JPH0452375B2 - - Google Patents

Info

Publication number
JPH0452375B2
JPH0452375B2 JP19061882A JP19061882A JPH0452375B2 JP H0452375 B2 JPH0452375 B2 JP H0452375B2 JP 19061882 A JP19061882 A JP 19061882A JP 19061882 A JP19061882 A JP 19061882A JP H0452375 B2 JPH0452375 B2 JP H0452375B2
Authority
JP
Japan
Prior art keywords
intake
passage
load
cylinder
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19061882A
Other languages
Japanese (ja)
Other versions
JPS5979038A (en
Inventor
Hideo Shiraishi
Haruo Okimoto
Toshimichi Akagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57190618A priority Critical patent/JPS5979038A/en
Publication of JPS5979038A publication Critical patent/JPS5979038A/en
Publication of JPH0452375B2 publication Critical patent/JPH0452375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/116Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に低
負荷用と高負荷用との2系統の独立した吸気通路
を備えた多気筒エンジンにおいて吸気通路内に発
生する吸気圧力波を利用してエンジンの中回転域
から高回転域に亘つて過給効果を得るようにした
ものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an intake system for an engine, and particularly to an intake passage in a multi-cylinder engine equipped with two independent intake passages, one for low load and one for high load. This relates to an engine that uses intake pressure waves generated within the engine to obtain a supercharging effect over the medium to high rotation range of the engine.

(従来の技術) 一般に、多気筒エンジンにおいて、各気筒へ独
立して開口する2系統の低負荷用吸気通路と高負
荷用吸気通路とを有する吸気通路を備え、該吸気
通路は、少なくとも低負荷用吸気通路を流れる吸
気量を変化させる1次弁と、高負荷用吸気通路を
流れる吸気量を変化させる2次弁とを有してお
り、エンジンの低負荷時には、上記1次弁のみを
開作動して通路面積の狭い低負荷用吸気通路のみ
から吸気を各気筒に供給することにより、吸気流
速を速めて燃焼安定性を向上させる一方、エンジ
ンの高負荷時には、上記2次弁をも開作動して高
負荷用吸気通路からも吸気の供給を行うことによ
り、充填効率を高めて出力向上を図るようにし
た、いわゆるデユアルインダクシヨン方式の吸気
システムはよく知られている。
(Prior Art) Generally, a multi-cylinder engine is provided with an intake passage having two systems, a low-load intake passage and a high-load intake passage, which open independently to each cylinder, and the intake passage has at least a low-load intake passage. It has a primary valve that changes the amount of intake air flowing through the intake passage for normal use, and a secondary valve that changes the amount of intake air that flows through the intake passage for high loads.When the engine is under low load, only the primary valve is opened. By supplying intake air to each cylinder only from the low-load intake passage, which has a narrow passage area, it increases the intake flow rate and improves combustion stability.At the same time, when the engine is under high load, the secondary valve is also opened. A so-called dual-induction type intake system is well known, in which intake air is supplied from a high-load intake passage as well, thereby increasing filling efficiency and increasing output.

ところで、従来、エンジンの充填効率向上、出
力向上を図るべく吸気通路に過給機を設けて吸気
を過給する技術はよく知られているが、過給機装
備のため、構造が大がかりとなるとともにコスト
アツプとなる嫌いがあつた。
By the way, the technology of supercharging the intake air by installing a supercharger in the intake passage in order to improve the filling efficiency and output of the engine is well known, but since it is equipped with a supercharger, the structure is large-scale. At the same time, there was a dislike of increasing costs.

また、従来、エンジンの吸気通路内に発生する
吸気圧力波により過給効果を得る技術として、実
公昭45−2321号公報に開示されているように、単
一気筒エンジンにおいて、吸気管を寸法の異なる
2本の通路に分け、かつそれぞれ別の吸気ポート
を有し、エンジン高回転時は2吸気通路を用い、
低回転時には閉塞位置の遅い方の吸気通路を閉止
し吸気を早目に閉塞することにより、吸気管の寸
法やエンジン回転数の関数である吸気の最大圧力
時点での吸気の閉塞による過給作用を利用して広
範囲のエンジン回転域に亘つて好適な充填効率を
得るようにしたものが提案されている。
In addition, as disclosed in Japanese Utility Model Publication No. 45-2321, a technique for obtaining a supercharging effect using intake pressure waves generated in the intake passage of an engine has conventionally been used in a single-cylinder engine to reduce the size of the intake pipe. It is divided into two different passages, each with a separate intake port, and when the engine is running at high speeds, the two intake passages are used.
At low engine speeds, by closing the intake passage with the slower closing position and occluding the intake air earlier, the supercharging effect is achieved by occluding the intake air at the point of maximum intake pressure, which is a function of the intake pipe dimensions and engine speed. It has been proposed to obtain suitable charging efficiency over a wide range of engine rotations by utilizing this.

(発明が解決しようとする課題) しかし、このものは、単一気筒のエンジンに対
するものであつて、吸気通路内に発生する吸気圧
力波をどのように利用するのか、その構成、作用
が定かでなく、直ちに実用に供し得ないものであ
つた。
(Problem to be solved by the invention) However, this device is for a single-cylinder engine, and its structure and operation are unclear, such as how to utilize the intake pressure waves generated in the intake passage. Therefore, it could not be put into practical use immediately.

そこで、本発明者等は、エンジンの吸気特性を
検討するに、 (i) 吸気ポート開口時には燃焼室の残留排気ガス
の圧力によつて吸気が圧縮され、吸気通路内の
吸気ポート部分に圧縮波が発生しており、この
開口時圧縮波は、近年の市販車では騒音低減が
排気ガス浄化のためにエンジン排圧が高くなつ
ていることから特に強く発生すること (ii) 吸気ポート閉口時には吸気の慣性により吸気
が圧縮されて吸気通路内の吸気ポート部分に圧
縮波が発生すること を知見した。
Therefore, when examining the intake characteristics of the engine, the present inventors found that (i) When the intake port is opened, the intake air is compressed by the pressure of the residual exhaust gas in the combustion chamber, and a compression wave is generated at the intake port part in the intake passage. This compression wave occurs particularly strongly when the intake port is closed because the engine exhaust pressure has been increased in recent commercial vehicles to reduce noise and purify exhaust gas. (ii) When the intake port is closed, the compression wave It was discovered that the intake air is compressed due to the inertia of the engine, and a compression wave is generated at the intake port in the intake passage.

このことから、本発明は、上記の如き2系統の
独立した吸気通路を備えた多気筒エンジンにおい
て、一つの気筒での上記(i)の開口時圧縮波を他気
筒の特に吸気の吹き返しが生じる吸気行程終期に
作用せしめれば効果的に過給効果が得られること
(以下、排気干渉効果という)、及び一つの気筒で
の上記(ii)の閉口時圧縮波を他気筒の同じく吸気行
程終期に作用せしめれば効果的に過給効果が得ら
れること(以下、吸気慣性効果という)に着目
し、この気筒間干渉効果(排気干渉効果及び吸気
慣性効果)を利用することによつてエンジンの充
填効率向上を意図するものである。
Therefore, in a multi-cylinder engine equipped with two independent intake passages as described above, the present invention is capable of converting the compression wave (i) in one cylinder upon opening into other cylinders, in particular, causing intake air to blow back. If the supercharging effect is applied at the end of the intake stroke, the supercharging effect can be effectively obtained (hereinafter referred to as the exhaust interference effect). Focusing on the fact that a supercharging effect can be effectively obtained by making it work on the engine (hereinafter referred to as the intake inertia effect), the engine This is intended to improve filling efficiency.

すなわち、本発明の目的は、上記の如き2系統
の吸気通路を備えた多気筒エンジンの吸気系を、
低負荷用及び高負荷用吸気系統の一方においてエ
ンジン高回転域で過給効果の強い排気干渉効果を
得、他方においてそれよりも低回転域で吸気慣性
効果を得るように設定することにより、過給機等
を用いることなく既存の吸気系の僅かな設計変更
による簡単な構成でもつて、エンジンの中回転域
から高回転域に亘つて充填効率を高めて出力向上
を有効に図らんとするものである。
That is, an object of the present invention is to provide an intake system for a multi-cylinder engine having two intake passages as described above.
By setting one of the low-load and high-load intake systems to obtain an exhaust interference effect with a strong supercharging effect in the high engine speed range, and the other to obtain an intake inertia effect in a lower engine speed range, This system aims to effectively improve output by increasing filling efficiency from the mid- to high-speed range of the engine with a simple configuration by making slight design changes to the existing intake system without using a feeder or the like. It is.

