JPH0452377B2 - - Google Patents

Info

Publication number
JPH0452377B2
JPH0452377B2 JP19160482A JP19160482A JPH0452377B2 JP H0452377 B2 JPH0452377 B2 JP H0452377B2 JP 19160482 A JP19160482 A JP 19160482A JP 19160482 A JP19160482 A JP 19160482A JP H0452377 B2 JPH0452377 B2 JP H0452377B2
Authority
JP
Japan
Prior art keywords
load
intake
passage
load intake
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19160482A
Other languages
Japanese (ja)
Other versions
JPS5982523A (en
Inventor
Asao Tadokoro
Haruo Okimoto
Hideo Shiraishi
Ikuo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57191604A priority Critical patent/JPS5982523A/en
Publication of JPS5982523A publication Critical patent/JPS5982523A/en
Publication of JPH0452377B2 publication Critical patent/JPH0452377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に低
負荷用と高負荷用との2系統の独立した吸気通路
を備えた多気筒エンジンにおいて吸気通路内に発
生する吸気圧力波を利用してエンジン高負荷高回
転時に過給効果を得るようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an intake system for an engine, and particularly to an intake passage in a multi-cylinder engine equipped with two independent intake passages, one for low load and one for high load. This relates to a device that uses intake pressure waves generated within the engine to obtain a supercharging effect when the engine is under high load and high rotation speed.

(従来の技術) 一般に、多気筒エンジンにおいて、拡大室から
分岐して各気筒に各々独立して低負荷用及び高負
荷用吸気ポートを介して開口する2系統の低負荷
用吸気通路と該低負荷用吸気通路より通路面積の
大きい高負荷用吸気通路とを有する吸気通路を備
え、該吸気通路は、上記拡大室の上流に位置して
少なくとも低負荷用吸気通路を流れる吸気量を変
化させる1次弁と、高負荷用吸気通路を流れる吸
気量を変化させる2次弁とを有しており、エンジ
ンの低負荷時には、上記1次弁のみを開作動して
低負荷用吸気通路のみから吸気を各気筒に供給す
ることにより、吸気流速を速めて燃焼安定性を向
上させる一方、エンジンの高負荷時には、上記2
次弁をも開作動して高負荷用吸気通路からも吸気
の供給を行うことにより、充填効率を高めて出力
向上を図るようにした、いわゆるデユアルインダ
クシヨン方式の吸気システムはよく知られてい
る。
(Prior Art) In general, in a multi-cylinder engine, two systems of low-load intake passages branch from an enlarged chamber and open to each cylinder independently through low-load and high-load intake ports. An intake passage having a high load intake passage having a larger passage area than the load intake passage, the intake passage being located upstream of the enlarged chamber and changing at least the amount of intake air flowing through the low load intake passage. It has a secondary valve and a secondary valve that changes the amount of intake air flowing through the high-load intake passage.When the engine is under low load, only the primary valve is opened and intake air is taken only from the low-load intake passage. By supplying this to each cylinder, the intake flow rate is increased and combustion stability is improved.
A so-called dual-induction intake system is well known, which aims to improve filling efficiency and output by opening the next valve and supplying intake air from the high-load intake passage as well. .

ところで、従来、エンジンの充填効率向上、出
力向上を図るべく吸気通路に過給機を設けて吸気
を過給する技術はよく知られているが、過給機装
置のため、構造が大がかりとなるとともにコスト
アツプとなる嫌いがあつた。
By the way, the technology of supercharging the intake air by installing a supercharger in the intake passage in order to improve the filling efficiency and output of the engine is well known, but since it is a supercharger device, the structure is large-scale. At the same time, there was a dislike of increasing costs.

また、従来、エンジンの吸気通路内に発生する
吸気圧力波により過給効果を得る技術として、実
公昭45−2321号公報に開示されているように、単
一気筒エンジンにおいて、吸気管を寸法の異なる
2本の通路に分け、かつそれぞれ別の吸気ポート
を有し、エンジン高回転時は2本の吸気通路を用
い、低回転時には閉塞位置の遅い方の吸気通路を
閉止し吸気を早目に閉塞することにより、吸気管
の寸法やエンジン回転数の関数である吸気の最大
圧力時点での吸気の閉塞による過給作用を利用し
て広範囲のエンジン回転数に亘つて好適な充填効
率を得るようにしたものが提案されている。
In addition, as disclosed in Japanese Utility Model Publication No. 45-2321, a technique for obtaining a supercharging effect using intake pressure waves generated in the intake passage of an engine has conventionally been used in a single-cylinder engine to reduce the size of the intake pipe. Divided into two different passages, each with a separate intake port, the two intake passages are used when the engine is running at high speeds, and at low engine speeds, the intake passage that is at the later closing position is closed, allowing for early intake. By occluding the intake air, the supercharging effect caused by the occlusion of the intake air at the maximum pressure of the intake air, which is a function of the intake pipe dimensions and the engine speed, is utilized to obtain a suitable charging efficiency over a wide range of engine speeds. It has been proposed that

(発明が解決しようとする課題) しかし、このものは、単一気筒のエンジンに対
するものであつて、吸気通路内に発生する吸気圧
力波をどのように利用するのか、その構成、作用
が定かでなく、直ちに実用に供し得ないものであ
つた。
(Problem to be solved by the invention) However, this device is for a single-cylinder engine, and its structure and operation are unclear, such as how to utilize the intake pressure waves generated in the intake passage. Therefore, it could not be put into practical use immediately.

そこで、本発明者等は、エンジンの吸気特性を
見るに、吸気ポートから吸気の吸入を開始する
と、吸気通路が負圧となつて膨脹波が発生し、こ
の膨脹波を圧縮波に反転して特に吸気の吹き返し
が生じる吸気行程終期の吸気ポートに作用せしめ
れば効果的に過給効果が得られること(以下、吸
気個有脈動効果という)に着目し、この吸気個有
脈動効果を利用することによつてエンジンの充填
効率向上を意図するものである。
Therefore, the inventors of the present invention found that when intake air is started from the intake port, the intake passage becomes negative pressure and an expansion wave is generated, and this expansion wave is reversed into a compression wave. In particular, we focused on the fact that a supercharging effect can be effectively obtained by acting on the intake port at the end of the intake stroke, where intake air blowback occurs (hereinafter referred to as the "intake individual pulsation effect"), and utilize this intake individual pulsation effect. In particular, it is intended to improve the charging efficiency of the engine.

