JPH0128209B2 - - Google Patents

Info

Publication number
JPH0128209B2
JPH0128209B2 JP9311283A JP9311283A JPH0128209B2 JP H0128209 B2 JPH0128209 B2 JP H0128209B2 JP 9311283 A JP9311283 A JP 9311283A JP 9311283 A JP9311283 A JP 9311283A JP H0128209 B2 JPH0128209 B2 JP H0128209B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
exhaust
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9311283A
Other languages
Japanese (ja)
Other versions
JPS59218333A (en
Inventor
Haruo Okimoto
Ikuo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58093112A priority Critical patent/JPS59218333A/en
Publication of JPS59218333A publication Critical patent/JPS59218333A/en
Publication of JPH0128209B2 publication Critical patent/JPH0128209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過給機を備えた多気筒エンジンの吸
気装置に関し、詳しくは吸気通路内に発生する吸
気圧力波を利用した過給効果により掃気作用を向
上させノツキングを防止するようにしたものに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a multi-cylinder engine equipped with a supercharger. This invention relates to a device that improves scavenging action and prevents knocking.

(従来技術) 従来より、エンジンの吸気通路に過給機を設け
て、吸気を過給することにより、吸気の充填効率
を高めて出力向上を図るようにすることは知られ
ている。
(Prior Art) Conventionally, it has been known to provide a supercharger in the intake passage of an engine to supercharge the intake air, thereby increasing the filling efficiency of the intake air and increasing output.

また、従来、エンジンの吸気通路内に発生する
吸気圧力波により過給効果を得る技術として、実
公昭45−2321号公報に開示されているように、単
一気筒エンジンにおいて、吸気管を寸法の異なる
2本の通路に分け、かつそれぞれ別の吸気ポート
を有し、エンジン高回転時は2本の吸気通路を用
い、低回転時には閉塞位置の低い方の吸気通路を
閉止し吸気を早目に閉塞することにより、吸気管
の寸法やエンジン回転数の関数である吸気の最大
圧力時点での吸気の閉塞による過給作用を利用し
て広範囲のエンジン回転域に亘つて好適な充填効
率を得るようにしたものが提案されている。しか
し、このものは、単一気筒のエンジンに対するも
のであつて、吸気通路内に発生する吸気圧力波を
どのように利用するのか、その構成、作用が定か
でなく、直ちに実用に供し得ないものであつた。
In addition, as disclosed in Japanese Utility Model Publication No. 45-2321, a technique for obtaining a supercharging effect using intake pressure waves generated in the intake passage of an engine has conventionally been used in a single-cylinder engine to reduce the size of the intake pipe. Separated into two different passages, each with a separate intake port, the two intake passages are used at high engine speeds, and the lower intake passage is closed at low engine speeds, allowing for early intake. By occluding the intake air, it is possible to obtain suitable charging efficiency over a wide range of engine speeds by utilizing the supercharging effect caused by the occlusion of the intake air at the maximum pressure of the intake air, which is a function of the intake pipe dimensions and engine speed. It has been proposed that However, this method is for a single-cylinder engine, and it is not clear how to use the intake pressure waves generated in the intake passage, its structure, and operation, and it cannot be put into practical use right away. It was hot.

ところで、上記の如き過給機付エンジンにおい
ては、過給による吸気圧力の上昇により吸気温度
が高くなるため、エンジン低回転運転域、特に高
温高負荷低回転運転域でノツキングが発生しすい
という問題がある。
By the way, in a supercharged engine such as the one mentioned above, the intake air temperature increases due to the increase in intake pressure due to supercharging, so knocking is likely to occur in the low engine speed operating range, especially in the high temperature, high load, low speed operating range. There is.

そのため、従来、排気ターボ過給機を備えたエ
ンジンにおいては、タービン上流の排気通路にウ
エイストゲート弁を設けて、該ウエイストゲート
弁をプロア下流の吸気圧力(過給圧)によつて作
動制御し、排気ガスの一部をタービンをバイパス
して流下させることにより、ブロア(過給機)下
流の吸気圧力を設定値を越えないように一定に保
持して、ノツキングの発生防止を図ることは知ら
れているが、特にエンジン高温高負荷低回転域で
はその防止効果は不十分であつた。
Therefore, conventionally, in an engine equipped with an exhaust turbo supercharger, a wastegate valve is provided in the exhaust passage upstream of the turbine, and the operation of the wastegate valve is controlled by the intake pressure (supercharging pressure) downstream of the propeller. It is well known that the intake pressure downstream of the blower (supercharger) can be kept constant so as not to exceed a set value by letting part of the exhaust gas flow down bypassing the turbine, thereby preventing knocking. However, the prevention effect was insufficient, especially in the engine high temperature, high load, and low engine speed range.

また、ノツキングの発生防止に有効な手段とし
て、掃気を良くすることが知られている。しかる
に、そのためには吸、排気弁のオーバラツプ期間
を長くして吸気の吹き抜けを十分に行えばよい
が、通常の運転域での燃費性能が著しく悪化する
という問題がある。
It is also known that improving air scavenging is an effective means for preventing knocking. However, although this can be done by lengthening the overlapping period of the intake and exhaust valves to allow sufficient intake air to blow through, there is a problem in that the fuel efficiency in the normal driving range is significantly deteriorated.