(課題を解決するための手段) この目的を達成するため、本発明の解決手段
は、各気筒毎に互いに独立した低負荷用吸気通路
と高負荷用吸気通路とを有するとともに該各気筒
の低負荷用吸気通路と高負荷用吸気通路とを各気
筒の燃焼室に互いに独立した低負荷用吸気ポート
及び高負荷用吸気ポートを介して開口させた吸気
通路を備え、該吸気通路は、少なくとも上記低負
荷用吸気通路を流れる吸気量を変化させる1次弁
と、上記高負荷用吸気通路を流れる吸気量を変化
させる2次弁とを有するエンジンの吸気装置を前
提とする。そして、上記1次弁及び2次弁の下流
において上記各気筒の低負荷用吸気通路同士及び
高負荷用吸気通路同士をそれぞれ各吸気通路の最
小通路断面積以上の通路断面積を持つ連通路で互
いに連通する。上記高負荷用吸気通路及び低負荷
用吸気通路のいずれか一方の最小通路断面積及び
燃焼室への開口断面積を他方よりも大きく設定す
る。上記高負荷用吸気ポート及び低負荷用吸気ポ
ートのうち燃焼室への開口断面積が大きい方の吸
気ポートの開口時期を他方の吸気ポートの開口時
期より以早に設定する。さらに、上記高負荷用吸
気通路及び低負荷用吸気通路のうち最小通路断面
積が大きい方の吸気系統において上記連通路を介
しての各気筒間の吸気通路の通路長さを、5000〜
7000rpmのエンジンの高回転時、一つの気筒の吸
気ポートの開口時に生じる圧縮波が吸気行程終期
にある他の気筒の吸気ポートに伝播して過給を行
うように設定する。また、上記他方の吸気系統に
おいて上記連通路を介しての各気筒間の吸気通路
の通路長さを、上記5000〜7000rpmの間で設定さ
れた基準回転数よりも1000〜2000rpm低回転側
で、一つの気筒の吸気ポートの閉口時に生じる圧
縮波が吸気行程終期にある他の気筒の吸気ポート
に伝播して過給を行うように設定するものとす
る。
(Means for Solving the Problem) In order to achieve this object, the solving means of the present invention has a low-load intake passage and a high-load intake passage independent of each other for each cylinder, and a low-load intake passage for each cylinder. A load intake passage and a high load intake passage are opened into the combustion chamber of each cylinder through independent low load intake ports and high load intake ports, and the intake passage has at least the above-mentioned The present invention is based on an engine intake system having a primary valve that changes the amount of intake air flowing through the low-load intake passage and a secondary valve that changes the amount of intake air that flows through the high-load intake passage. Further, downstream of the primary valve and the secondary valve, the low-load intake passages of each cylinder and the high-load intake passages of each cylinder are connected by communication passages having a passage cross-sectional area larger than the minimum passage cross-sectional area of each intake passage. communicate with each other. The minimum passage cross-sectional area and the opening cross-sectional area to the combustion chamber of either the high-load intake passage or the low-load intake passage are set larger than the other. The opening timing of the intake port having a larger opening cross-sectional area to the combustion chamber among the high-load intake port and the low-load intake port is set to be earlier than the opening timing of the other intake port. Furthermore, in the intake system of the high-load intake passage and the low-load intake passage, whichever has a larger minimum passage cross-sectional area, the passage length of the intake passage between each cylinder via the communication passage is set to 5000 to 5000.
When the engine rotates at a high speed of 7,000 rpm, the compression wave generated when the intake port of one cylinder opens will propagate to the intake ports of other cylinders at the end of the intake stroke to perform supercharging. In addition, in the other intake system, the passage length of the intake passage between each cylinder via the communication passage is set at a rotation speed 1000 to 2000 rpm lower than the reference rotation speed set between 5000 and 7000 rpm, It is assumed that the compression wave generated when the intake port of one cylinder is closed propagates to the intake port of another cylinder at the end of the intake stroke to perform supercharging.

(作用) これにより、本発明では、高出力を要する5000
〜7000rpmのエンジン高回転時には、2次弁の開
作動により低負荷用吸気通路と共に高負荷用吸気
通路も開かれて、各気筒に対し、各高負荷用吸気
通路からも各低負荷用吸気通路とは独立して吸気
の供給が行われる。その際、最小通路断面積が大
きくて早く開口する側の吸気系統において一つの
気筒の吸気ポートの開口時に該吸気ポート付近に
発生した開口断面積は、連通路を経て吸気行程終
期にある他の気筒の吸気ポートに伝播する。その
結果、この開口時圧縮波により、吸気が吸気行程
終期にある他の気筒の吸気ポートより燃焼室内へ
押し込まれて過給が行われることになる(高回転
域での排気干渉効果)。
(Function) As a result, in the present invention, the 5000
When the engine is running at high speeds of ~7000rpm, the secondary valve opens to open both the low-load intake passage and the high-load intake passage. Intake air is supplied independently of the In this case, in the intake system where the minimum passage cross-sectional area is large and opens quickly, when the intake port of one cylinder opens, the opening cross-sectional area generated near the intake port passes through the communication passage to the other cylinder at the end of the intake stroke. Propagates to the intake port of the cylinder. As a result, this opening compression wave forces the intake air into the combustion chamber from the intake ports of other cylinders at the end of the intake stroke, resulting in supercharging (exhaust interference effect in the high rotation range).

一方、上記5000〜7000rpmの基準回転数よりも
1000〜2000rpm低回転側では、他方の吸気系統に
おいて、一つの気筒の吸気ポートの閉口時に該吸
気ポート付近に発生した閉口時圧縮波は、連通路
を経て、同じく上記吸気行程終期にある他の気筒
の吸気ポートに伝播されて過給が行われる(中回
転域での吸気慣性効果)。
On the other hand, compared to the reference rotation speed of 5000 to 7000 rpm above,
On the low speed side of 1000 to 2000 rpm, in the other intake system, when the intake port of one cylinder is closed, the compression wave generated near the intake port passes through the communication path to the other cylinder, which is also at the end of the intake stroke. It is propagated to the intake port of the cylinder and supercharging is performed (intake inertia effect in the middle rotation range).

その場合、排気干渉効果を得る側の吸気系統で
の圧力波伝播経路である吸気通路は、他方の吸気
系統での吸気通路よりも通路断面積及び燃焼室へ
の開口断面積が大であることにより、圧力波の伝
播の抵抗が小さく、上記排気干渉効果を有効に発
発揮して、特に高出力を要するエンジン高回転時
(5000〜7000rpm)での出力要求に合致し有利で
ある。
In that case, the intake passage, which is the pressure wave propagation path in the intake system on which the exhaust interference effect occurs, must have a larger passage cross-sectional area and opening cross-sectional area to the combustion chamber than the intake passage in the other intake system. Therefore, the resistance to the propagation of pressure waves is small, and the exhaust interference effect described above is effectively exerted, which is advantageous because it meets the output requirements particularly at high engine speeds (5000 to 7000 rpm), which require high output.

また、上記連通路は、それぞれ1次弁及び2次
弁の下流に位置し、しかも該各連通路の通路断面
積を各吸気通路の最小通路断面積以上としたの
で、上記各弁によつて圧力波が減衰されることが
なく、しかも各連通路自身の通路断面積の拡大に
よる圧力波の減衰はあるものの、通路断面積の縮
小(絞り)による圧力波減衰と比較して減衰割合
は少なく、よつて、上記排気干渉効果及び吸気慣
性効果を有効に発揮できる。
Further, the communication passages are located downstream of the primary valve and the secondary valve, respectively, and the passage cross-sectional area of each communication passage is set to be greater than or equal to the minimum passage cross-sectional area of each intake passage, so that each of the above-mentioned valves The pressure waves are not attenuated, and although the pressure waves are attenuated due to the expansion of the passage cross-sectional area of each communication passage, the attenuation rate is small compared to the pressure wave attenuation due to the reduction of the passage cross-sectional area (throttling). Therefore, the exhaust interference effect and the intake inertia effect described above can be effectively exhibited.

