧力波はシリンダ内圧がまだ高いので、
排気吹出しにはほとんど影響ないが、その後の脈
動圧の正負と排気弁閉止時期および吸気弁とのオ
ーバラツプする時期との位相関係は、排気弁の開
いている後半に弁の出口が負圧であるときは排出
作用を助長し、特にオーバラツプ時に負圧であれ
ば掃気作用も兼ねて残留ガスを吸い出し、体積効
率の増大となり、前記吸気管における過給効果と
同じように吸気効率を高める。 Furthermore, the air column vibration on the exhaust pipe side is larger than the air column vibration within the intake pipe. This is because the flow velocity immediately after the exhaust valve opens is generally faster than that on the intake side, and therefore the dynamic pressure is also greater. However, the qualitative theory is the same as in the case of the intake pipe: when the exhaust valve opens, the pressure inside the cylinder suddenly drops, while the pressure inside the exhaust port near the exhaust valve suddenly rises once due to the exhaust blowing. . Pulsations are generated by the impact reciprocating within the exhaust pipe, and the waves gradually attenuate, but since the impact pressure is large, the amplitude of the pulsations is also large. At this time, the positive pressure wave is caused by the fact that the cylinder internal pressure is still high.
This has almost no effect on exhaust blowing, but the phase relationship between the positive and negative pulsating pressure, the exhaust valve closing timing, and the overlap timing with the intake valve is such that the outlet of the valve is under negative pressure during the latter half of the exhaust valve opening period. In particular, if there is a negative pressure at the time of overlap, it also serves as a scavenging action and sucks out the residual gas, increasing the volumetric efficiency and increasing the intake efficiency in the same way as the supercharging effect in the intake pipe.
この過給効果や排気管の吸出し効果、すなわ
ち、慣性効果を多気筒エンジンに利用する場合、
各シリンダが多岐管で連結されていると隣りの吸
気または排気管の圧力波を受けて干渉して合成波
となり効果がなくなるので、この干渉を除去する
ために各シリンダから集合部までの距離を長くし
ているのが一般的である。 When using this supercharging effect and the exhaust pipe suction effect, that is, the inertia effect, in a multi-cylinder engine,
If each cylinder is connected by a manifold, the pressure waves from the adjacent intake or exhaust pipe will interfere and become a composite wave, which will have no effect.In order to eliminate this interference, the distance from each cylinder to the converging part will be reduced. It is common that it is long.
この慣性効果の最適条件は機関の回転速度によ
つてきまるので、ある回転速度で最大の効果が得
られれば他の回転速度では逆に悪い条件となるの
で、広い範囲の回転速度を使用する一般の自動車
機関では十分その効果を利用することは難かしか
つた。 The optimum conditions for this inertial effect depend on the engine rotation speed, so if the maximum effect can be obtained at a certain rotation speed, the conditions will be worse at other rotation speeds, so a wide range of rotation speeds should be used. It was difficult to take full advantage of this effect with ordinary automobile engines.
そこで、この慣性効果を機関の負荷状態で考察
してみると、慣性効果によつて吸入効率が高めら
れると高負荷時の出力は増大するが、低負荷時に
おいては燃料に対して必要以上の余分な空気が入
り、その結果、特に圧縮行程の時にポンピングロ
スが増大し、それだけ余計な力を要するために低
負荷時における燃費を悪化することになる。 Therefore, if we consider this inertial effect in terms of engine load conditions, we find that if the intake efficiency is increased by the inertial effect, the output will increase at high loads, but at low loads, the output will increase more than necessary for the fuel. Extra air enters, and as a result, pumping loss increases, especially during the compression stroke, and as extra force is required, fuel efficiency at low loads deteriorates.
本発明は上記問題点に鑑み、慣性効果を利用し
て低負荷域では逆に吸気効率を低下させ前記不具
合を解消するよう吸気管もしくは排気管の実質管
長を負荷に対応して変化するようにしたものであ
る。 In view of the above problems, the present invention utilizes the inertia effect to reduce the intake efficiency in the low load range and to change the actual length of the intake pipe or exhaust pipe in accordance with the load in order to solve the above problem. This is what I did.
以下本発明の実施例を図面に基いて説明する。
第1図において1はデイーゼル機関、2は吸気マ
ニホールド、3は吸気管、4はエアクリーナであ
る。本発明は吸気マニホールド2を含めて吸気管
3内を、その長手方向に仕切壁5により区画す
る。従つて図例のように6気筒機関の場合には、
前記仕切壁5によつて3気筒づつ二分割に吸気系
路が区画され、所謂慣性過給管を形成する。 Embodiments of the present invention will be described below based on the drawings.