その場合、各気筒の低負荷用吸気ポートと高負
荷用吸気ポートとの開口時期が異なる場合、開口
時期の早い方に燃焼室の残留排気ガスの吹き返し
が集中し、そのことにより開口時期の遅い方の吸
気開始による負圧発生が大きくなり強い膨脹波が
発生でき、吸気個有脈動効果が大となることを知
見した。このことについて詳述するに、例えば4
サイクルレシプロエンジンにおいて高負荷用吸気
ポートの開口時期を低負荷用吸気ポートの開口時
期よりも遅くした場合、第5図に示すように、低
負荷用吸気ポートが開口した時、燃焼室の残留排
気ガスの吹き返しが低負荷用吸気ポートに集中
し、その分燃焼室の圧力が低下する。そして、そ
の後のピストン下降の減圧作用も伴つて、高負荷
用吸気ポートの開口時には大きな負圧が燃焼室に
生成される。このため、高負荷用吸気ポートの開
口部分においては、その開口直前の略大気圧に近
い圧力が高負荷用吸気ポートの開口に伴つて一気
に上記大きな負圧に変化し、ここに強い膨脹波が
発生することになる。
In that case, if the opening timings of the low-load intake port and the high-load intake port of each cylinder are different, the blowback of the residual exhaust gas in the combustion chamber will concentrate on the one that opens earlier, and this will cause the opening timing to be later. It was found that the negative pressure generated by the start of inspiration becomes larger in the first direction, a strong expansion wave can be generated, and the unique pulsation effect of inspiration becomes large. To explain this in detail, for example, 4
In a cycle reciprocating engine, if the opening timing of the high-load intake port is set later than the opening timing of the low-load intake port, as shown in Figure 5, when the low-load intake port opens, the residual exhaust gas in the combustion chamber Gas blowback concentrates on the low-load intake port, and the pressure in the combustion chamber decreases accordingly. Then, accompanied by the pressure reducing effect of the subsequent downward movement of the piston, a large negative pressure is generated in the combustion chamber when the high-load intake port is opened. Therefore, at the opening of the high-load intake port, the pressure close to atmospheric pressure immediately before the opening suddenly changes to the above-mentioned large negative pressure as the high-load intake port opens, and a strong expansion wave is generated here. will occur.

これらのことから、本発明は、上記の如き低負
荷用と高負荷用の2系統の吸気通路を備えた多気
筒エンジンにおいて、高負荷用吸気ポートの開口
時期を低負荷用吸気ポートよりも遅らせて、高出
力を要するエンジン高負荷高回転時に高負荷用吸
気系統で効果的に吸気脈動効果を得るようにする
ことにより、過給機等を用いることなく、既存の
吸気系の僅かな設計変更による簡単な構成でもつ
て、エンジン高負荷高回転時の充填効率を効果的
に高めて出力向上を有効に図ることを目的とする
ものである。
For these reasons, the present invention has been developed to open the high-load intake port later than the low-load intake port in a multi-cylinder engine equipped with two intake passages, one for low load and one for high load. By effectively obtaining the intake pulsation effect in the high-load intake system when the engine is under high load and at high rotation speeds, which require high output, it is possible to make slight design changes to the existing intake system without using a supercharger, etc. The purpose of this invention is to effectively increase the charging efficiency and improve the output when the engine is under high load and high rotation speed, even with a simple configuration.

(課題を解決するための手段) この目的を達成するため、本発明の解決手段
は、拡大室と、該拡大室下流に各気筒へ各々独立
して低負荷用および高負荷用吸気ポートを介して
開口する低負荷用吸気通路と高負荷用吸気通路と
を有する吸気通路を備え、該吸気通路は、上記拡
大室の上流に位置して少なくとも低負荷用吸気通
路を流れる吸気量を変化させる1次弁と、高負荷
用吸気通路を流れる吸気量を変化させる2次弁と
を有する多気筒エンジンの吸気通装置を前提とす
る。そして、上記拡大室下流の低負荷用吸気通路
に燃料を供給する燃料噴射ノズルを設ける。上記
高負荷用吸気通路の通路断面積を上記低負荷用吸
気通路の通路断面積よりも大に設定するととも
に、上記拡大室から各気筒に至る高負荷用吸気通
路の通路長さを上記拡大室から各気筒に至る低負
荷用吸気通路の通路長さより小に設定する。上記
高負荷用吸気ポートの開口時期を上記低負荷用吸
気ポートの開口時期よりも遅らせるように設定す
る。上記高負荷用吸気通路の通路長さlSを、5000
〜7000rpmのエンジン高回転域に各気筒の高負荷
用吸気ポートの吸気開始により生じる膨脹波を上
記拡大室で反転して反射した圧縮波の2次脈動波
が吸気行程終期にある該各気筒の高負荷用吸気ポ
ートに伝播して過給を行うように下記の式 lS=(θS−θO)×(60/360N) ×(1/4)×a (ここで、θSは高負荷用吸気ポートを開閉する
高負荷用吸気弁の開弁期間、θOは該高負荷用吸気
弁の開弁から膨脹波が実質的に発生するまでの期
間と効果的に過給を行うために該膨脹波を反転し
た圧縮波の2次脈動波が伝播される高負荷用吸気
弁の閉弁直前の時期から閉弁までの期間とを合算
した無効期間、Nはエンジン回転数、aは圧力波
の伝播速度)により設定したものとする。
(Means for Solving the Problem) In order to achieve this object, the solution means of the present invention includes an expansion chamber, and downstream of the expansion chamber, a low-load intake port and a high-load intake port are connected to each cylinder independently. an intake passage having a low-load intake passage and a high-load intake passage that are opened at the same time; The present invention is based on an intake ventilation system for a multi-cylinder engine that has a secondary valve and a secondary valve that changes the amount of intake air flowing through a high-load intake passage. A fuel injection nozzle is provided to supply fuel to the low-load intake passage downstream of the enlarged chamber. The passage cross-sectional area of the high-load intake passage is set larger than the passage cross-sectional area of the low-load intake passage, and the passage length of the high-load intake passage from the expansion chamber to each cylinder is set to the expansion chamber. The passage length is set to be smaller than the passage length of the low-load intake passage leading from to each cylinder. The opening timing of the high-load intake port is set to be later than the opening timing of the low-load intake port. The passage length of the intake passage for high loads above is 5000
In the engine high rotation range of ~7000 rpm, the expansion wave generated by the start of intake at the high-load intake port of each cylinder is reversed and reflected in the expansion chamber, and the secondary pulsating wave of the compression wave is generated for each cylinder at the end of the intake stroke. The formula below l S = (θ S - θ O ) x (60/360N) x (1/4) x a (here, θ S is The opening period of the high-load intake valve that opens and closes the load intake port, θ O , is the period from the opening of the high-load intake valve until the expansion wave substantially occurs, in order to effectively perform supercharging. N is the engine speed, and a is the invalid period, which is the sum of the period from just before closing to the closing of the high-load intake valve in which the secondary pulsating wave of the compression wave, which is the inversion of the expansion wave, is propagated. (propagation velocity of pressure waves).