さらに、上記排気干渉効果を得る側の吸気系統
の吸気ポートの開口時期を他方の吸気系統の吸気
ポートよりも以早としたことにより、開口時圧縮
波を強く発生でき、上記排気干渉効果による過給
効果の向上により効果的である。
Furthermore, by opening the intake port of the intake system on the side that obtains the above-mentioned exhaust interference effect earlier than the intake port of the other intake system, a strong compression wave can be generated at the time of opening. It is effective by improving the supply effect.

ここにおいて、上記排気干渉効果を得るエンジ
ン高回転時としての5000〜7000rpmの限定は、一
般に最高出力及び最高速度がこの範囲に設定され
ていることから、エンジンの高負荷高回転領域で
あつて高出力を要し、充填効率向上、出力向上に
有効な領域であることによる。
Here, the limitation of 5000 to 7000 rpm as the engine high speed to obtain the above exhaust interference effect is because the maximum output and maximum speed are generally set within this range. This is because it requires a lot of power and is an effective area for improving filling efficiency and power.

また、上記低負荷用吸気通路と高負荷用吸気通
路とを1次弁及び2次弁の下流において独立にす
る理由は、各気筒の低負荷用及び高負荷用吸気通
路でそれぞれ発生した圧力波が他方に分散した
り、相互に干渉し合つて弱まるのを防止するため
であり、特に低負荷用吸気通路と高負荷用吸気通
路とはデユアルインダクシヨン及気システムでの
要求の違いから吸気ポートの開閉のタイミングや
長さが異なり、一方の圧力波が他方によつて減衰
させられることになるからである。
Furthermore, the reason why the low-load intake passage and the high-load intake passage are made independent downstream of the primary and secondary valves is that the pressure waves generated in the low-load and high-load intake passages of each cylinder are This is to prevent the intake passage from dispersing to the other or from weakening due to interference with each other.In particular, due to the difference in requirements between the low-load intake passage and the high-load intake passage in the dual induction system, the intake port This is because the opening and closing timings and lengths of the two are different, and one pressure wave is attenuated by the other.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図及び第2図はデユアルインダクシヨンタ
イプの4バルブ式2気筒4サイクルエンジンに本
発明を適用した基本構造例としての第1実施例を
示す。同図において、1A及び1Bは第1気筒及
び第2気筒であり、2は各気筒1A,1Bにおい
てシリンダ3とピストン4とで形成された燃焼室
である。
FIGS. 1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a dual induction type four-valve two-cylinder four-cycle engine. In the figure, 1A and 1B are a first cylinder and a second cylinder, and 2 is a combustion chamber formed by a cylinder 3 and a piston 4 in each cylinder 1A, 1B.

5は一端がエアクリーナ6を介して大気に開口
して各気筒1A,1Bに吸気を供給するための主
吸気通路であつて、該主吸気通路5には吸入空気
量を検出するエアフローメータ7が配設されてい
る。上記主吸気通路5はエアフローメータ7下流
において隔壁8によつて主低負荷用吸気通路9と
主高負荷用吸気通路10とに仕切られている。該
主低負荷用吸気通路9には、エンジン負荷の増大
に応じて開作動し所定負荷以上になると全開とな
つてエンジン低負荷主低負荷用吸気通路9を流れ
る吸気量を変化させる1次弁11が配設されてい
る。また、上記主高負荷用吸気通路10には、エ
ンジン負荷が所定負荷以上になると開作動してエ
ンジン高負荷時主高負荷用吸気通路10を流れる
吸気量を変化させる2次弁12が配設されてい
る。さらに、上記主低負荷用吸気通路9は、1次
弁11下流において同形状寸法の第1及び第2低
負荷用吸気通路9a,9bに分岐されたのち各々
低負荷用吸気ポート13,13を介して各気筒1
A,1Bの燃焼室2,2に連通している。また、
上記主高負荷用吸気通路10は、2次弁12下流
において同形状寸法の第1及び第2高負荷用吸気
通路10a,10bに分岐されたのち各々高負荷
用吸気ポート14,14を介して各気筒1A,1
Bの燃焼室2,2に連通している。よつて、各気
筒1A,1Bに対して、低負荷用吸気通路9a,
9bと高負荷用吸気通路10a,10bとは1次
弁11及び2次弁12の下流において各々独立し
て燃焼室2に開口するように構成されている。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 to supply intake air to each cylinder 1A, 1B, and the main intake passage 5 is equipped with an air flow meter 7 for detecting the amount of intake air. It is arranged. The main intake passage 5 is partitioned downstream of the air flow meter 7 by a partition 8 into a main low-load intake passage 9 and a main high-load intake passage 10. The main low-load intake passage 9 includes a primary valve that opens as the engine load increases, and when the load exceeds a predetermined load, opens fully to change the amount of intake air flowing through the main low-load intake passage 9. 11 are arranged. Further, the main high-load intake passage 10 is provided with a secondary valve 12 that opens when the engine load exceeds a predetermined load and changes the amount of intake air flowing through the main high-load intake passage 10 during high engine load. has been done. Further, the main low-load intake passage 9 is branched downstream of the primary valve 11 into first and second low-load intake passages 9a and 9b having the same shape and dimensions, and then connected to low-load intake ports 13 and 13, respectively. Through each cylinder 1
It communicates with the combustion chambers 2, 2 of A and 1B. Also,
The main high-load intake passage 10 is branched into first and second high-load intake passages 10a and 10b having the same shape and dimensions downstream of the secondary valve 12, and then connected through high-load intake ports 14 and 14, respectively. Each cylinder 1A, 1
It communicates with the combustion chambers 2, 2 of B. Therefore, for each cylinder 1A, 1B, low load intake passage 9a,
9b and the high-load intake passages 10a and 10b are configured to open into the combustion chamber 2 independently at the downstream of the primary valve 11 and the secondary valve 12.

上記各高負荷用吸気通路10a,10bの最小
通路断面積ASは各低負荷用吸気通路9a,9b
の最小通路断面積APよりも大きく設定され(AS
>AP)、上記各高負荷用吸気ポート14の燃焼室
2への開口断面積は上記低負荷用吸気ポート13
の開口断面積よりも大きく設定されており、高負
荷用吸気通路10a,10bによる圧力波の伝播
をその減衰を小さくして有効に行い得るようにし
ている。
The minimum passage cross-sectional area A S of each of the above-mentioned high-load intake passages 10a, 10b is the respective low-load intake passage 9a, 9b.
The minimum passage cross-sectional area of A P is set larger than (A S
> A P ), the opening cross-sectional area of each high-load intake port 14 to the combustion chamber 2 is the same as the low-load intake port 13 above.
The cross-sectional area of the opening is set larger than the cross-sectional area of the opening, so that pressure waves can be effectively propagated through the high-load intake passages 10a and 10b by reducing their attenuation.

また、上記各低負荷用吸気通路9a,9b(当
然後述の連通路18より下流に位置する)の下流
端部(燃焼室2への開口部近傍)にはそれぞれ上
記エアフローメータ7の出力に基づく吸入空気量
に応じて燃料噴射量が制御される電磁弁式の燃料
噴射ノズル15,15が配設されており、燃料の
良好な応答性を確保するようにしている。
In addition, the downstream ends (near the opening to the combustion chamber 2) of each of the low-load intake passages 9a and 9b (naturally located downstream of the communication passage 18, which will be described later) are equipped with air flow meters based on the output of the air flow meter 7, respectively. Electromagnetic valve type fuel injection nozzles 15, 15 whose fuel injection amount is controlled according to the intake air amount are provided to ensure good fuel response.

そして、上記主高負荷用吸気通路10の分岐部
は、2次弁12下流に位置していて、第1及び第
2高負荷用吸気通路10a,10b同志を連通す
る連通路16を有する拡大室17によつて構成さ
れている。上記連通路16の通路断面積ACSは、
圧力波をその減衰を小さくして有効に伝達するよ
うに各高負荷用吸気通路10a,10bの最小通
路断面積ASと同等かそれ以上に設定されている
(ACS≧AS)。
The branch part of the main high-load intake passage 10 is located downstream of the secondary valve 12, and is an enlarged chamber having a communication passage 16 that communicates the first and second high-load intake passages 10a and 10b. 17. The passage cross-sectional area A CS of the communication passage 16 is:
It is set to be equal to or greater than the minimum passage cross-sectional area A S of each high-load intake passage 10a, 10b (A CS ≧A S ) so that pressure waves are effectively transmitted with less attenuation.