(発明の目的) そこで、本発明は斯かる点に鑑み、 エンジンの吸気特性として、吸気ポート閉口
時には吸気の慣性により吸気が圧縮されて吸気
ポート部分に圧縮波が発生すること、 過給機付エンジンの特性として、ノツキング
の発生しやすいエンジン低回転運転域では過給
機下流の吸気圧力(過給圧)が排気ポートにか
かる排気圧力よりも大きくなつていること を知見し、この知見に基づいて、過給機付多気筒
エンジンでは一つの気筒での上記の吸気ポート
閉口時の圧縮波を上記の運転域で他の気筒の吸
気ポート開口直後に作用せしめれば効果的に過給
効果が得られること(以下、吸気慣性効果とい
う)に着目してなされたものであり、この吸気慣
性効果による過給効果により、既存の吸気系の僅
かな設計変更による簡単な構成でもつて、吸、排
気弁のオーバラツプ期間を長くすることなくつま
り燃費の悪化を招くことなく、掃気作用を向上さ
せてノツキングの発生防止を有効に図ることを目
的とする。
(Purpose of the Invention) Therefore, in view of the above, the present invention provides an engine with a supercharger, which has an intake characteristic that when the intake port is closed, the intake air is compressed due to the inertia of the intake air, and a compression wave is generated in the intake port portion. Based on this knowledge, we have discovered that, as an engine characteristic, in the low engine speed operating range where knocking is likely to occur, the intake pressure (supercharging pressure) downstream of the supercharger is greater than the exhaust pressure applied to the exhaust port. Therefore, in a multi-cylinder engine with a supercharger, if the compression wave when the intake port of one cylinder is closed is applied immediately after the intake port of another cylinder is opened in the above operating range, the supercharging effect can be effectively achieved. The supercharging effect due to this intake inertia effect allows the intake and exhaust system to be improved even with a simple configuration by making slight design changes to the existing intake system. To effectively prevent knocking by improving scavenging action without prolonging a valve overlap period, ie, without causing deterioration of fuel efficiency.

(発明の構成) この目的を達成するための本発明の技術的解決
手段は、過給機を備えた多気筒エンジンにおける
過給機下流の吸気通路において任意の気筒とその
気筒の吸気ポート閉口後最も早く吸気ポートを開
く他の気筒との間の吸気通路長さを、過給機下流
の吸気圧力が排気ポートに作用する排気圧力より
も大きくなるエンジン運転域で、一つの気筒の吸
気ポート閉口時に該吸気ポートに発生する圧縮波
が上記他の気筒の吸気ポートの開口直後に伝播し
て過給を行うように設定したものである。このこ
とにより、いわゆる吸気慣性効果による過給効果
によつて、つまり気筒の吸、排気弁のオーバラツ
プ時において閉口時圧縮波の伝播により吸気圧力
が増大して吸排気の圧力差が極めて大きくなるこ
とによつて、吸気の吹き抜けが著しく促進されて
掃気を良好に行うようにしたものである。
(Structure of the Invention) The technical solution of the present invention to achieve this object is to select an arbitrary cylinder in the intake passage downstream of the supercharger in a multi-cylinder engine equipped with a supercharger, and after the intake port of the cylinder is closed. The length of the intake passage between the other cylinders that opens the intake port earliest is determined by the length of the intake passage between the other cylinders, and the intake port of one cylinder is closed in the engine operating range where the intake pressure downstream of the supercharger is greater than the exhaust pressure acting on the exhaust port. The compression wave generated in the intake port is set so that it propagates immediately after the intake port of the other cylinder opens to perform supercharging. As a result, due to the supercharging effect due to the so-called intake inertia effect, that is, when the intake and exhaust valves of the cylinder overlap, the intake pressure increases due to the propagation of the compression wave at the time of closing, and the pressure difference between intake and exhaust becomes extremely large. As a result, the blow-through of intake air is significantly promoted and scavenging is performed well.