(作 用) これにより、本発明では、高出力を要する5000
〜7000rpmのエンジン高回転域では、2次弁の開
作動により低負荷用吸気通路と共に高負荷用吸気
通路も開かれて、各気筒に対し高負荷用吸気通路
からも吸気の供給が行われている。その際、各気
筒において高負荷用吸気弁の開弁後、高負荷用吸
気ポートからの吸気開始により各高負荷用吸気通
路内に膨脹波が発生する。この膨脹波の発生は、
低負荷用吸気ポートの開口時期が高負荷用吸気ポ
ートの開口時期よりも早いことにより、各気筒の
吸気行程開始時、燃焼室の残留排気ガスの吹き返
しが低負荷用吸気ポート側に集中し、その分、高
負荷用吸気ポートからの吸気開始による負圧の発
生が大きく強いものとなる。そして、この強い膨
脹波は、拡大室で反転して反射した圧縮波の2次
脈動波として各気筒の吸気行程終期の高負荷用吸
気ポートに伝播する。その結果、この強力な2次
脈動圧縮波による吸気個有脈動効果により、吸気
行程終期の高負荷用吸気ポートからの吸気の吹き
返しが抑制されて吸気が燃焼室内へ強く押し込ま
れ、強い過給が行われることになる。
(Function) As a result, in the present invention, the 5000
In the high engine speed range of ~7000 rpm, the secondary valve opens both the low-load intake passage and the high-load intake passage, and intake air is supplied to each cylinder from the high-load intake passage as well. There is. At this time, after the high-load intake valve is opened in each cylinder, an expansion wave is generated in each high-load intake passage due to the start of intake from the high-load intake port. The generation of this expansion wave is
Because the low-load intake port opens earlier than the high-load intake port, at the start of each cylinder's intake stroke, the blowback of residual exhaust gas from the combustion chamber concentrates on the low-load intake port. Accordingly, the generation of negative pressure due to the start of intake from the high-load intake port becomes larger and stronger. Then, this strong expansion wave propagates to the high-load intake port of each cylinder at the end of the intake stroke as a secondary pulsating wave of the compression wave that is reversed and reflected in the expansion chamber. As a result, due to the unique intake pulsation effect caused by this strong secondary pulsating compression wave, the blowback of intake air from the high-load intake port at the end of the intake stroke is suppressed, and the intake air is strongly pushed into the combustion chamber, resulting in strong supercharging. It will be done.

また、その場合、上記吸気個有脈動効果を得る
ための圧力波伝播経路である高負荷用吸気通路
は、低負荷用吸気通路よりも通路断面積が大で、
かつ通路長さが短いことにより、圧力波の伝播の
抵抗が小さく、よつて上記吸気個有脈動効果を高
負荷用吸気系統で一層有効に発揮させることがで
きる。
In addition, in that case, the high-load intake passage, which is the pressure wave propagation path for obtaining the above-mentioned intake-specific pulsation effect, has a larger passage cross-sectional area than the low-load intake passage,
Moreover, since the passage length is short, the resistance to the propagation of pressure waves is small, so that the above-mentioned intake-specific pulsation effect can be more effectively exerted in a high-load intake system.

さらに、燃料噴射ノズルは、拡大室下流の低負
荷用吸気通路に設けられているので、全運転域で
吸気の供給を行い燃料の供給が可能な低負荷用吸
気通路のみの設置で済み、燃料供給装置の簡略化
を図ることができる。
Furthermore, since the fuel injection nozzle is installed in the low-load intake passage downstream of the enlarged chamber, only the low-load intake passage, which can supply intake air and fuel in all operating ranges, can be installed. The supply device can be simplified.

ここにおいて、上記吸気個有脈動効果を得るエ
ンジン高回転域として5000〜7000rpmの限定は、
一般に最高出力及び最高速度がこの範囲に設定さ
れていることから、エンジンの高負荷高回転領域
であつて高出力を要し、充填効率向上、出力向上
に有効な領域であることによる。
Here, the engine high speed range to obtain the above-mentioned intake air pulsation effect is limited to 5000 to 7000 rpm.
Since the maximum output and maximum speed are generally set within this range, this is a high load, high rotation range of the engine, which requires high output, and is an effective range for improving charging efficiency and output.

また、上記低負荷用吸気通路と高負荷用吸気通
路とを拡大室の下流において独立させる理由は、
各気筒の低負荷用及び高負荷用吸気通路でそれぞ
れ発生した圧力波が他方に分散したり、相互に干
渉し合つて弱まるのを防止するためであり、特に
低負荷用吸気通路と高負荷用吸気通路とはデユア
ルインダクシヨン吸気システムでの要求の違いか
ら吸気ポートの開閉タイミングや長さが同じでな
く、一方の圧力波が他方によつて減衰させられる
ことになるからである。
Furthermore, the reason why the low-load intake passage and the high-load intake passage are made independent downstream of the expansion chamber is as follows.
This is to prevent the pressure waves generated in the low-load and high-load intake passages of each cylinder from dispersing to the other, or from interfering with each other and weakening. This is because the opening/closing timing and length of the intake port are not the same as that of the intake passage due to the differences in requirements in the dual induction intake system, and the pressure waves of one are attenuated by the other.

また、本発明において吸気個有脈動効果を得る
に当つて2次脈動を用いる理由は、1次脈動は上
記効果が大である反面、高負荷用吸気通路の通路
長さが長くなりすぎ、2次脈動の場合に対して2
倍の長さとなるので車載性が悪く、また、吸気抵
抗を増加させる傾向がある。一方、3次脈動は通
路長さが2次脈動に対して2/3の長さに短くなる
反面、2次脈動に対して上記効果が約15〜25%程
度低下し、また吸気抵抗がさほど変わらない。こ
のことから、通路長さを可及的に短くしながら吸
気個有脈動効果を有効に発揮させるためである。
In addition, the reason why secondary pulsation is used in obtaining the intake-specific pulsation effect in the present invention is that while primary pulsation has the above-mentioned effect, the passage length of the high-load intake passage becomes too long. 2 for the case of next pulsation
Since it is twice as long, it is difficult to mount it on a vehicle, and it also tends to increase intake resistance. On the other hand, with tertiary pulsation, the passage length is shortened to 2/3 of that of secondary pulsation, but on the other hand, the above effect is reduced by about 15 to 25% compared to secondary pulsation, and the intake resistance is not as great. does not change. For this reason, the purpose is to effectively exhibit the unique pulsation effect of the intake air while making the passage length as short as possible.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図及び第2図はデユアルインダクシヨンタ
イプの4バルブ式2気筒4サイクルエンジンに本
発明を適用した基本構造例としての第1実施例を
示す。同図において、1A及び1Bは第1気筒及
び第2気筒であり、2は各気筒1A,1Bにおい
てシリンダ3とピストン4とで形成された燃焼室
である。
FIGS. 1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a dual induction type four-valve two-cylinder four-cycle engine. In the figure, 1A and 1B are a first cylinder and a second cylinder, and 2 is a combustion chamber formed by a cylinder 3 and a piston 4 in each cylinder 1A, 1B.