また、上記主低負荷用吸気通路9の分岐部は、
1次弁11下流に位置していて、第1及び第2低
負荷用吸気通路9a,9b同志を連通する連通路
18を有する拡大室19によつて構成されてい
る。上記連通路18の通路断面積ACPは、同じく
圧力波を有効に伝達するように各低負荷用吸気通
路9a,9bの最小通路断面積AP以上に設定さ
れている(ACP≧AP)。
Further, the branch part of the main low-load intake passage 9 is
It is located downstream of the primary valve 11 and is constituted by an enlarged chamber 19 having a communication passage 18 that communicates the first and second low-load intake passages 9a and 9b. The passage cross-sectional area A CP of the communication passage 18 is set to be equal to or larger than the minimum passage cross-sectional area A P of each low-load intake passage 9a, 9b so as to transmit pressure waves effectively (A CP ≧A P ).

尚、上記各拡大室17,19は、エンジンの加
速運転時又は減速運転時等の過渡運転時での吸入
空気のサージタンクとして機能し、加速時での息
付きや減速時での燃料のオーバリツチによる失火
等を防止して燃料の良好な応答性を確保するもの
である。
Each of the expansion chambers 17 and 19 functions as a surge tank for intake air during transient operations such as acceleration or deceleration of the engine, and prevents breathing during acceleration and fuel overflow during deceleration. This prevents misfires and other misfires caused by the engine and ensures good response of the fuel.

さらに、上記各高負荷用吸気ポート14には該
高負荷用吸気ポート14を開閉する高負荷用吸気
弁20が設けられ、また図示していないが各低負
荷用吸気ポート13には該低負荷用吸気ポート1
3を開閉する低負荷用吸気弁が設けられている。
尚、各気筒1A,1Bにおいて、21及び22は
それぞれ一端が大気に開口し他端が排気ポート2
3,24を介して各気筒1A,1Bの燃焼室2に
開口して燃焼室2からの排気ガスを排出する第1
及び第2排気通路であつて、上記各排気ポート2
3,24には該排気ポート23,24を開閉する
排気弁25,25が設けられている。また、図示
していないが、上記各気筒1A,1Bの各排気通
路21,21,22,22の下流集合部には排気
ガス浄化用の触媒装置等が介設されていて、排圧
が高くなつている。
Furthermore, each of the high-load intake ports 14 is provided with a high-load intake valve 20 that opens and closes the high-load intake port 14, and although not shown, each of the low-load intake ports 13 is provided with a high-load intake valve 20 for opening and closing the high-load intake port 14. Intake port 1
A low-load intake valve that opens and closes 3 is provided.
In each cylinder 1A, 1B, one end of 21 and 22 opens to the atmosphere, and the other end opens to the exhaust port 2.
3, 24 to open into the combustion chamber 2 of each cylinder 1A, 1B to discharge exhaust gas from the combustion chamber 2.
and a second exhaust passage, each of the above exhaust ports 2
3 and 24 are provided with exhaust valves 25 and 25 that open and close the exhaust ports 23 and 24, respectively. Although not shown, a catalyst device for purifying exhaust gas is installed at the downstream collecting portion of each exhaust passage 21, 21, 22, 22 of each cylinder 1A, 1B, and the exhaust pressure is high. It's summery.

また、第3図に示すように、上記高負荷用吸気
弁20の開弁時期(高負荷用吸気ポート14の開
口時期)は低負荷用吸気弁(図示せず)の開弁時
期(低負荷用吸気ポート13の開口時期)より以
早に設定されており、高負荷用吸気通路10a,
10bにおいて開口時圧縮波を強く発生させるよ
うにしている。また、高負荷用吸気弁20の閉弁
時期(高負荷用吸気ポート14の閉口時期)と低
負荷用吸気弁の閉弁時期(低負荷用吸気ポート1
3の閉口時期)とはほぼ同時期に設定されてお
り、気筒間干渉において吸気行程終期の高負荷用
吸気ポート14に伝播された開口時圧縮波並びに
吸気行程終期の低負荷用吸気ポート13に伝播さ
れた閉口時圧縮波が他方の吸気ポート13又は1
4から吹き抜けるのを防止して有効に過給効果を
得るようにしている。
Further, as shown in FIG. 3, the opening timing of the high-load intake valve 20 (the opening timing of the high-load intake port 14) is the same as the opening timing of the low-load intake valve (not shown) (the opening timing of the high-load intake port 14). The opening timing of the intake port 13 for high-load use is set earlier than the opening timing of the intake port 13 for
At 10b, a strong compression wave is generated when opening. Also, the closing timing of the high-load intake valve 20 (the closing timing of the high-load intake port 14) and the closing timing of the low-load intake valve (the closing timing of the low-load intake port 14)
This is set at almost the same time as the closing timing of No. 3), and the opening compression wave propagated to the high-load intake port 14 at the end of the intake stroke due to inter-cylinder interference and the low-load intake port 13 at the end of the intake stroke. The propagated compression wave at the time of closing is transmitted to the other intake port 13 or 1.
This prevents the air from blowing through from 4 to effectively obtain the supercharging effect.

加えて、上記連通路16を介しての両気筒1
A,1B間の高負荷用吸気通路10a,10bの
通路長さLS(つまり高負荷用吸気ポート14,1
4間の連通長さ)は、連通路16の通路長さlCS
と該連通路16下流の第1,第2高負荷用吸気通
路10a,10bの各通路長さlS,lSとを加算し
たもの(LS=lCS+2lSであり、5000〜7000rpmの
回転域で両気筒1A,1B間で気筒間干渉効果と
して排気干渉効果を得るように、 LS={(720/Z)+θS−θC} ×(60/360N)×a …() の式から求められた値に設定される。尚、上記
()式において、Zは気筒数で2気筒の場合Z
=2であり、720/Zは気筒間の位相差を示す。
θSは高負荷用吸気弁20の開弁期間で、またθC
高負荷用吸気弁20の開弁(高負荷用吸気ポート
14の開口)から開口時圧縮波が実質的に発生す
るまでの期間と効果的に過給を行うために該開口
時圧縮波が伝播される他気筒の高負荷用吸気弁2
0の閉弁(高負荷用吸気ポート14の閉口)直前
の時期から閉弁までの期間とを合算した無効期間
で、開弁特性等によつて異なるが約10〜50゜であ
る。よつて{(720/Z)+θS−θC}は一方の気筒
での開口時圧縮波の発生から吸気行程終期にある
他方の気筒への伝播までに要するクランクシヤフ
トの回転角度を表わす。また、Nはエンジン回転
数でN=5000〜7000rpmであり、60/360Nは1゜
回転するに要する時間(秒)を表わす。また、a
は圧力波の伝播速度(音速)で、20℃でa=
343m/sである。
In addition, both cylinders 1 via the communication passage 16
Passage length L S of high load intake passages 10a and 10b between A and 1B (that is, high load intake ports 14 and 1
4) is the passage length of the communication passage 16 l CS
and the respective passage lengths l S and l S of the first and second high-load intake passages 10a and 10b downstream of the communication passage 16 (L S = l CS +2l S , and at 5000 to 7000 rpm In order to obtain an exhaust interference effect as an inter-cylinder interference effect between both cylinders 1A and 1B in the rotation range, L S = {(720/Z) + θ S − θ C } × (60/360 N) × a …(). It is set to the value obtained from the formula.In the above formula (), Z is the number of cylinders, and in the case of two cylinders, Z
=2, and 720/Z indicates the phase difference between the cylinders.
θ S is the opening period of the high-load intake valve 20, and θ C is the period from the opening of the high-load intake valve 20 (opening of the high-load intake port 14) until the opening compression wave is substantially generated. The high-load intake valve 2 of the other cylinder through which the compression wave is propagated at the time of opening in order to effectively perform supercharging during this period.
The invalid period is the sum of the period from the time just before the valve closes (the high-load intake port 14 closes) until the valve closes, and is about 10 to 50 degrees, although it varies depending on the valve opening characteristics. Therefore, {(720/Z)+θ S −θ C } represents the rotation angle of the crankshaft required from generation of the opening compression wave in one cylinder to propagation to the other cylinder at the end of the intake stroke. Further, N is the engine rotation speed, N = 5000 to 7000 rpm, and 60/360N represents the time (seconds) required to rotate 1 degree. Also, a
is the propagation velocity (sound velocity) of the pressure wave, and at 20℃ a=
It is 343m/s.