ここにおいて、上記吸気慣性効果を得る気筒間
の吸気通路長さLは、 L=(360−θ+θ0)×(60/360・N)×a
……() の式によつて求められた値に設定される。上記
()式において、θは吸気ポートの開口時期、
θ0は吸気ポート閉口時の圧縮波が実質的に発生し
てから吸気ポート閉口までの時期と吸気ポート開
口から効果的に過給を行うために上記閉口時圧縮
波を伝播させる時期までの期間とを合算した無効
期間であり、よつて(360−θ+θ0)は一つの気
筒での閉口時圧縮波の発生からその気筒の吸気ポ
ート閉口後最も早く吸気ポートを開く他の気筒の
吸気ポート開口直後への伝播までに要するクラン
クシヤフトの回転角度を表わす。また、Nはエン
ジン回転数で、(60/360N)は1゜回転するに要す
る時間(秒)を表わす。また、aは圧力波(圧縮
波)の伝播速度(音速)である。尚、上記()
式では、圧力波の伝播に対する吸入空気の流れの
影響を無視しているが、これは流速が音速に比べ
て小さく、吸気通路の長さにほとんど変化をもた
らさないためである。
Here, the length L of the intake passage between cylinders to obtain the above-mentioned intake inertia effect is L=(360-θ+θ 0 )×(60/360・N)×a
...It is set to the value determined by the formula (). In the above equation (), θ is the opening timing of the intake port,
θ 0 is the period from when the compression wave is substantially generated when the intake port is closed until the intake port is closed, and from when the intake port is opened until the time when the compression wave is propagated when the intake port is closed to effectively perform supercharging. Therefore, (360 - θ + θ 0 ) is the period from the generation of a compression wave at the time of closing in one cylinder to the time when the intake port of another cylinder opens the earliest after the intake port of that cylinder is closed. Represents the rotation angle of the crankshaft required for propagation to the immediately following direction. Also, N is the engine rotation speed, and (60/360N) represents the time (seconds) required to rotate 1°. Further, a is the propagation velocity (sound velocity) of the pressure wave (compression wave). In addition, the above ()
The equation ignores the effect of the intake air flow on the propagation of the pressure wave, since the flow velocity is small compared to the speed of sound and causes little change in the length of the intake passage.

(発明の効果) したがつて、本発明によれば、過給機付多気筒
エンジンにおいて、過給圧が排気圧力よりも大き
くなるエンジン低回転運転域で気筒間で吸気慣性
効果による過給効果を得るようにしたので、既存
の吸気系の僅かな設計変更による簡単な構成でも
つて、吸排気のオーバラツプ期間を短く抑え良好
な燃費性能を確保しながら掃気作用を向上させる
ことができ、よつてノツキング発生防止を有効に
図ることができるとともにその容易実施化および
コストダウン化をも図ることができる。
(Effects of the Invention) Therefore, according to the present invention, in a multi-cylinder engine with a supercharger, the supercharging effect due to the intake inertia effect is reduced between the cylinders in the engine low-speed operating range where the supercharging pressure is greater than the exhaust pressure. As a result, even with a simple configuration by making slight design changes to the existing intake system, it is possible to shorten the overlap period of intake and exhaust air and improve the scavenging effect while ensuring good fuel efficiency. It is possible to effectively prevent the occurrence of knocking, and also to facilitate its implementation and reduce costs.

(実施例) 以下、本発明の技術的手段の具体例としての実
施例を図面に基づいて説明する。
(Example) Hereinafter, an example as a specific example of the technical means of the present invention will be described based on the drawings.

第1図および第2図は本発明を2気筒4サイク
ルエンジンに適用した基本構造例としての第1実
施例を示す。同図において、1Aおよび1Bは第
1気筒および第2気筒であり、2は各気筒1A,
1Bにおいてシリンダ3とピストン4とで形成さ
れた燃焼室である。
1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a two-cylinder four-stroke engine. In the figure, 1A and 1B are the first cylinder and the second cylinder, and 2 is each cylinder 1A,
1B is a combustion chamber formed by a cylinder 3 and a piston 4.

5は一端がエアクリーナ6を介して大気に開口
して各気筒1A,1Bに吸気を供給するための主
吸気通路であつて、該主吸気通路5には、吸入空
気流量を検出するエアフローメータ7が配設さ
れ、該エアフローメータ7の下流には吸入空気量
を制御するスロツトル弁8が配設されている。上
記主吸気通路5は、スロツトル弁8下流において
同形状寸法の第1および第2吸気通路5a,5b
に分岐されたのち各々吸気ポート9,9を介して
各気筒1A,1Bの燃焼室2,2に連通してい
る。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 to supply intake air to each cylinder 1A, 1B, and an air flow meter 7 for detecting the intake air flow rate is provided in the main intake passage 5. A throttle valve 8 is provided downstream of the air flow meter 7 to control the amount of intake air. The main intake passage 5 includes first and second intake passages 5a and 5b having the same shape and dimensions downstream of the throttle valve 8.
After being branched into, the combustion chambers 2, 2 of the respective cylinders 1A, 1B are communicated via intake ports 9, 9, respectively.

上記各吸気通路5a,5bにはそれぞれ上記エ
アフローメータ7の出力に基づく吸入空気流量に
応じて燃焼噴射量が制御される電磁弁式の燃料噴
射ノズル10,10が配設されている。
Electromagnetic valve type fuel injection nozzles 10, 10 are provided in each of the intake passages 5a, 5b, respectively, and the combustion injection amount is controlled according to the intake air flow rate based on the output of the air flow meter 7.