5は一端がエアクリーナ6を介して大気に開口
して各気筒1A,1Bに吸気を供給するための主
吸気通路であつて、該主吸気通路5には吸入空気
量を検出するエアフローメータ7が配設されてい
る。上記主吸気通路5はエアフローメータ7下流
において拡大室8を有し、該拡大室8から各気筒
1A,1Bに対し低負荷用吸気通路9a,9bと
高負荷用吸気通路10a,10bとが独立分岐
し、各々低負荷用吸気ポート11及び高負荷用吸
気ポート12を介して各気筒1A,1Bの燃焼室
2に開口している。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 to supply intake air to each cylinder 1A, 1B, and the main intake passage 5 is equipped with an air flow meter 7 for detecting the amount of intake air. It is arranged. The main intake passage 5 has an enlarged chamber 8 downstream of the air flow meter 7, and from the enlarged chamber 8, low-load intake passages 9a, 9b and high-load intake passages 10a, 10b are separated for each cylinder 1A, 1B. It branches and opens into the combustion chamber 2 of each cylinder 1A, 1B via a low-load intake port 11 and a high-load intake port 12, respectively.

上記拡大室8上流でエアフローメータ7下流の
主吸気通路5には、エンジン負荷の増大に応じて
開作動して所定負荷以上になると全開となつてエ
ンジン低負荷時少なくとも低負荷用吸気通路9
a,9bを流れる吸気量を変化させる1次弁13
が配設されている。また、拡大室8下流の各高負
荷用吸気通路10a,10bには、エンジン負荷
が所定値以上になると開作動してエンジン高負荷
時高負荷用吸気通路10a,10bを流れる吸気
量を変化させる2次弁14,14が互いに連動し
て配設されている。さらに、上記拡大室8下流の
各低負荷用吸気通路9a,9bの下流端部(燃焼
室2への開口部近傍)には、上記エアフローメー
タ7の出力に基づいて吸入空気量に応じて燃料噴
射量が制御される電磁弁式の燃料噴射ノズル1
5,15が配設されている。
The main intake passage 5 upstream of the enlarged chamber 8 and downstream of the air flow meter 7 is provided with an intake passage 9 that opens in response to an increase in engine load and opens fully when the load exceeds a predetermined load.
Primary valve 13 that changes the amount of intake air flowing through a and 9b
is installed. Further, each of the high-load intake passages 10a, 10b downstream of the expansion chamber 8 is opened when the engine load exceeds a predetermined value, and changes the amount of intake air flowing through the high-load intake passages 10a, 10b when the engine load is high. Secondary valves 14, 14 are arranged in conjunction with each other. Further, at the downstream ends (near the opening to the combustion chamber 2) of each of the low-load intake passages 9a, 9b downstream of the enlarged chamber 8, fuel is supplied according to the amount of intake air based on the output of the air flow meter 7. Solenoid valve type fuel injection nozzle 1 with controlled injection amount
5 and 15 are arranged.

また、上記各高負荷用吸気ポート12には該高
負荷用吸気ポート12を吸気行程において開閉す
る高負荷用吸気弁16が設けられ、また図示して
いないが各低負荷用吸気ポート11には該低負荷
用吸気ポート11を吸気行程において開閉する低
負荷用吸気弁が設けられている。尚、各気筒1
A,1Bにおいて、17及び18はそれぞれ一端
が大気に開口した他端が排気ポート19,20を
介して各気筒1A,1Bの燃焼室2に開口して燃
焼室2からの排気ガスを排出する第1及び第2排
気通路であつて、上記各排気ポート19,20に
は該排気ポート19,20を排気行程において開
閉する排気弁21,21が設けられている。
Further, each of the high-load intake ports 12 is provided with a high-load intake valve 16 that opens and closes the high-load intake port 12 during the intake stroke, and although not shown, each of the low-load intake ports 11 A low-load intake valve is provided to open and close the low-load intake port 11 during the intake stroke. In addition, each cylinder 1
In A and 1B, 17 and 18 have one end open to the atmosphere and the other end open to the combustion chamber 2 of each cylinder 1A and 1B via exhaust ports 19 and 20 to discharge exhaust gas from the combustion chamber 2. In the first and second exhaust passages, each of the exhaust ports 19 and 20 is provided with exhaust valves 21 and 21 that open and close the exhaust ports 19 and 20 during the exhaust stroke.

そして、上記各高負荷用吸気通路10a,10
bの最小通路断面積ASは各低負荷用吸気通路9
a,9bの最小通路断面積APよりも大きく設定
され(AS>AP)、また各高負荷用吸気通路10
a,10bの通路長さlsは各低負荷用吸気通路9
a,9bの通路長さlPよりも短く設定されており
(lS<lP)、特に高負荷用吸気通路10a,10b
による圧力波の伝播をその減衰を小さくして有効
に行うようにしている。
And each of the above-mentioned high load intake passages 10a, 10
The minimum passage cross-sectional area A S of b is each low-load intake passage 9
It is set larger than the minimum passage cross-sectional area A P of a and 9b (A S > A P ), and each high-load intake passage 10
The passage length ls of a and 10b is each low load intake passage 9
The length of the passages a and 9b is set shorter than l P (l S < l P ), especially for high-load intake passages 10 a and 10 b.
The pressure waves are propagated effectively by reducing their attenuation.

また、上記拡大室8の容積は、エンジン総排気
量に対して0.5倍以上に設定されている。これは
0.5倍未満では膨脹波と圧縮波間の反転効果が得
られないことによるものである。また、上記拡大
室8は、エンジンの加速運転時又は減衰運転時等
の過渡運転時での吸入空気のサージタンクとして
機能し、加速時の息付きや減速時の燃料のオーバ
リツチによる失火等を防止して燃料の良好な応答
性を確保するものである。
Further, the volume of the expansion chamber 8 is set to be 0.5 times or more the total displacement of the engine. this is
This is because if it is less than 0.5 times, the reversal effect between the expansion wave and the compression wave cannot be obtained. In addition, the expansion chamber 8 functions as a surge tank for intake air during transient operations such as acceleration or damping of the engine, and prevents misfires caused by breathing during acceleration or fuel overflow during deceleration. This ensures good response of the fuel.