さらに、上記連通路18を介しての両気筒1
A,1B間の低負荷用吸気通路9a,9bの通路
長さLP(つまり低負荷用吸気ポート13,13間
の連通長さ)は、同様に、連通路18の通路長さ
lCPと該連通路18下流の第1,第2低負荷用吸
気通路9a,9bの各通路長さlP,lPとを加算し
たもの(LP=lCP+2lP)であり、上記5000〜
7000rpmの間で設定された基準回転数よりも1000
〜2000rpm低回転側(例えば4000〜5000rpm)で
両気筒1A,1B間で気筒間干渉効果として吸気
慣性効果を得るように、 LP={(720/Z)−θ1} ×(60/360N)×a …() の式により求められた値に設定される。尚上記
()式において、θ1は低負荷用吸気弁の閉弁
(低負荷用吸気ポート13閉口)から閉口時圧縮
波が実質的に発生するまでの期間と効果的に過給
を行うために該閉口時圧縮波が伝播される他気筒
の低負荷用吸気弁の閉弁直前の時期から閉弁まで
の期間とを合算した無効期間で同じく約10〜50゜
であり、{(720/Z)−θ1}は一方の気筒での閉口
時圧縮波の発生から吸気行程終期にある他方の気
筒への伝播までに要するクランクシヤフトの回転
角度を表わす。その他は上記()式の場合と同
じである。
Furthermore, both cylinders 1 via the communication passage 18
Similarly, the passage length L P of the low-load intake passages 9a and 9b between A and 1B (that is, the communication length between the low-load intake ports 13 and 13) is the passage length of the communication passage 18.
It is the sum of l CP and the respective passage lengths l P and l P of the first and second low-load intake passages 9a and 9b downstream of the communication passage 18 ( L P = l CP +2l P ), and the above 5000~
1000 than the reference rotation speed set between 7000rpm
~2000rpm In order to obtain the intake inertia effect as an inter-cylinder interference effect between both cylinders 1A and 1B on the low rotation side (for example 4000~5000rpm), L P = {(720/Z) - θ 1 } × (60/360N) )×a...() is set to the value determined by the formula. In the above equation (), θ 1 is the period from when the low-load intake valve closes (low-load intake port 13 closes) until the compression wave is substantially generated when the valve closes, and in order to effectively perform supercharging. The invalid period, which is the sum of the period from just before the closing of the low-load intake valves of other cylinders to which the compression wave is propagated during closing, is also about 10 to 50 degrees, and {(720/ Z)-θ 1 } represents the rotation angle of the crankshaft required from generation of the compression wave at closing in one cylinder to propagation to the other cylinder at the end of the intake stroke. The rest is the same as in the case of formula () above.

尚、上記()、()式では、圧力波の伝播に
対する吸入空気の流れの影響を無視している。こ
れは、流速が音速に比べて小さく、吸気通路の長
さにほとんど変化をもたらさないためである。
Note that in the above equations () and (), the influence of the flow of intake air on the propagation of pressure waves is ignored. This is because the flow velocity is smaller than the speed of sound and causes almost no change in the length of the intake passage.

次に、上記第1実施例の作用について第3図に
より説明するに、高出力を要する5000〜7000rpm
のエンジン高回転時には、2次弁12の開作動に
より主低負荷用吸気通路9と共に主高負荷用吸気
通路10も開かれて、各気筒1A,1Bに対し、
各高負荷用吸気通路10a,10bからも各低負
荷用吸気通路9a,9bとは独立して吸気の供給
が行われる。その際、一方の気筒例えば第2気筒
1Bの高負荷用吸気弁20の開弁による高負荷用
吸気ポート14開口時に第2高負荷用吸気通路1
0bの高負荷用吸気ポート14付近に発生した開
口時圧縮波は、両気筒1A,1B間の高負荷用吸
気通路10a,10bの通路長さLSを5000〜
7000rpmのエンジン高回転時を基準として上記
()式により求められる値に設定したことによ
り、第2高負荷用吸気通路10b→連通路16→
第1高負荷用吸気通路10aを経て、吸気行程終
期にある第1気筒1Aの高負荷用吸気ポート14
に伝播する。その結果、この開口時圧縮波によ
り、吸気が吸気行程終期にある第1気筒1Aの高
負荷用吸気ポート14より燃焼室2内へ押し込ま
れて過給が行われることになる(高負荷用吸気系
統での排気干渉効果)。
Next, the operation of the first embodiment will be explained with reference to FIG. 3.
When the engine is running at high speed, the secondary valve 12 is opened to open the main high-load intake passage 10 as well as the main low-load intake passage 9, and the main high-load intake passage 10 is opened for each cylinder 1A, 1B.
Intake air is supplied from each high-load intake passage 10a, 10b independently from each low-load intake passage 9a, 9b. At that time, when the high-load intake port 14 of one cylinder, for example, the high-load intake valve 20 of the second cylinder 1B is opened, the second high-load intake passage 1 is opened.
The opening compression wave generated near the high-load intake port 14 of 0b increases the passage length L S of the high-load intake passages 10a and 10b between both cylinders 1A and 1B by 5000~
By setting the value determined by the above formula () based on the engine high speed of 7000 rpm, the second high-load intake passage 10b → communication passage 16 →
After passing through the first high-load intake passage 10a, the high-load intake port 14 of the first cylinder 1A at the end of the intake stroke
propagate to. As a result, this opening compression wave forces the intake air into the combustion chamber 2 from the high-load intake port 14 of the first cylinder 1A at the end of the intake stroke, and supercharging is performed (high-load intake exhaust interference effects in the system).

一方、5000〜7000rpmよりも1000〜2000rpm低
回転側のエンジン中回転時には、第2気筒1Bの
低負荷用吸気弁の閉弁による低負荷用吸気ポート
13閉口時に第2低負荷用吸気通路9bの低負荷
用吸気ポート13付近に発生した閉口時圧縮波
は、両気筒1A,1B間の低負荷用吸気通路9
a,9bの通路長さLPを上記5000〜7000rpmの基
準回転数よりも1000〜2000rpm低回転側で上記
()式により求められる値に設定したことによ
り、第2低負荷用吸気通路9b→連通路18→第
1低負荷用吸気通路9aを経て、同じく上記吸気
行程終期にある第1気筒1Aの低負荷用吸気ポー
ト13に伝播されて過給が行われる(低負荷用吸
気系統での吸気慣性効果)。
On the other hand, when the engine rotates at a lower speed of 1000 to 2000 rpm than 5000 to 7000 rpm, when the low load intake port 13 of the second cylinder 1B is closed, the second low load intake passage 9b is closed. The compression wave generated near the low-load intake port 13 is caused by the low-load intake passage 9 between both cylinders 1A and 1B.
By setting the passage length L P of a and 9b to a value determined by the above formula () at a rotation speed 1000 to 2000 rpm lower than the reference rotation speed of 5000 to 7000 rpm, the second low-load intake passage 9b→ Supercharging is carried out via the communication passage 18 → the first low-load intake passage 9a to the low-load intake port 13 of the first cylinder 1A, which is also at the end of the intake stroke (in the low-load intake system). Inspiratory inertia effect).

また、同様に、第2気筒1Bにおいても、吸気
行程終期にある各吸気ポート13,14に対して
第1気筒1Aの各吸気ポート13,14からの開
口時圧縮波又は閉口時圧縮波がそれぞれ伝播して
過給が行われる。
Similarly, in the second cylinder 1B, the opening compression wave or the closing compression wave from each intake port 13, 14 of the first cylinder 1A is applied to each intake port 13, 14 at the end of the intake stroke. Supercharging is carried out through propagation.