また、上記主吸気通路5の分岐部は、スロツト
ル弁8下流に位置していて、第1および第2吸気
通路5a,5b同士を連通する連通路11を構成
している。該連通路11の通路面積Acは各吸気
通路5a,5bの最小通路面積Aと同等かそれ以
上(Ac≧A)に設定されていて、圧力波をその
減衰を小さくして有効に伝播するようにしてい
る。尚、図示していないが、主吸気通路5のスロ
ツトル弁8と分岐部(連通路11)との間にはエ
ンジンの加速運転時又は減速運転時等の過渡運転
時での吸入空気のサージングを防ぐための所定容
積のサージタンクを設けて、燃料の良好な応答性
を確保するようにすることが好ましい。
Further, a branch portion of the main intake passage 5 is located downstream of the throttle valve 8, and constitutes a communication passage 11 that communicates the first and second intake passages 5a, 5b with each other. The passage area Ac of the communication passage 11 is set to be equal to or larger than the minimum passage area A of each intake passage 5a, 5b (Ac≧A), so that pressure waves can be propagated effectively with less attenuation. I have to. Although not shown in the figure, there is a connection between the throttle valve 8 of the main intake passage 5 and the branch part (communication passage 11) to prevent surging of intake air during transient operation such as during acceleration or deceleration of the engine. It is preferable to provide a surge tank with a predetermined volume to prevent surges and ensure good response of the fuel.

また、12aおよび12bはそれぞれ一端が排
気ポート13,13を介して各気筒1A,1Bの
燃焼室2,2に連通して燃焼室2からの排気ガス
を排出する第1および第2排気通路であつて、該
各排気通路12a,12bの下流端はそれぞれ主
排気通路12に集合されたのち大気に開口してお
り、該主排気通路12の途中には排気ガスを浄化
するための触媒装置14が介設されている。尚、
15は吸気ポート9を開閉する吸気弁、16は排
気ポート13を開閉する排気弁である。
Further, 12a and 12b are first and second exhaust passages, each of which has one end connected to the combustion chambers 2, 2 of each cylinder 1A, 1B via exhaust ports 13, 13, and discharges exhaust gas from the combustion chamber 2. The downstream ends of each of the exhaust passages 12a and 12b are respectively combined into the main exhaust passage 12 and then opened to the atmosphere, and a catalyst device 14 for purifying exhaust gas is provided in the middle of the main exhaust passage 12. is interposed. still,
15 is an intake valve that opens and closes the intake port 9, and 16 is an exhaust valve that opens and closes the exhaust port 13.

一方、17は排気ターボ過給機であつて、該過
給機17は、主排気通路12の触媒装置14上流
に配設され排気ガス流によつて回転駆動されるタ
ービン17aと、主吸気通路5のエアフローメー
タ7とスロツトル弁8との間に配設され上記ター
ビン17aによつて駆動されるブロア17bとを
備え、該ブロア17bによつて吸気を各気筒1
A,1Bに過給するものである。
On the other hand, 17 is an exhaust turbo supercharger, and the supercharger 17 includes a turbine 17a disposed upstream of the catalyst device 14 in the main exhaust passage 12 and rotationally driven by the exhaust gas flow, and a main intake passage. The blower 17b is disposed between the air flow meter 7 of No. 5 and the throttle valve 8 and is driven by the turbine 17a.
This supercharges A and 1B.

さらに、18は一端が主排気通路12のタービ
ン17a上流に、他端が該タービン17a下流に
それぞれ開口してタービン17aをバイパスする
バイパス通路であつて、該バイパス通路18に
は、上記ブロア17b下流の主吸気通路5の吸気
圧力(過給圧)に応じて作動制御されるウエイス
トゲート弁19が介設されており、エンジン回転
数の増大により過給圧が設定値以上になるとウエ
イストゲート弁19を開作動せしめて、排気ガス
流をバイパス通路18によつてタービン17aを
バイパスして流下させることにより、過給圧を設
定値を越えないよう一定に保持するように構成さ
れている。すなわち、第5図に示すように、上記
過給圧つまり過給機17(ブロア17b)下流の
吸気圧力Pinはエンジン回転数が増大するに従つ
て比較的急勾配でもつて一次的に増大したのち、
所定回転数以上になると上記ウエイストゲート弁
19の作動により設定値に保持される特性になる
ように設定されている。これに対し、タービン1
7a上流の排気圧力つまり排気ポート13に作用
する排気圧力Pexはエンジン回転数が増大するに
従つて徐々に増大し、所定回転数を越えると上記
設定上限過給圧よりも大きい圧力となる特性を示
す。このため、第5図の如く、上記吸気圧力Pin
が排気圧力Pexよりも大きくなるエンジン運転域
例えばエンジン回転数で2000〜4000rmpのエンジ
ン低回転領域と、逆に排気圧力Pexが吸気圧力
Pinよりも大きくなるエンジン運転例えばエンジ
ン回転数で5000rpm以上のエンジン高回転領域と
が生じることになる。
Further, reference numeral 18 denotes a bypass passage which has one end opened upstream of the turbine 17a of the main exhaust passage 12 and the other end opened downstream of the turbine 17a to bypass the turbine 17a. A waste gate valve 19 is provided which is operated and controlled according to the intake pressure (supercharging pressure) in the main intake passage 5 of the engine. is opened to cause the exhaust gas flow to flow down through the bypass passage 18, bypassing the turbine 17a, thereby maintaining the supercharging pressure at a constant level so as not to exceed a set value. That is, as shown in FIG. 5, the supercharging pressure, that is, the intake pressure Pin downstream of the supercharger 17 (blower 17b), temporarily increases as the engine speed increases, even at a relatively steep slope, and then increases. ,
The characteristics are set such that when the rotation speed exceeds a predetermined value, the waste gate valve 19 is operated to maintain the set value. On the other hand, turbine 1
The exhaust pressure upstream of 7a, that is, the exhaust pressure Pex acting on the exhaust port 13, gradually increases as the engine speed increases, and when it exceeds a predetermined speed, the pressure becomes higher than the set upper limit supercharging pressure. show. Therefore, as shown in Figure 5, the above intake pressure Pin
In the engine operating range where Pex is greater than the exhaust pressure Pex, for example, in the low engine speed region of 2000 to 4000 rpm, the exhaust pressure Pex is greater than the intake pressure.
When the engine is operated at a speed higher than Pin, for example, a high engine speed region of 5000 rpm or more will occur.