すなわち、上記1次弁13の下流に、各気筒1
A,1Bの低負荷用吸気通路9aと9b及び高負
荷用吸気通路10aと10bがそれぞれ集合する
大きな容積(上記所定の容積)を有する拡大室8
を備えているため、1次弁13が低開度の時は拡
大室8に吸気負圧が生成し蓄えられ、また、1次
弁13が高開度の時は拡大室8に大気圧に近い吸
気圧力が生成し蓄えられている。したがつて、加
速運転時においては、上記1次弁13の開度が急
増して開弁する際、それまで上記拡大室8に蓄え
られていた吸気負圧により該拡大室8上流に主吸
気通路5の吸気流速を逸速く速め、エアフローメ
ータ7の応答性を高めることで、逸速い燃料増量
(燃料の応答性)が確保できる。また、減速運転
時においては、上記1次弁13の開度が急減して
閉弁する際、それまで上記拡大室8に蓄えられて
いた大気圧に近い吸気圧力により該拡大室8上流
の主吸気通路5の吸気流速を逸速く低下させ、エ
アフローメータ7の応答性を高めることで、逸速
い燃料減量(燃料の応答性)が確保できる。
That is, downstream of the primary valve 13, each cylinder 1
An enlarged chamber 8 having a large volume (the above-described predetermined volume) in which the low-load intake passages 9a and 9b and the high-load intake passages 10a and 10b of A and 1B are gathered, respectively.
Therefore, when the primary valve 13 is at a low opening, negative intake pressure is generated and stored in the expansion chamber 8, and when the primary valve 13 is at a high opening, atmospheric pressure is generated in the expansion chamber 8. A similar intake pressure is generated and stored. Therefore, during acceleration operation, when the opening of the primary valve 13 rapidly increases and opens, the negative pressure of the intake air that had been stored in the expansion chamber 8 upstream causes the main intake air to flow upstream of the expansion chamber 8. By rapidly increasing the intake flow velocity in the passage 5 and increasing the responsiveness of the air flow meter 7, a rapid fuel increase (fuel responsiveness) can be ensured. In addition, during deceleration operation, when the opening degree of the primary valve 13 suddenly decreases and closes, the intake pressure close to atmospheric pressure that has been stored in the expansion chamber 8 upstream causes the main valve upstream of the expansion chamber 8 to By rapidly reducing the intake flow velocity in the intake passage 5 and increasing the responsiveness of the air flow meter 7, a rapid fuel loss (fuel responsiveness) can be ensured.

さらに、上記低負荷用吸気弁(図示せず)の開
弁時期(低負荷用吸気ポート11の開口時期)
は、高負荷用吸気ポート16の開弁時期(高負荷
用吸気ポート12の開口時期)よりも早くなるよ
うに設定されており、燃焼室2の残留排気ガスの
吹き返しを低負荷用吸気ポート11側に集中さ
せ、その分高負荷用吸気ポート12側での吸気開
始時に膨脹波を強く発生させるようにしている。
また、高負荷用吸気弁16の閉弁時期(高負荷用
吸気ポート12の閉口時期)は低負荷用吸気弁の
閉弁時期(低負荷用吸気ポート11の閉口時期)
より以遅になるように設定されており、吸気行程
終期の高負荷用吸気ポート12に伝播した2次脈
動圧縮波が低負荷用吸気ポート11から吹き抜け
るのを防止して高負荷用吸気系統での吸気個有脈
動効果を有効に発揮させるようにしている。
Furthermore, the valve opening timing of the above-mentioned low load intake valve (not shown) (opening timing of the low load intake port 11)
is set to be earlier than the opening timing of the high-load intake port 16 (the opening timing of the high-load intake port 12), and the blowback of the residual exhaust gas in the combustion chamber 2 is set to be earlier than the opening timing of the high-load intake port 16. This causes expansion waves to be generated more strongly at the start of intake on the high-load intake port 12 side.
Also, the closing timing of the high-load intake valve 16 (the closing timing of the high-load intake port 12) is the closing timing of the low-load intake valve (the closing timing of the low-load intake port 11).
This is set to be later than that of the high-load intake system by preventing the secondary pulsating compression wave that propagated to the high-load intake port 12 at the end of the intake stroke from blowing through from the low-load intake port 11. The intake air pulsation effect is effectively exhibited.

加えて、上記各高負荷用吸気通路10a,10
bの通路長さls、つまり該高負荷用吸気通路10
a,10bの拡大室8への開口端面から燃焼室1
2への開口(高負荷用吸気ポート12)までの通
路長さlsは、5000〜7000rpmの回転域での2次の
吸気個有脈動効果を得るように、 lS(θS−θO)×(60/360N) ×(1/4)×a …() の式から求められた値に設定されている。尚、上
記()式において、θSは高負荷用吸気弁16の
開弁期間で、θOは高負荷用吸気弁16の開弁によ
る高負荷用吸気ポート12の開口から膨脹波が実
質的に発生するまでの期間と効果的に過給を行う
ために該膨脹波を反転した圧縮波の2次脈動波が
伝播される高負荷用吸気弁16の閉弁(高負荷用
吸気ポート12の開口)直前の時期から閉弁まで
の期間とを合算した無効期間で約60〜100゜程度で
ある。よつて(θS−θO)は膨脹波発生から圧縮波
の2次脈動伝播までに要するクランクシヤフトの
回転角度を表わす。また、Nはエンジン回転数で
N=5000〜7000rpmであり、60/360Nは1゜回転す
るに要する時間(秒)を表わす。また、1/4は2
次脈動が2往復する行程の逆数を表わす。さら
に、aは圧力波の伝播速度(音速)で、20℃でa
=343m/sである。
In addition, each of the above-mentioned high-load intake passages 10a, 10
b passage length ls, that is, the high-load intake passage 10
Combustion chamber 1 from the opening end face of a, 10b to the enlarged chamber 8
The passage length ls to the opening to 2 (high-load intake port 12) is l SS −θ O ) so as to obtain the second-order intake unique pulsation effect in the rotation range of 5000 to 7000 rpm. ×(60/360N) ×(1/4)×a…() It is set to a value obtained from the formula. In the above equation (), θ S is the opening period of the high-load intake valve 16, and θ O is the period during which the expansion wave is substantially generated from the opening of the high-load intake port 12 due to the opening of the high-load intake valve 16. In order to effectively perform supercharging, the high-load intake valve 16 is closed (the high-load intake port 12 The invalid period, which is the sum of the period immediately before opening (opening) and the period immediately before closing, is about 60 to 100 degrees. Therefore, (θ S −θ O ) represents the rotation angle of the crankshaft required from the generation of the expansion wave to the propagation of the secondary pulsation of the compression wave. Further, N is the engine rotational speed, N=5000 to 7000 rpm, and 60/360N represents the time (seconds) required to rotate 1 degree. Also, 1/4 is 2
Represents the reciprocal of the stroke in which the next pulsation goes back and forth twice. Furthermore, a is the propagation velocity (sound velocity) of the pressure wave, and at 20°C a
=343m/s.