したがつて、このように高負荷用吸気系統にお
ける5000〜7000rpmのエンジン高回転域での排気
干渉効果による過給効果と、低負荷用吸気系統に
おける上記5000〜7000rpmよりも低回転域での吸
気慣性効果による過給効果とによつて、第4図に
示すように、エンジンの中回転域から高回転域に
亘つて充填効率が増大して出力を有効に向上させ
ることができる。尚、第4図では、各気筒1A,
1Bの各吸気通路9a,9b,10a,10bを
各々独立させた従来例(破線で示す)に対し、高
負荷用吸気系統で6000rpmを基準にして排気干渉
効果(実線で示す)を、低負荷用吸気系統で
4000rpmを基準として吸気慣性効果(一点鎖線で
示す)をそれぞれ得るようにした場合におけるエ
ンジンの出力トルク特性を示す。
Therefore, in this way, there is a supercharging effect due to exhaust interference effect in the high engine speed range of 5000 to 7000 rpm in the high-load intake system, and an intake effect in the low-speed range of 5000 to 7000 rpm in the low-load intake system. Due to the supercharging effect due to the inertia effect, as shown in FIG. 4, the charging efficiency increases from the middle speed range to the high speed range of the engine, and the output can be effectively improved. In addition, in FIG. 4, each cylinder 1A,
In contrast to the conventional example (indicated by broken lines) in which the intake passages 9a, 9b, 10a, and 10b of 1B are made independent, the exhaust interference effect (indicated by solid lines) in the high-load intake system is adjusted to 6000 rpm in the low-load intake system. In the intake system for
The output torque characteristics of the engine are shown when the intake inertia effect (indicated by the dashed line) is obtained based on 4000 rpm.

また、その場合、排気干渉効果を得るための圧
力波伝播経路である高負荷用吸気通路10a,1
0bは、低負荷用吸気通路9a,9bよりも通路
断面積及び燃焼室2への開口断面積が大であるこ
とにより、圧力波の伝播の抵抗が小さく、高負荷
用吸気系統での排気干渉効果を有効に発揮して、
特に高出力を要するエンジン高回転時(5000〜
7000rpm)での出力要求に合致し有利である。
In addition, in that case, the high-load intake passages 10a and 1, which are pressure wave propagation paths for obtaining the exhaust interference effect.
0b has a larger passage cross-sectional area and opening cross-sectional area to the combustion chamber 2 than the low-load intake passages 9a and 9b, so the resistance to pressure wave propagation is small and there is no exhaust interference in the high-load intake system. By effectively demonstrating the effect,
Especially at high engine speeds that require high output (5000~
It is advantageous because it meets the output requirement at 7000rpm).

また、上記連通路16,18は、それぞれ1次
弁11及び2次弁12の下流に位置し、しかも該
各連通路16,18の通路断面積ACP,ACSを各
吸気通路9a,9b,10a,10bの最小通路
断面積AP,AS以上としたので、上記各弁11,
12によつて圧力波が減衰されることがなく、し
かも各連通路16,18自身の通路断面積拡大に
よる圧力波減衰はあるものの、通路断面積縮小
(絞り)による圧力波減衰と比較して減衰割合は
少なく、よつて上記排気干渉効果及び吸気慣性効
果を有効に発揮できる。
Further, the communication passages 16 and 18 are located downstream of the primary valve 11 and the secondary valve 12, respectively, and the passage cross-sectional areas A CP and A CS of the communication passages 16 and 18 are equal to each intake passage 9a and 9b. , 10a, 10b is set to be greater than or equal to the minimum passage cross-sectional area A P , A S , each of the above-mentioned valves 11,
12, and although there is pressure wave attenuation due to the expansion of the passage cross-sectional area of each communication passage 16, 18 itself, compared to the pressure wave attenuation due to passage cross-sectional area reduction (throttle). The attenuation rate is small, so the exhaust interference effect and intake inertia effect described above can be effectively exerted.

さらに、上記高負荷用吸気ポート14の開口時
期を低負荷用吸気ポート13よりも以早としたこ
とにより、特に高負荷用吸気ポート14開口時の
開口時圧縮波を強く発生でき、排気干渉効果によ
る過給効果の向上により効果的である。また、高
負荷用吸気ポート14の閉口時期と低負荷用吸気
ポート13の口時期とをほぼ同時期としたことに
より、気筒間干渉効果での圧縮波の吸気ポート1
3又は14からの吹き抜けを防止でき有利であ
る。
Furthermore, by opening the high-load intake port 14 earlier than the low-load intake port 13, a strong compression wave can be generated especially when the high-load intake port 14 opens, resulting in an exhaust interference effect. This is more effective due to improved supercharging effect. In addition, by making the closing timing of the high-load intake port 14 and the closing timing of the low-load intake port 13 almost the same, compression waves are generated at the intake port 1 due to inter-cylinder interference effects.
This is advantageous because it can prevent blow-through from 3 or 14.

また、燃料供給装置としての燃料噴射ノズル1
5は、連通路18下流の低負荷用吸気通路9a,
9bの下流端部(燃焼室2への開口部近傍)に設
けられているので、気筒間干渉効果を得る上で吸
気通路長さが長くなることにより、上記連通路1
8上流に配置されたエアフローメータ7の加減速
連転時における応答遅れに起因する燃料の応答性
の悪化(燃焼室2に導入される変化した空気量に
対応する燃料供給の応答遅れ)が生じることを防
止して、良好な燃料応答性を確保できるととも
に、全運転域で吸気の供給を行い燃料の供給が可
能な低負荷用吸気通路9a,9bのみの設置で済
み、燃料供給装置の簡略化を図ることができる。
Also, a fuel injection nozzle 1 as a fuel supply device
5 is a low-load intake passage 9a downstream of the communication passage 18;
9b is provided at the downstream end (near the opening to the combustion chamber 2), the length of the intake passage becomes longer in order to obtain the inter-cylinder interference effect, and the communication passage 1
8 Deterioration of fuel response (delay in response of fuel supply corresponding to the changed amount of air introduced into the combustion chamber 2) occurs due to a delay in response during continuous acceleration/deceleration of the air flow meter 7 located upstream. It is possible to prevent this and ensure good fuel response, and to simplify the fuel supply system by installing only the low-load intake passages 9a and 9b, which can supply intake air and fuel in all operating ranges. It is possible to aim for

また、上記排気干渉効果及び吸気慣性効果によ
る過給効果は、連通路16,18の位置及びその
通路断面積、並びに該連通路16,18を介して
の両気筒1A,1B間の高負荷用吸気通路10
a,10b及び低負荷用吸気通路9a,9bの各
通路長さLS,LP等を上述の如く設定することに
よつて得られ、過給機等を要さないので、既存の
吸気系の僅かな設計変更で済み、構造が極めて簡
単なものであり、よつて容易にかつ安価に実施す
ることができる。
Further, the supercharging effect due to the exhaust interference effect and intake inertia effect is determined by the position of the communicating passages 16, 18, the cross-sectional area of the passage, and the high load effect between the two cylinders 1A, 1B via the communicating passages 16, 18. Intake passage 10
A, 10b and the low-load intake passages 9a, 9b are obtained by setting the respective passage lengths L S , L P etc. as described above, and since a supercharger etc. is not required, the existing intake system can be used. It requires only a slight design change, has an extremely simple structure, and can therefore be implemented easily and at low cost.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記第1実施例では2気筒4サイク
ルエンジンに適用した例を示したが、本発明はデ
ユアルインダクシヨンタイプのその他各種多気筒
エンジンに対しても適用できるのは勿論のことで
ある。例えば、その一例として第5図に4バルブ
式の4気筒4サイクルエンジンに適用した第2実
施例を示す(尚、第1実施例と同一の部分につい
ては同一の符号を付してその詳細な説明は省略す
る)。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, although the first embodiment described above shows an example in which the present invention is applied to a two-cylinder four-stroke engine, it goes without saying that the present invention can also be applied to various other multi-cylinder engines of the dual induction type. For example, as an example, FIG. 5 shows a second embodiment applied to a four-valve, four-cylinder, four-stroke engine (the same parts as in the first embodiment are denoted by the same reference numerals, and detailed explanations thereof are given below). (Explanation omitted).