加えて、第1気筒1Aと、該第1気筒1Aの吸
気ポート9閉口(吸気弁16の閉弁)後に最も早
く吸気ポート9を開く他の気筒としての第2気筒
1Bとの間の上記連通路11を介しての吸気通路
長さL(つまり両気筒1A,1Bの吸気ポート9,
9間の連通長さ)は、連通路11の通路長さlcと
該連通路11下流の第1、第2吸気通路5a,5
bの各通路長さl、lとを加算したもの(L=lc
+2l)であり、吸気圧力Pinが排気圧力Pexより
も大きくなるエンジン運転域で両気筒1A,1B
間で吸気慣性効果を得るように上記()式によ
り求められた値に設定されている。具体的には、
吸気ポート開口期間θ(吸気弁の開弁期間)=230
〜270゜、無効期間θ0=30゜、エンジン回転数N=
2000〜4000rpm、音速a=376m/s(80℃で)と
した場合、()式よりL=1.88〜5.01mとなる。
In addition, the above connection between the first cylinder 1A and the second cylinder 1B, which is the other cylinder whose intake port 9 is opened earliest after the intake port 9 of the first cylinder 1A is closed (the intake valve 16 is closed). Intake passage length L via passage 11 (that is, intake port 9 of both cylinders 1A, 1B,
9) is the passage length lc of the communication passage 11 and the first and second intake passages 5a, 5 downstream of the communication passage 11.
The sum of the path lengths l and l of b (L=lc
+2l), and in the engine operating range where the intake pressure Pin is greater than the exhaust pressure Pex, both cylinders 1A and 1B
The value is set to the value determined by the above equation () so as to obtain the intake inertia effect between the two. in particular,
Intake port opening period θ (intake valve opening period) = 230
~270°, invalid period θ 0 = 30°, engine speed N =
When 2000 to 4000 rpm and sound velocity a = 376 m/s (at 80°C), L = 1.88 to 5.01 m from equation ().

次に、上記第1実施例の作用について第6図に
より説明するに、第5図に示すように過給機17
(ブロア17b)下流の吸気圧力Pin(過給圧)が
排気ポート13に作用する排気圧力Pexよりも大
きくなるエンジン運転域、つまりノツキングが発
生しやすいエンジン低回転運転領域(例えば2000
〜4000rpm)には、上記Pin>Pexの関係から、
一方の気筒例えば第1気筒1Aの吸気ポート9閉
口時に該吸気ポート9近傍に発生した閉口時圧縮
波は、両気筒1A,1B間の通路長さLを上記
()式により求められる値に設定したことによ
り、第1吸気通路5a→連通路11→第2吸気通
路5bを経て、他の気筒である第2気筒1Bの吸
気ポート9の開口直後に有効に伝播される。その
結果、この閉口時圧縮波により、吸気が吸気行程
初期にある第2気筒1Bの吸気ポート9より燃焼
室2内へ押し込まれて過給が行われることになる
(吸気慣性効果)。また、同様に、第1気筒1Aに
おいても、その吸気行程初期の吸気ポート9に対
し第2気筒1Bから閉口時圧縮波が伝播して過給
が行われる。
Next, the operation of the first embodiment will be explained with reference to FIG. 6. As shown in FIG.
(Blower 17b) The engine operating range where the downstream intake pressure Pin (supercharging pressure) is larger than the exhaust pressure Pex acting on the exhaust port 13, that is, the engine low-speed operating range where knocking is likely to occur (for example, 2000
~4000rpm), from the above relationship of Pin>Pex,
When one cylinder, for example, the intake port 9 of the first cylinder 1A, is closed, the compression wave generated near the intake port 9 is determined by setting the passage length L between both cylinders 1A and 1B to the value determined by the above equation (). As a result, the air is effectively propagated through the first intake passage 5a → the communication passage 11 → the second intake passage 5b immediately after the intake port 9 of the second cylinder 1B, which is another cylinder, is opened. As a result, this compression wave at closing forces the intake air into the combustion chamber 2 from the intake port 9 of the second cylinder 1B at the beginning of the intake stroke, thereby performing supercharging (intake inertia effect). Similarly, in the first cylinder 1A, the closing compression wave propagates from the second cylinder 1B to the intake port 9 at the beginning of the intake stroke, thereby performing supercharging.