尚、上記()式では、圧力波の伝播に対する
吸入空気の流れの影響を無視している。これは、
流速が音速に比べて小さく、吸気通路の長さにほ
とんど変化をもたらさないためである。
Note that in the above equation (), the influence of the flow of intake air on the propagation of pressure waves is ignored. this is,
This is because the flow velocity is smaller than the speed of sound and causes almost no change in the length of the intake passage.

次に、上記第1実施例の作用について説明する
に、高出力を要する5000〜70000rpmのエンジン
高回転時には、2次弁14,14の開作動により
低負荷用吸気通路9a,9bと共に高負荷用吸気
通路10a,10bも開かれて、各気筒1A,1
Bに対し高負荷用吸気通路10a,10bからも
吸気の供給が行われている。その際、各気筒1
A,1Bにおいて高負荷用吸気弁16の開弁後、
高負荷用吸気ポート12からの吸気開始により各
高負荷用吸気通路10a,10b内に膨脹波が発
生する。この膨脹波の発生は、低負荷用吸気ポー
ト11の開口時期が高負荷用吸気ポート12の開
口時期よりも早いことにより、各気筒1A,1B
の吸気行程開始時、燃焼室2の残留排気ガスの吹
き返しが低負荷用吸気ポート11側に集中し、そ
の分、高負荷用吸気ポート12からの吸気開始に
よる負圧の発生が大きく強いものとなる。そし
て、この強い膨脹波は、拡大室8と各気筒1A,
1Bに至る高負荷用吸気通路10a,10bの通
路長さlsを5000〜7000rpmのエンジン高回転時を
基準として上記()式により求められた値に設
定したことにより、高負荷用吸気通路10a,1
0b→拡大室8(圧縮波に反転して反射)→高負
荷用吸気通路10a,10b→燃焼室2(膨脹波
の反転して反射)→高負荷用吸気通路10a,1
0b→拡大室8(圧縮波に反転して反射)→高負
荷用吸気通路10a,10bを経て圧縮波の2次
脈動として各気筒1A,1Bの吸気行程終期の高
負荷用吸気ポート12に伝播する。その結果、こ
の強力な2次脈動圧縮波により、吸気行程終期の
高負荷用吸気ポート12からの吸気の吹き返しが
抑制されて吸気が燃焼室2内へ強く押し込まれ
る。しかも、高負荷用吸気ポート12の閉口時期
を低負荷用吸気ポート11より以遅にして上記2
次脈動圧縮波の低負荷用吸気ポート11からの吹
き抜けを防止したことと相俟つて、強い過給が行
われることになる。
Next, to explain the operation of the first embodiment, when the engine rotates at a high speed of 5,000 to 70,000 rpm, which requires high output, the secondary valves 14, 14 are opened, and the intake passages 9a, 9b for low loads as well as the intake passages for high loads are The intake passages 10a, 10b are also opened, and each cylinder 1A, 1
Intake air is also supplied to B from the high-load intake passages 10a and 10b. At that time, each cylinder 1
After opening the high-load intake valve 16 at A and 1B,
When intake starts from the high-load intake port 12, an expansion wave is generated in each of the high-load intake passages 10a, 10b. This expansion wave occurs because the opening timing of the low-load intake port 11 is earlier than the opening timing of the high-load intake port 12.
At the start of the intake stroke, the blowback of the residual exhaust gas in the combustion chamber 2 is concentrated on the low-load intake port 11 side, and the negative pressure generated by the start of intake from the high-load intake port 12 is correspondingly large and strong. Become. This strong expansion wave causes the expansion chamber 8 and each cylinder 1A,
By setting the passage length ls of the high-load intake passages 10a and 10b leading to 1B to the value determined by the above formula () based on the high engine rotation of 5000 to 7000 rpm, the high-load intake passages 10a, 1
0b → Expansion chamber 8 (inverts and reflects compression waves) → High load intake passages 10a, 10b → Combustion chamber 2 (inverts and reflects expansion waves) → High load intake passages 10a, 1
0b → Expansion chamber 8 (reflected as a compression wave) → Propagates to the high-load intake port 12 at the end of the intake stroke of each cylinder 1A, 1B as a secondary pulsation of the compression wave via the high-load intake passages 10a, 10b do. As a result, this strong secondary pulsating compression wave suppresses the blowback of intake air from the high-load intake port 12 at the end of the intake stroke, and forces the intake air strongly into the combustion chamber 2. Moreover, the closing timing of the high-load intake port 12 is set later than that of the low-load intake port 11, so that the above-mentioned
In combination with preventing the next pulsating compression wave from blowing through from the low-load intake port 11, strong supercharging is performed.

したがつて、このように、5000〜7000rpmのエ
ンジン高回転時、各気筒1A,1B自身の高負荷
用吸気系統での効果的で強力な吸気個有脈動効果
の発生により強い過給効果が得られるので、第3
図に示すように、5000〜7000rpmのエンジン高回
転時つまりエンジン高負荷高回転時での充填効率
が増大して出力を向上させることができる。尚、
第3図では、エンジン回転数6000rpmを基準とし
て高負荷用吸気系統で2次の吸気個有脈動効果を
得るように設定した場合におけるエンジンの出力
トルク特性を示す。
Therefore, when the engine rotates at a high speed of 5000 to 7000 rpm, a strong supercharging effect can be obtained by generating an effective and strong intake pulsation effect in the high-load intake system of each cylinder 1A and 1B. Therefore, the third
As shown in the figure, the charging efficiency increases at high engine speeds of 5,000 to 7,000 rpm, that is, at high engine load and high speeds, and the output can be improved. still,
FIG. 3 shows the output torque characteristics of the engine when the high-load intake system is set to obtain a second-order intake-specific pulsation effect with an engine speed of 6000 rpm as a reference.

また、その場合、吸気個有脈動効果を得るため
の圧力波伝播経路である高負荷用吸気通路10
a,10bは、低負荷用吸気通路9a,9bより
も通路面積が大でしかも通路長さが短いことによ
り、圧力波の伝播の抵抗が小さく、よつて上記吸
気個有脈動効果を高負荷用吸気系統で一層有効に
発揮させることができる。
In that case, the high-load intake passage 10, which is a pressure wave propagation path for obtaining the intake-specific pulsation effect,
The passages a and 10b have a larger passage area and a shorter passage length than the low-load intake passages 9a and 9b, so the resistance to the propagation of pressure waves is small, and therefore the above-mentioned intake-specific pulsation effect can be used for high-load applications. It can be made more effective in the intake system.