本例の場合、各気筒1A〜1Dの高負荷用吸気
通路10a〜10dは2次弁12の下流において
拡大室17′で形成される連通路16′によつて連
通され、また各気筒1A〜1Dの低負荷用吸気通
路9a〜9dは1次弁11下流において拡大室1
9′で形成される連通路18′によつて連通されて
おり、該連通路18′下流の各低負荷用吸気通路
9a〜9dには、燃料噴射ノズル15が配設され
ている。また、上記連通路16′,18′を介して
気筒1A〜1D間の高負荷用吸気通路10a〜1
0d及び低負荷用吸気通路9a〜9dの通路長さ
LS,LPは、排気干渉効果を得る場合には上記
()式の右辺第1項(開口時圧縮波発生から伝
播までに要する回転角度)が異なり(第8図参
照)、 LS=(θS−180−θO) ×(60/360N)×a …(′) により設定され、また吸気慣性効果を得る場合に
は上記()式によりZ=4として設定される。
尚、3気筒4サイクルエンジンに対しても、図示
していないが2気筒の場合と同様であり、各通路
長さLS,LPを上記(),()により設定すれ
ばよい。
In the case of this example, the high-load intake passages 10a to 10d of each cylinder 1A to 1D are communicated with each other by a communication passage 16' formed by an enlarged chamber 17' downstream of the secondary valve 12, and each cylinder 1A to The 1D low-load intake passages 9a to 9d are connected to the expansion chamber 1 downstream of the primary valve 11.
A fuel injection nozzle 15 is provided in each of the low-load intake passages 9a to 9d downstream of the communication passage 18'. Also, the high-load intake passages 10a to 1 between the cylinders 1A to 1D are connected via the communication passages 16' and 18'.
Passage length of 0d and low load intake passages 9a to 9d
When obtaining the exhaust interference effect, L S and L P differ in the first term on the right side of the above equation () (rotation angle required from generation of compression wave to propagation during opening) (see Figure 8), and L S = It is set by (θ S −180−θ O )×(60/360N)×a (′), and when obtaining the intake inertia effect, it is set as Z=4 according to the above equation ().
Although not shown, the same applies to a three-cylinder, four-stroke engine as in the case of a two-cylinder engine, and the passage lengths L S and L P may be set using the above () and ().

また、上記第2実施例(4気筒4サイクルエン
ジン)では、第1、第4気筒1A,1Dの対応す
る各吸気通路9aと9d、10aと10dの通路
長さlP1とlP4、lS1とlS4はそれぞれ同じで、かつlP1
=lP4>lS1=lS4となり、また、第2,第3気筒1
B,1Cの各吸気通路9bと9c、10bと10
cの通路長さlP2とlP3、lS2とlS3はそれぞれ同じで、
かつlP2=lP3>lS2〕lS3となる。従つて、第1気筒
1A→第3気筒1C→第4気筒1D→第2気筒1
Bの点火順序では燃焼の連続する気筒間の通路長
さLP,LSは全て同じになる。すなわち、 LP=lP1(lP4)+lP2(lP3) LS=lS1(lS4)+lS2(lS3) となるので、各気筒1A〜1Dの各吸気通路9a
〜9d,10a〜10dは拡大室17′,19′部
分の近い所から分岐させるのが好ましい。
Further, in the second embodiment (four-cylinder four-cycle engine), the passage lengths l P1 , l P4, l S1 of the corresponding intake passages 9a and 9d, 10a and 10d of the first and fourth cylinders 1A and 1D are and l S4 are the same, and l P1
=l P4 >l S1 =l S4 , and the second and third cylinders 1
B, 1C intake passages 9b and 9c, 10b and 10
The path lengths l P2 and l P3 and l S2 and l S3 of c are the same, respectively.
And l P2 = l P3 > l S2 ] l S3 . Therefore, 1st cylinder 1A → 3rd cylinder 1C → 4th cylinder 1D → 2nd cylinder 1
In the ignition order B, the passage lengths L P and L S between consecutive combustion cylinders are all the same. That is, L P = l P1 (l P4 ) + l P2 (l P3 ) L S = l S1 (l S4 ) + l S2 (l S3 ), so each intake passage 9a of each cylinder 1A to 1D
9d and 10a to 10d are preferably branched from near the enlarged chambers 17' and 19'.

さらに、排気干渉効果及び吸気慣性効果の気筒
間干渉の作用過程は、一般の2気筒エンジンの場
合、第6図に示すように、既述と同様、排気干渉
効果(実線矢印で示す)及び吸気慣性効果(破線
矢印で示す)は第1気筒から第2気筒へ、第2気
筒から第1気筒へと順次交互に作用して行くので
ある。また、3気筒エンジンの場合には、第7図
に示すように、上記両効果は、2気筒の場合と同
様、第1気筒→第2気筒、第2気筒→第3気筒、
第3気筒→第1気筒へと順次作用していく。さら
に、4気筒エンジンの場合には、第8図に示すよ
うに、吸気慣性効果は、点火順次通りに第1気筒
→第3気筒、第3気筒→第4気筒、第4気筒→第
2気筒、第2気筒→第1気筒へと順次作用して行
き、排気干渉効果は、逆に位相が180゜遅れた気筒
から作用を受け、第3気筒→第1気筒、第4気筒
→第3気筒、第2気筒→第4気筒、第1気筒→第
2気筒、第3気筒→第1気筒へと作用するのであ
る。よつて、このように気筒間干渉を行う気筒間
の通路長さLS,LPを排気干渉効果又は吸気慣性
効果を得るように設定すればよい。
Furthermore, in the case of a general two-cylinder engine, the inter-cylinder interference of the exhaust interference effect and the intake inertia effect has the same effect as the exhaust interference effect (indicated by the solid line arrow) and the intake inertia effect, as shown in Figure 6. The inertial effect (indicated by the dashed arrow) acts alternately from the first cylinder to the second cylinder, and from the second cylinder to the first cylinder. In addition, in the case of a three-cylinder engine, as shown in FIG. 7, both of the above effects can be achieved from the first cylinder to the second cylinder, from the second cylinder to the third cylinder, as in the case of a two-cylinder engine.
It acts sequentially from the 3rd cylinder to the 1st cylinder. Furthermore, in the case of a 4-cylinder engine, as shown in Figure 8, the intake inertia effect is caused by the following firing order: 1st cylinder → 3rd cylinder, 3rd cylinder → 4th cylinder, 4th cylinder → 2nd cylinder. , the exhaust interference effect acts sequentially from the 2nd cylinder to the 1st cylinder, and conversely, the exhaust interference effect acts from the cylinder whose phase is delayed by 180 degrees, from the 3rd cylinder to the 1st cylinder, and from the 4th cylinder to the 3rd cylinder. , from the second cylinder to the fourth cylinder, from the first cylinder to the second cylinder, and from the third cylinder to the first cylinder. Therefore, the lengths L S and L P of the passages between the cylinders that perform the inter-cylinder interference in this way may be set so as to obtain the exhaust interference effect or the intake inertia effect.

また、上記実施例では、1次弁11を主低負荷
用吸気通路9内に設けた型式のものについて示し
たが、該1次弁11を、主低負荷用吸気通路9と
主高負荷用吸気通路10との分岐部上流の主吸気
通路5に設けた型式のものも採用可能である。
Further, in the above embodiment, the primary valve 11 is provided in the main low-load intake passage 9, but the primary valve 11 is provided in the main low-load intake passage 9 and the main high-load intake passage 9. A type provided in the main intake passage 5 upstream of the branching part with the intake passage 10 can also be adopted.