In FIG. 1, 1 is a diesel engine, 2 is an intake manifold, 3 is an intake pipe, and 4 is an air cleaner. In the present invention, the inside of the intake pipe 3 including the intake manifold 2 is partitioned in the longitudinal direction by a partition wall 5. Therefore, in the case of a 6-cylinder engine as shown in the example,
The intake system is divided into two parts for each three cylinders by the partition wall 5, forming a so-called inertial supercharging pipe.
そして、前記仕切壁5には、吸気マニホールド
2への吸気管3の付根から任意の位置に一つ若し
くは複数個の穴6を開設し、区画を連通した部分
を設ける。この穴6には開閉弁7を設け、機関の
負荷及び回転数により開閉弁7を作動させる。 The partition wall 5 is provided with one or more holes 6 at arbitrary positions from the root of the intake pipe 3 to the intake manifold 2, thereby providing a portion where the sections are communicated. An on-off valve 7 is provided in this hole 6, and the on-off valve 7 is operated depending on the load and rotational speed of the engine.
本発明によると、開閉弁7を開いたときには吸
気弁8の位置から仕切壁5のエアクリーナ4側の
末端までの全長l2は穴6の開通で短い長さl1とな
る。 According to the present invention, when the on-off valve 7 is opened, the total length l2 from the position of the intake valve 8 to the end of the partition wall 5 on the air cleaner 4 side becomes a short length l1 due to the opening of the hole 6.
そこで、高負荷低回転域で開閉弁7を閉じ、仕
切壁5の全長l2で慣性過給の脈動の正の圧力波を
吸気弁の閉弁時点と一致するよう設定することに
より、高負荷低回転域では慣性効果によつて吸入
率が高められ、高負荷時の出力増大が得られる。
また、高負荷高回転域では、開閉弁7を開き、高
回転にマツチした高い吸入効率を得る。 Therefore, by closing the on-off valve 7 in the high load and low rotation range and setting the positive pressure wave of the inertia supercharging pulsation at the full length l2 of the partition wall 5 to coincide with the closing point of the intake valve, it is possible to In the rotation range, the inertia effect increases the suction rate, resulting in increased output under high loads.
Furthermore, in a high load, high rotation range, the on-off valve 7 is opened to obtain high suction efficiency that matches the high rotation speed.
一方、低負荷低回転域で開閉弁7を開くことに
より支切壁5の実質長は短い長さl1となり、これ
により吸気管内の慣性過給の脈動と吸気弁の閉弁
時点との間にずれが発生し、シリンダへの流入空
気が減少する。すなわち、吸入効率が高負荷時の
慣性過給に比較して低下することになる。従つ
て、低負荷時には必要最少量の空気を流入させる
ので、圧縮行程においてポンピングロスが少なく
なり、余計な力が不要となるのである。これと同
様、低負荷高回転域においては開閉弁を閉じ、吸
入効率を下げてポンピングロスを低減させる。 On the other hand, by opening the on-off valve 7 in a low-load, low-speed range, the actual length of the dividing wall 5 becomes a short length l1, which allows for a gap between the pulsation of inertial supercharging in the intake pipe and the closing point of the intake valve. Misalignment occurs and the air flowing into the cylinder is reduced. That is, the suction efficiency is lower than that of inertial supercharging at high loads. Therefore, when the load is low, the minimum necessary amount of air is allowed to flow in, which reduces pumping loss during the compression stroke and eliminates the need for extra force. Similarly, in the low-load, high-speed range, the on-off valve is closed to reduce suction efficiency and pumping loss.
この状況を燃費率で表示すると、吸入効率の低
下状態では、燃費率は第2図のA曲線で示すよう
にa、b、cとなり、吸入効率の高い状態ではB
曲線で示すようにd、b、eとなるが、低負荷域
と高負荷域との境界点fで開閉弁7の開閉を行わ
せることにより低負荷及び高負荷の全域に亘つて
はa、b、eの曲線となり燃費率を向上するもの
である。 When this situation is expressed as a fuel efficiency rate, when the intake efficiency is low, the fuel efficiency becomes a, b, and c, as shown by curve A in Figure 2, and when the intake efficiency is high, the fuel efficiency is B.
As shown by the curve, d, b, and e, but by opening and closing the on-off valve 7 at the boundary point f between the low load region and the high load region, a, These curves are curves b and e, which improve fuel efficiency.
尚上記実施例は吸気側で説明したが、排気側あ
るいは吸、排気双方の場合でも同様の作用が得ら
れる。 Although the above embodiment has been described on the intake side, the same effect can be obtained on the exhaust side or on both intake and exhaust.