したがつて、このように気筒1A,1B相互間
での吸気慣性効果による過給効果により、各気筒
1A,1Bの吸気ポート9開口直後つまり吸、排
気弁のオーバラツプ時での吸気圧力は上記Pinに
加えて伝播した閉口時圧縮波の圧力分が上乗せさ
れ、排気圧力Pexとの差圧が大巾に増大すること
により、吸気の吹き抜けが著しく促進されること
になる。この結果、吸、排気弁のオーバラツプ期
間を短く抑えながらも掃気作用を向上でき、よつ
て良好な燃費性能を確保しながらノツキングの発
生を有効に防止することができる。
Therefore, due to the supercharging effect due to the intake inertia effect between the cylinders 1A and 1B, the intake pressure immediately after the opening of the intake port 9 of each cylinder 1A and 1B, that is, when the intake and exhaust valves overlap, is equal to the above Pin. In addition to this, the pressure of the propagated compression wave at the time of closing is added, and the differential pressure with the exhaust pressure Pex increases significantly, thereby significantly promoting the blow-through of intake air. As a result, it is possible to improve the scavenging action while keeping the overlap period of the intake and exhaust valves short, thereby effectively preventing the occurrence of knocking while ensuring good fuel efficiency.

また、その場合、吸気慣性効果を得るための圧
力波伝播径路である第1、第2吸気通路5a,5
bおよび連通路11(主吸気通路5の分岐部)は
スロツトル弁8下流に位置するので、該スロツト
ル弁8によつて圧力波(圧縮波)が減衰されるこ
とがなく、しかも上記連通路11の連通面積Ac
が各吸気通路5a,5bの最小通路面積A以上で
あることにより、圧力波の伝播の抵抗が小さく、
よつて上記吸気慣性効果を有効に発揮できる。
In that case, the first and second intake passages 5a and 5, which are pressure wave propagation paths for obtaining the intake inertia effect,
b and the communication passage 11 (branching part of the main intake passage 5) are located downstream of the throttle valve 8, so the pressure waves (compression waves) are not attenuated by the throttle valve 8, and the communication passage 11 is located downstream of the throttle valve 8. Communication area Ac
is greater than or equal to the minimum passage area A of each intake passage 5a, 5b, so that the resistance to the propagation of pressure waves is small;
Therefore, the above-mentioned intake inertia effect can be effectively exerted.

さらに、燃料供給装置としての燃料噴射ノズル
10は、連通路11下流の各吸気通路5a,5b
に設けられているので、吸気通路長さが長くなる
ことによる燃料の応答性の悪化を防止して、良好
な燃料応答性を確保できる。
Furthermore, the fuel injection nozzle 10 as a fuel supply device includes each intake passage 5a, 5b downstream of the communication passage 11.
Therefore, it is possible to prevent deterioration of fuel responsiveness due to an increase in the length of the intake passage and ensure good fuel responsiveness.

また、上記吸気慣性効果による過給効果は、両
気筒1A,1B間の通路長さLを上述の如く設定
することによつて得られるので、既存の吸気系の
僅かな設計変更で済み、構造が極めて簡単なもの
であり、よつて容易にかつ安価に実施することが
できる。
In addition, the supercharging effect due to the intake inertia effect can be obtained by setting the passage length L between the two cylinders 1A and 1B as described above, so a slight design change to the existing intake system is required, and the structure is extremely simple and therefore can be implemented easily and at low cost.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記第1実施例では2気筒4サイク
ルエンジンに適用した例を示したが、本発明はそ
の他各種多気筒エンジンに対しても適用できるも
のである。例えば、その一例として第3図に4気
筒4サイクルエンジンに適用した第2実施例を示
す(尚、第1実施例と同一の部分については同一
の符号を付してその説明を省略する)。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, although the first embodiment described above shows an example in which the present invention is applied to a two-cylinder four-stroke engine, the present invention can also be applied to various other multi-cylinder engines. For example, as an example, FIG. 3 shows a second embodiment applied to a four-cylinder, four-stroke engine (the same parts as in the first embodiment are given the same reference numerals and their explanations are omitted).