さらに、燃料供給装置としての燃料噴射ノズル
15は、拡大室8下流の低負荷用吸気通路9a,
9bの下流端部(燃焼室2への開口部近傍)に設
けられているので、その通路長さlPが長いことに
より、拡大室8上流に配置されたエアフローメー
タ7の加減速運転時における応答遅れに起因する
燃料の応答性の悪化(燃焼室2に導入される変化
した空気量に対応する燃料供給の応答遅れ)が生
じることを防止して、良好な燃料応答性を確保で
きるとともに、全運転域での吸気の供給を行い燃
料の供給が可能な低負荷用吸気通路9a,9bの
みの設置で済み、燃料供給装置の簡略化を図るこ
とができる。
Furthermore, the fuel injection nozzle 15 as a fuel supply device includes a low-load intake passage 9a downstream of the enlarged chamber 8;
9b is provided at the downstream end (near the opening to the combustion chamber 2), and its passage length lP is long, so that the airflow meter 7 placed upstream of the expansion chamber 8 is It is possible to prevent deterioration of fuel responsiveness due to response delay (response delay in fuel supply corresponding to the changed amount of air introduced into the combustion chamber 2), and ensure good fuel responsiveness. Only the low-load intake passages 9a and 9b, which can supply intake air and fuel in all operating ranges, are installed, and the fuel supply system can be simplified.

また、上記吸気個有脈動効果による過給効果
は、拡大室8の位置、各吸気ポート11,12の
開口時期、及び拡大室8から各気筒1A,1Bに
至る高負荷用吸気通路10a,10bの通路長さ
ls等を上述の如く設定することによつて得られ、
過給機等を要さないので、既存の吸気系の僅かな
設計変更で済み、構造が極めて簡単なものであ
り、よつて容易にかつ安価に実施することができ
る。
In addition, the supercharging effect due to the intake individual pulsation effect is determined by the position of the expansion chamber 8, the opening timing of each intake port 11, 12, and the high-load intake passages 10a, 10b from the expansion chamber 8 to each cylinder 1A, 1B. passage length of
Obtained by setting ls etc. as above,
Since a supercharger or the like is not required, only slight design changes to the existing intake system are required, and the structure is extremely simple, so it can be implemented easily and at low cost.

尚、本発明は上記第1実施例に限定されるもの
ではなく、その他種々の変形例をも包含するもの
である。第4図は本発明の第2実施例を示し
(尚、第1実施例と同一の部分について同一の符
号を付してその説明を省略する)、拡大室を、第
1実施例での単一の拡大室8に代え、低負荷用吸
気系統の拡大室8aと高負荷用吸気系統の拡大室
8bとに独立して設けるようにしたものである。
本例においても、低負荷用吸気ポート11の開口
時期を高負荷用吸気ポート12よりも早く設定
し、高負荷用吸気通路10a,10bの通路長さ
lsを上記()式により設定することにより、上
記第1実施例と同様の作用効果を奏することがで
きる。
It should be noted that the present invention is not limited to the first embodiment described above, but also includes various other modifications. FIG. 4 shows a second embodiment of the present invention (the same parts as in the first embodiment are given the same reference numerals and their explanations are omitted). Instead of one expansion chamber 8, an expansion chamber 8a for the low-load intake system and an expansion chamber 8b for the high-load intake system are provided independently.
Also in this example, the opening timing of the low-load intake port 11 is set earlier than that of the high-load intake port 12, and the passage length of the high-load intake passages 10a and 10b is
By setting ls using the above equation ( ), the same effects as in the first embodiment can be achieved.

また、上記実施例では2気筒エンジンに適用し
た例を示したが、本発明は、デユアルインダクシ
ヨン吸気システムのその他各種の多気筒エンジン
に対しても適用できるのは言うまでもない。
Further, although the above embodiments have been described as examples in which the present invention is applied to a two-cylinder engine, it goes without saying that the present invention can also be applied to various other multi-cylinder engines with dual induction intake systems.

(発明の効果) 以上説明したように、本発明によれば、拡大室
下流に低負荷用と高負荷用との2系統の吸気通路
を備えた多気筒エンジンにおいて、高負荷用吸気
系統で5000〜7000rpmのエンジン高回転域で吸気
個有脈動効果を得るため、2次脈動を利用すべく
通路断面積が大で通路長さの短い高負荷用吸気通
路を用い、かつこのために高負荷用吸気ポートの
開口時期を低負荷用吸気ポートよりも遅くして残
留ガスによる膨脹波の減衰を抑えることで、吸気
個有脈動効果を十分にかつ効果的に生ぜしめて強
い過給効果を得るようにした。このため、過給機
等を要さずに既存の吸気系の僅かな設計変更によ
る簡単な構成でもつて、エンジン高負荷高回転時
の出力向上を有効に図ることができ、よつてエン
ジンの出力向上対策の容易実施化及びコストダウ
ン化に大いに寄与できるものである。
(Effects of the Invention) As explained above, according to the present invention, in a multi-cylinder engine equipped with two intake passages, one for low load and one for high load, downstream of the enlarged chamber, the high load intake system In order to obtain a unique intake pulsation effect in the engine high speed range of ~7000 rpm, a high-load intake passage with a large passage cross-sectional area and short passage length is used to utilize the secondary pulsation, and for this purpose, a high-load intake passage with a large passage cross-sectional area and a short passage length is used. By opening the intake port later than the low-load intake port and suppressing the attenuation of the expansion wave due to residual gas, the unique pulsation effect of the intake is sufficiently and effectively produced to obtain a strong supercharging effect. did. Therefore, it is possible to effectively improve the output at high engine load and high rotation speeds even with a simple configuration that requires only slight design changes to the existing intake system without the need for a supercharger, etc., and thus increases the engine output. This can greatly contribute to easier implementation of improvement measures and cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図及び第2
図は第1実施例を示す全体構成説明図及び同要部
概略図、第3図は出力トルク特性を示す図、第4
図は第2実施例を示す第1図相当図、第5図はバ
ルブタイミングに対する燃焼室圧力の変化を示す
説明図である。 1A…第1気筒、1B…第2気筒、2…燃焼
室、5…主吸気通路、8,8a,8b…拡大室、
9a,9b…低負荷用吸気通路、10a,10b
…高負荷用吸気通路、11…低負荷用吸気ポー
ト、12…高負荷用吸気ポート、13…1次弁、
14…2次弁、15…燃料噴射ノズル。
The drawings show embodiments of the invention, FIGS. 1 and 2.
The figures are an explanatory diagram of the overall configuration and a schematic diagram of the main parts showing the first embodiment, Figure 3 is a diagram showing the output torque characteristics, and Figure 4 is a diagram showing the output torque characteristics.
The figure is a diagram corresponding to FIG. 1 showing the second embodiment, and FIG. 5 is an explanatory diagram showing changes in combustion chamber pressure with respect to valve timing. 1A...first cylinder, 1B...second cylinder, 2...combustion chamber, 5...main intake passage, 8, 8a, 8b...expansion chamber,
9a, 9b...Low load intake passage, 10a, 10b
...Intake passage for high load, 11...Intake port for low load, 12...Intake port for high load, 13...Primary valve,
14...Secondary valve, 15...Fuel injection nozzle.