以上のように本発明によると、吸、排気管の何
れか一方あるいは双方を仕切壁によつて二分割と
する等価管長を構成し、これに等価管長を短くす
るための穴と、この穴を開閉する開閉弁を設け、
高負荷域では慣性効果により吸入効率を高め、低
負荷域では逆に吸入効率を劣化させるものである
から、低負荷時におけるポンピングロスをなく
し、燃費向上の効果を有するものである。 As described above, according to the present invention, an equivalent pipe length is constructed in which one or both of the intake and exhaust pipes is divided into two by a partition wall, and a hole for shortening the equivalent pipe length is formed in this, and this hole is Equipped with an on-off valve that opens and closes,
In the high load range, the inertia effect increases the suction efficiency, and in the low load range, the suction efficiency is conversely degraded, so it eliminates pumping loss at low loads and has the effect of improving fuel efficiency.
第1図は本発明装置の要部断面図、第2図は本
発明装置による燃費率の曲線図である。
1……機関、2……吸気マニホールド、3……
吸気管、4……エアクリーナ、5……仕切壁、6
……穴、7……開閉弁。
FIG. 1 is a sectional view of a main part of the device of the present invention, and FIG. 2 is a curve diagram of the fuel efficiency rate of the device of the present invention. 1... Engine, 2... Intake manifold, 3...
Intake pipe, 4... Air cleaner, 5... Partition wall, 6
...hole, 7...open/close valve.
Claims (1)
の管内を、その長手方向を二分割区画して等価管
長とする仕切壁を設け、この仕切壁に等価管長を
短くするための区画間連通穴を開設し、この穴を
開閉するための開閉弁を設け、機関の負荷に応じ
て前記開閉弁を開閉して低負荷域では吸入効率を
低下させることを特徴とするデイーゼル機関の
吸、排気装置。1 A partition wall is provided to divide the inside of one or both of the intake and exhaust pipes of the engine into two sections in the longitudinal direction to give an equivalent pipe length, and a communication hole between the sections is provided in this partition wall to shorten the equivalent pipe length. A suction/exhaust system for a diesel engine, characterized in that an on-off valve is provided to open and close this hole, and the on-off valve is opened and closed according to the load of the engine to reduce suction efficiency in a low load range. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56033988A JPS57148023A (en) | 1981-03-11 | 1981-03-11 | Intake or exhaust device for diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56033988A JPS57148023A (en) | 1981-03-11 | 1981-03-11 | Intake or exhaust device for diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57148023A JPS57148023A (en) | 1982-09-13 |
JPS6256325B2 true JPS6256325B2 (en) | 1987-11-25 |
Family
ID=12401855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56033988A Granted JPS57148023A (en) | 1981-03-11 | 1981-03-11 | Intake or exhaust device for diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57148023A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59126028A (en) * | 1982-12-31 | 1984-07-20 | Hino Motors Ltd | Apparatus for controlling inertia supercharging |
US4527392A (en) * | 1983-04-20 | 1985-07-09 | Hino Jidosha Kogyo Kabushiki Kaisha | Bypass valve actuator for inertia supercharging in multicylinder engines |
JPS6055727U (en) * | 1983-09-24 | 1985-04-18 | 三菱重工業株式会社 | Engine resonant intake pipe |
JPS6055728U (en) * | 1983-09-24 | 1985-04-18 | 三菱重工業株式会社 | Engine resonant intake pipe |
JPS61138824A (en) * | 1984-12-10 | 1986-06-26 | Toyota Motor Corp | Suct1on pipe length variable type suction device for multicylinder internal-combustion engine |
JP2586164B2 (en) * | 1990-02-03 | 1997-02-26 | トヨタ自動車株式会社 | Exhaust system of internal combustion engine |
JP2858706B2 (en) * | 1990-03-31 | 1999-02-17 | マツダ株式会社 | V-type engine intake system |
-
1981
- 1981-03-11 JP JP56033988A patent/JPS57148023A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57148023A (en) | 1982-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4671217A (en) | Intake system for internal combustion engine | |
JPH02196157A (en) | Intake silencer for engine | |
JPH0112927B2 (en) | ||
JPS62210218A (en) | Intake device of multi-cylinder internal combustion engine | |
JPS6256325B2 (en) | ||
JPH0452377B2 (en) | ||
JPS6318756Y2 (en) | ||
JPH0337009B2 (en) | ||
JPS6326261B2 (en) | ||
JPH078814Y2 (en) | Engine intake and exhaust pipe structure | |
US4471615A (en) | Turbo and inertia supercharger | |
JPH0337012B2 (en) | ||
JPH0559249B2 (en) | ||
JPS609375Y2 (en) | Inertial supercharging intake system for multi-cylinder engines | |
JPH0315779Y2 (en) | ||
JPS6332327Y2 (en) | ||
JPS61116020A (en) | Engine intake-air device | |
JPS60222524A (en) | Suction device of engine | |
JPH0380966B2 (en) | ||
JPS5840299Y2 (en) | Internal combustion engine air cleaner | |
JPH0353453B2 (en) | ||
JPS6326262B2 (en) | ||
JPS6267271A (en) | Exhaust gas reflux device for engine | |
JPH0337013B2 (en) | ||
JPH0517377B2 (en) |