本例の場合、各気筒1A〜1Dに各々吸気ポー
ト9を介して連通する第1〜第4吸気通路5a〜
5dは、主吸気通路5のスロツトル弁8下流の分
岐部11′において分岐連通しており、分岐部1
1から各気筒の吸気ポート9までの吸気通路5
a,5b,5c,5dの各長さは等長に設定され
ている。さらに、1−3−4−2の点火順序にお
ける任意の気筒とその気筒の吸気ポート閉口後最
も早く吸気ポートを開く他の気筒との関係にある
第1気筒1Aと第4気筒1D、および第2気筒1
Bと第3気筒1Cにおける各気筒間通路長さ
L1-4、L2-3はそれぞれ上記()式により求めら
れた値に設定されており、ノツキングが問題とな
るエンジン運転域で集中的に強い過給効果を得る
ように上記L1-4とL2-3とは図示の如くほぼ同一に
設定することが好ましい。したがつて、第7図に
示すように、吸気慣性効果の作用態様は、第1気
筒→第4気筒、第3気筒→第2気筒、第4気筒→
第1気筒、第2気筒→第3気筒へと順次作用して
過給が行われ、掃気の向上が図られる。
In this example, the first to fourth intake passages 5a to 5 communicate with the cylinders 1A to 1D via intake ports 9, respectively.
5d is connected to a branch 11' downstream of the throttle valve 8 of the main intake passage 5, and is connected to the branch 11' of the main intake passage 5.
Intake passage 5 from 1 to intake port 9 of each cylinder
The lengths of a, 5b, 5c, and 5d are set to be equal. Furthermore, the first cylinder 1A, the fourth cylinder 1D, and the fourth cylinder 1D, which are in the relationship between any cylinder in the 1-3-4-2 ignition order and the other cylinder whose intake port opens earliest after the intake port of that cylinder is closed, 2 cylinder 1
Inter-cylinder passage length between B and third cylinder 1C
L 1-4 and L 2-3 are each set to the values determined by the above formula (), and the above L 1- 4 and L 2-3 are preferably set to be substantially the same as shown in the figure. Therefore, as shown in FIG. 7, the mode of action of the intake inertia effect is as follows: 1st cylinder → 4th cylinder, 3rd cylinder → 2nd cylinder, 4th cylinder →
Supercharging is performed by acting sequentially on the first cylinder, second cylinder, and third cylinder, thereby improving scavenging.

また、第4図は直列6気筒4サイクルエンジン
に適用した第3実施例を示す。本例の場合、各気
筒1A〜1Fの吸気通路5a〜5fは、主吸気通
路5のスロツトル弁8下流で分岐しかつ連通路1
1″で連通されており、それぞれ等長に設定され
ている。また、1−5−3−6−2−4の点火順
序における任意の気筒とその気筒の吸気ポート閉
口後最も早く吸気ポートを開く他の気筒との関係
にある第1気筒1Aと第6気筒1F、第2気筒1
Bと第5気筒1E、第3気筒1Cと第4気筒1D
に各気筒間通路長さは上記()式で求められた
値に等しく設定されている。したがつて、第8図
に示すように、吸気慣性効果は、第1気筒→第6
気筒、第5気筒→第2気筒、第3気筒→第4気
筒、第6気筒→第1気筒、第2気筒→第5気筒、
第4気筒→第3気筒へと順次作用して行き、各気
筒において掃気の向上が図られる。
Further, FIG. 4 shows a third embodiment applied to an in-line six-cylinder four-stroke engine. In this example, the intake passages 5a to 5f of each cylinder 1A to 1F are branched downstream of the throttle valve 8 of the main intake passage 5, and the communication passage 1
1", and are set to have the same length. Also, in the ignition order of 1-5-3-6-2-4, any cylinder and the intake port of that cylinder are connected to each other at the earliest after the intake port is closed. 1st cylinder 1A, 6th cylinder 1F, and 2nd cylinder 1 in relation to other cylinders that open
B and 5th cylinder 1E, 3rd cylinder 1C and 4th cylinder 1D
The length of the passage between each cylinder is set equal to the value determined by the above equation (). Therefore, as shown in Fig. 8, the intake inertia effect changes from the 1st cylinder to the 6th cylinder.
Cylinder, 5th cylinder → 2nd cylinder, 3rd cylinder → 4th cylinder, 6th cylinder → 1st cylinder, 2nd cylinder → 5th cylinder,
It acts sequentially from the 4th cylinder to the 3rd cylinder, and scavenging is improved in each cylinder.

さらに、上記各実施例では、各気筒に対し吸気
ポートを介して単一の吸気通路を連通させたが、
低負荷用と高負荷用との2つの吸気通路を各々独
立して連通させるようにしたものにも適用でき、
この場合、低負荷用吸気系統又は高負荷用吸気系
統の何れか一方で吸気慣性効果を得るように気筒
間の通路長さを設定すればよく、好ましくは高負
荷用吸気通路は低負荷用吸気通路よりも通路面積
が大きく圧力波の減衰を小さく抑えることができ
るので、高負荷用吸気系統での気筒間設定が有利
である。
Furthermore, in each of the above embodiments, a single intake passage communicates with each cylinder via the intake port.
It can also be applied to systems where two intake passages, one for low load and one for high load, are communicated independently.
In this case, the length of the passage between the cylinders may be set so as to obtain the intake inertia effect in either the low-load intake system or the high-load intake system, and preferably the high-load intake passage is used for the low-load intake system. Since the area of the passage is larger than that of the passage and the attenuation of pressure waves can be kept small, it is advantageous to set it between cylinders in a high-load intake system.