Claims (1)

【特許請求の範囲】 1 拡大室と、該拡大室下流に各気筒へ各々独立
して低負荷用および高負荷用吸気ポートを介して
開口する低負荷用吸気通路と高負荷用吸気通路と
を有する吸気通路を備え、該吸気通路は、上記拡
大室の上流に位置して少なくとも低負荷用吸気通
路を流れる吸気量を変化させる1次弁と、高負荷
用吸気通路を流れる吸気量を変化させる2次弁と
を有する多気筒エンジンの吸気装置であつて、 上記拡大室下流の低負荷用吸気通路に燃料を供
給する燃料噴射ノズルを設け、 上記高負荷用吸気通路の通路断面積を上記低負
荷用吸気通路の通路断面積よりも大に設定すると
ともに、上記拡大室から各気筒に至る高負荷用吸
気通路の通路長さを上記拡大室から各気筒に至る
低負荷用吸気通路の通路長さよりも小に設定し、 上記高負荷用吸気ポートの開口時期を上記低負
荷用吸気ポートの開口時期よりも遅らせるように
設定し、 上記高負荷用吸気通路の通路長さlSを、5000〜
7000rpmのエンジン高回転域に各気筒の高負荷用
吸気ポートの吸気開始により生じる膨脹波を上記
拡大室で反転して反射した圧縮波の2次脈動波が
吸気行程終期にある該各気筒の高負荷用吸気ポー
トに伝播して過給を行うように下記の式 lS=(θS−θO)×(60/360N) ×(1/4)×a (ここで、θSは高負荷用吸気ポートを開閉する
高負荷用吸気弁の開弁期間、θOは該高負荷用吸気
弁の開弁から膨脹波が実質的に発生するまでの期
間と効果的に過給を行うために該膨脹波を反転し
た圧縮波の2次脈動波が伝播される高負荷用吸気
弁の閉弁直前の時期から閉弁までの期間とを合算
した無効期間、Nはエンジン回転数、aは圧力波
の伝播速度) により設定したことを特徴とするエンジンの吸気
装置。
[Claims] 1. An enlarged chamber, and a low-load intake passage and a high-load intake passage that open downstream of the enlarged chamber to each cylinder independently through low-load and high-load intake ports. The intake passage includes a primary valve located upstream of the enlarged chamber that changes the amount of intake air flowing through at least the low-load intake passage, and a primary valve that changes the amount of intake air that flows through the high-load intake passage. The intake system for a multi-cylinder engine having a secondary valve is provided with a fuel injection nozzle that supplies fuel to a low-load intake passage downstream of the enlarged chamber, and the passage cross-sectional area of the high-load intake passage is The cross-sectional area of the load intake passage is set to be larger than the passage length of the high-load intake passage from the enlarged chamber to each cylinder, and the passage length of the low-load intake passage from the enlarged chamber to each cylinder is set to be larger than that of the load intake passage. The opening timing of the above-mentioned high-load intake port is set to be later than the opening timing of the above-mentioned low-load intake port, and the passage length l S of the above-mentioned high-load intake passage is set to 5000~
In the high-speed engine rotation range of 7000 rpm, the expansion wave generated by the start of intake at the high-load intake port of each cylinder is inverted and reflected in the expansion chamber, and the secondary pulsating wave of the compression wave is the high speed of each cylinder at the end of the intake stroke. The formula below l S = (θ S - θ O ) x (60/360N) x (1/4) x a (here, θ S is the high load The opening period of the high-load intake valve that opens and closes the high-load intake port, θ O is the period from the opening of the high-load intake valve until the expansion wave substantially occurs, and in order to effectively perform supercharging. N is the engine rotation speed, and a is the pressure. An engine intake system characterized by being set according to the wave propagation velocity).
JP57191604A 1982-10-30 1982-10-30 Intake apparatus of engine Granted JPS5982523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191604A JPS5982523A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191604A JPS5982523A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Publications (2)

Publication Number Publication Date
JPS5982523A JPS5982523A (en) 1984-05-12
JPH0452377B2 true JPH0452377B2 (en) 1992-08-21

Family

ID=16277397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191604A Granted JPS5982523A (en) 1982-10-30 1982-10-30 Intake apparatus of engine

Country Status (1)

Country Link
JP (1) JPS5982523A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201927A (en) * 1983-04-30 1984-11-15 Hino Motors Ltd Charging unit for diesel engine
JPH0663455B2 (en) * 1985-04-10 1994-08-22 マツダ株式会社 Engine intake system
JPH0663456B2 (en) * 1985-10-29 1994-08-22 マツダ株式会社 Engine intake system
JPH076395B2 (en) * 1985-11-08 1995-01-30 トヨタ自動車株式会社 Internal combustion engine intake system
DE3544122A1 (en) * 1985-12-13 1987-06-19 Bayerische Motoren Werke Ag MULTI-CYLINDER INTERNAL COMBUSTION ENGINE WITH INTAKE SYSTEM
JPH0373628U (en) * 1989-11-17 1991-07-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026185Y2 (en) * 1980-06-06 1985-08-07 トヨタ自動車株式会社 Internal combustion engine intake system

Also Published As

Publication number Publication date
JPS5982523A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
JPH0452377B2 (en)
JPS6211169B2 (en)
JPS6256325B2 (en)
JPH0559249B2 (en)
JPH0128209B2 (en)
JPH0337012B2 (en)
JPS60222523A (en) Suction device of engine
JPS6326261B2 (en)
JPH0452373B2 (en)
JPH0452374B2 (en)
JPS59226264A (en) Suction device for engine
JPS60222524A (en) Suction device of engine
JPH0452375B2 (en)
JPH0452372B2 (en)
JPS6323370B2 (en)
JPH0337013B2 (en)
JPS6211170B2 (en)
JPH0452376B2 (en)
JPH04203322A (en) Air intake device of rotary piston engine
JPH0517377B2 (en)
JPS5970837A (en) Intake device of rotary piston engine
JPS6326262B2 (en)
JPS5970833A (en) Intake device of rotary piston engine
JP2002081324A (en) Intake device of engine
JPS61218721A (en) Intake device of engine