さらにまた、上記各実施例では過給機として排
気ターボ過給機17を採用したが、その他過給ポ
ンプ等公知の各種過給機が採用可能である。
Furthermore, in each of the above embodiments, the exhaust turbo supercharger 17 is used as the supercharger, but other various known superchargers such as a supercharging pump can be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図および第
2図は第1実施例を示す全体構成説明図および同
要部概略図、第3図は第2実施例を示す第1図相
当図、第4図は第3実施例を示す第1図相当図、
第5図はエンジン回転数に対する吸気圧力および
排気圧力の特性を示す図、第6図、第7図および
第8図はそれぞれ第1実施例、第2実施例および
第3実施例における吸気慣性効果の作用態様を示
す説明図である。 1A〜1F……気筒、5……主吸気通路、5a
〜5f……吸気通路、8……スロツトル弁、9…
…吸気ポート、10……燃料噴射ノズル、12…
…主排気通路、12a〜12f……排気通路、1
3……排気ポート、17……排気ターボ過給機、
19……ウエイストゲート弁。
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are an explanatory diagram of the overall configuration and a schematic diagram of the main parts of the first embodiment, and FIG. 3 is a diagram equivalent to FIG. 1 showing the second embodiment. , FIG. 4 is a diagram corresponding to FIG. 1 showing the third embodiment,
FIG. 5 is a diagram showing the characteristics of intake pressure and exhaust pressure with respect to engine speed, and FIGS. 6, 7, and 8 are intake inertia effects in the first, second, and third embodiments, respectively. FIG. 1A to 1F...Cylinder, 5...Main intake passage, 5a
~5f...Intake passage, 8...Throttle valve, 9...
...Intake port, 10...Fuel injection nozzle, 12...
...Main exhaust passage, 12a to 12f...Exhaust passage, 1
3...Exhaust port, 17...Exhaust turbo supercharger,
19...Wastegate valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気ポートを介して各気筒に連通する吸気通
路と、排気ポートを介して各気筒に連通する排気
通路と、上記吸気通路に設けられた過給機とを備
えた多気筒エンジンにおいて、上記過給機下流の
吸気通路において任意の気筒とその気筒の吸気ポ
ート閉口後最も早く吸気ポートを開く他の気筒と
の間の吸気通路長さを、過給機下流の吸気圧力が
排気ポートに作用する排気圧力よりも大きくなる
エンジン運転域で、一つの気筒の吸気ポート閉口
時に該吸気ポートに発生する圧縮波が上記他の気
筒の吸気ポートの開口直後に伝播して過給を行う
ように設定したことを特徴とする多気筒エンジン
の吸気装置。
1. In a multi-cylinder engine equipped with an intake passage communicating with each cylinder via an intake port, an exhaust passage communicating with each cylinder via an exhaust port, and a supercharger provided in the intake passage, In the intake passage downstream of the charger, the length of the intake passage between a given cylinder and the other cylinder whose intake port opens earliest after the intake port of that cylinder is closed is determined by the intake pressure downstream of the supercharger acting on the exhaust port. In the engine operating range where the pressure is higher than the exhaust pressure, the compression wave generated at the intake port of one cylinder when the intake port of that cylinder is closed is set so that it propagates immediately after the intake port of the other cylinder opens to perform supercharging. This is an intake system for a multi-cylinder engine.
JP58093112A 1983-05-25 1983-05-25 Suction device of multicylinder engine Granted JPS59218333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093112A JPS59218333A (en) 1983-05-25 1983-05-25 Suction device of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093112A JPS59218333A (en) 1983-05-25 1983-05-25 Suction device of multicylinder engine

Publications (2)

Publication Number Publication Date
JPS59218333A JPS59218333A (en) 1984-12-08
JPH0128209B2 true JPH0128209B2 (en) 1989-06-01

Family

ID=14073437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093112A Granted JPS59218333A (en) 1983-05-25 1983-05-25 Suction device of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS59218333A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663455B2 (en) * 1985-04-10 1994-08-22 マツダ株式会社 Engine intake system
JPH0726539B2 (en) * 1985-04-30 1995-03-29 マツダ株式会社 Multi-cylinder engine intake system
JPH0663456B2 (en) * 1985-10-29 1994-08-22 マツダ株式会社 Engine intake system
JP2673426B2 (en) * 1987-05-29 1997-11-05 マツダ株式会社 Engine with mechanical supercharger

Also Published As

Publication number Publication date
JPS59218333A (en) 1984-12-08

Similar Documents

Publication Publication Date Title
JP2863927B2 (en) Engine intake system
JPH1089106A (en) Engine with turbo-supercharger and power unit of vehicle loaded with the same engine
JPS6211169B2 (en)
JPH0128209B2 (en)
JPH0452377B2 (en)
JPS6323370B2 (en)
JPH0128208B2 (en)
JPH0559249B2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JP2601655B2 (en) Intake device for supercharged engine
JPH01104928A (en) Intake device for engine
JPH0232822Y2 (en)
JPH0212272Y2 (en)
JPS60222523A (en) Suction device of engine
JPH0536610B2 (en)
JPH0517378B2 (en)
JPS61218720A (en) Intake device of engine with supercharger
JPH01182525A (en) Valve timing control device for engine
JPS60222524A (en) Suction device of engine
JPS5979035A (en) Intake apparatus for engine
JPS5979037A (en) Intake apparatus for engine
JPS5979036A (en) Intake apparatus for engine
JPH0452375B2 (en)
JPS6340251B2 (en)
JPH0340214B2 (en)