(発明の効果) 以上説明したように、本発明によれば、低負荷
用と高負荷用との2系統の独立した吸気通路を備
えた多気筒エンジンにおいて、5000〜7000rpmの
エンジン高回転時、排圧の高い回転域であり燃焼
室への開口面積が一気に増大しかつ早く開口する
側の吸気系統での排気干渉効果により強い過給効
果を十分かつ有効に得るとともに、上記5000〜
7000rpmの基準回転数よりも1000〜2000rpm低回
転側で他方の吸気系統での吸気慣性効果により過
給効果を得るようにしたので、過給機等を要さず
に既存の吸気系の僅かな設計変更による簡単な構
成でもつて、エンジンの中回転域から高回転域に
亘つて充填効率を高めて出力向上を有効に図るこ
とができ、よつてエンジンの出力向上対策の容易
実施化及びコストダウン化に大いに寄与できるも
のである。
(Effects of the Invention) As explained above, according to the present invention, in a multi-cylinder engine equipped with two independent intake passages for low load and high load, when the engine rotates at a high speed of 5000 to 7000 rpm, In the rotation range where the exhaust pressure is high, the opening area to the combustion chamber suddenly increases and the exhaust interference effect in the intake system on the side that opens earlier allows a strong supercharging effect to be sufficiently and effectively obtained.
Since the supercharging effect is obtained by the intake inertia effect in the other intake system at 1000 to 2000 rpm lower than the standard rotation speed of 7000 rpm, a slight reduction in the existing intake system can be achieved without the need for a supercharger etc. Even with a simple configuration based on design changes, it is possible to increase charging efficiency and effectively improve output from the mid- to high-speed range of the engine, thus making it easier to implement measures to improve engine output and reducing costs. This is something that can greatly contribute to the development of society.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図及び第2
図は第1実施例を示す全体構成説明図及び同要部
概略図、第3図は第1実施例の吸気行程を示す説
明図、第4図は出力トルク特性を示す図、第5図
は第2実施例を示す第1図相当図、第6図〜第8
図はそれぞれ2気筒、3気筒及び4気筒エンジン
での気筒間干渉を示す説明図である。 1A〜1D…第1〜第4気筒、2…燃焼室、5
…主吸気通路、7…エアフローメータ、9…主低
負荷用吸気通路、9a〜9d…第1〜第4低負荷
用吸気通路、10…主高負荷用吸気通路、10a
〜10d…第1〜第4高負荷用吸気通路、11…
1次弁、12…2次弁、15…燃焼噴射ノズル、
16,16′…連通路、18,18′…連通路。
The drawings show embodiments of the invention, FIGS. 1 and 2.
The figure is an explanatory diagram of the overall configuration and a schematic diagram of the main parts of the first embodiment, FIG. 3 is an explanatory diagram showing the intake stroke of the first embodiment, FIG. 4 is a diagram showing the output torque characteristics, and FIG. A diagram corresponding to FIG. 1 showing the second embodiment, FIGS. 6 to 8
The figures are explanatory diagrams showing inter-cylinder interference in two-cylinder, three-cylinder, and four-cylinder engines, respectively. 1A to 1D...1st to 4th cylinders, 2...Combustion chamber, 5
... Main intake passage, 7... Air flow meter, 9... Main low load intake passage, 9a to 9d... 1st to 4th low load intake passage, 10... Main high load intake passage, 10a
~10d...first to fourth high-load intake passages, 11...
Primary valve, 12... Secondary valve, 15... Combustion injection nozzle,
16, 16'...Communication path, 18, 18'...Communication path.

Claims (1)

【特許請求の範囲】 1 各気筒毎に互いに独立した低負荷用吸気通路
と高負荷用吸気通路とを有するとともに該各気筒
の低負荷用吸気通路と高負荷用吸気通路とを各気
筒の燃焼室に互いに独立した低負荷用吸気ポート
及び高負荷用吸気ポートを介して開口させた吸気
通路を備え、該吸気通路は、少なくとも上記低負
荷用吸気通路を流れる吸気量を変化させる1次弁
と、上記高負荷用吸気通路を流れる吸気量を変化
させる2次弁とを有するエンジンの吸気装置であ
つて、 上記1次弁及び2次弁の下流において上記各気
筒の低負荷用吸気通路同士及び高負荷用吸気通路
同士をそれぞれ各吸気通路の最小通路断面積以上
の通路断面積を持つ連通路で互いに連通し、 上記高負荷用吸気通路及び低負荷用吸気通路の
いずれか一方の最小通路断面積及び燃焼室への開
口断面積を他方よりも大きく設定し、 上記高負荷用吸気ポート及び低負荷用吸気ポー
トのうち燃焼室への開口断面積が大きい方の吸気
ポートの開口時期を他方の吸気ポートの開口時期
より以早に設定し、 上記高負荷用吸気通路及び低負荷用吸気通路の
うち最小通路断面積が大きい方の吸気系統におい
て上記連通路を介しての各気筒間の吸気通路の通
路長さを、5000〜7000rpmのエンジンの高回転
時、一つの気筒の吸気ポートの開口時に生じる圧
縮波が吸気行程終期にある他の気筒の吸気ポート
に伝播して過給を行うように設定し、 上記他方の吸気系統において上記連通路を介し
ての各気筒間の吸気通路の通路長さを、上記5000
〜7000rpmの間で設定された基準回転数よりも
1000〜2000rpm低回転側で、一つの気筒の吸気ポ
ートの閉口時に生じる圧縮波が吸気行程終期にあ
る他の気筒の吸気ポートに伝播して過給を行うよ
うに設定したことを特徴とするエンジンの吸気装
置。 2 2気筒又は3気筒4サイクルエンジンにおい
て、上記吸気ポート開口時の圧縮波により過給を
行う場合の連通路を介しての各気筒間の吸気通路
の通路長さLS、及び上記吸気ポート閉口時の圧縮
波により過給を行う場合の連通路を介しての各気
筒間の吸気通路の通路長さLPを、下記式 LS={(720/Z)+θS−θO} ×(60/360N)×a LP={(720/Z)−θ1} ×(60/360N)×a (ここで、Zは気筒数、θSは開口断面積が大き
い方の吸気ポートの開口期間、θOは吸気ポートの
開口から開口時圧縮波が実質的に発生するまでの
期間と効果的に過給を行うために該開口時圧縮波
が伝播される他気筒の吸気ポートの閉口直前の時
期から閉口までの期間とを合算した無効期間、θ1
は吸気ポートの閉口から閉口時圧縮波が実質的に
発生するまでの期間と効果的に過給を行うために
該閉口時圧縮波が伝播される他気筒の吸気ポート
の閉口直前の時期から閉口までの期間とを合算し
た無効期間、Nはエンジン回転数、aは圧力波の
伝播速度である) により設定した特許請求の範囲第1項記載のエン
ジンの吸気装置。 3 4気筒4サイクルエンジンにおいて、上記吸
気ポート開口時の圧縮波により過給を行う場合の
連通路を介しての各気筒間の吸気通路の通路長さ
LS、及び上記吸気ポート閉口時の圧縮波により過
給を行う場合の連通路を介しての各気筒間の吸気
通路の通路長さLPを、下記式 LS=(θS−180−θO) ×(60/360N)×a LP={(720/Z)−θ1} ×(60/360N)×a (ここで、Zは気筒数、θSは開口面積が大きい
方の吸気ポートの開口期間、θOは吸気ポートの開
口から開口時圧縮波が実質的に発生するまでの期
間と効果的に過給を行うために該開口時圧縮波が
伝播される他気筒の吸気ポートの閉口直前の時期
から閉口までの期間とを合算した無効期間、θ1
吸気ポートの閉口から閉口時圧縮波が実質的に発
生するまでの期間と効果的に過給を行うために該
閉口時圧縮波が伝播される他気筒の吸気ポートの
閉口直前の時期から閉口までの期間とを合算した
無効期間、Nはエンジン回転数、aは圧力波の伝
播速度である)により設定した特許請求の範囲第
1項記載のエンジンの吸気装置。
[Scope of Claims] 1. Each cylinder has an independent low-load intake passage and a high-load intake passage, and the low-load intake passage and high-load intake passage of each cylinder are connected to the combustion chamber of each cylinder. The chamber is provided with an intake passage opened through a low-load intake port and a high-load intake port that are independent of each other, and the intake passage includes at least a primary valve that changes the amount of intake air flowing through the low-load intake passage. , an intake system for an engine having a secondary valve that changes the amount of intake air flowing through the high-load intake passage, wherein downstream of the primary valve and the secondary valve, the low-load intake passages of each cylinder are connected to each other and The high-load intake passages are communicated with each other through communication passages having a passage cross-sectional area larger than the minimum passage cross-sectional area of each intake passage, and the minimum passage cross-section of either the high-load intake passage or the low-load intake passage is The area and opening cross-sectional area to the combustion chamber are set larger than the other, and the opening timing of the intake port with a larger opening cross-sectional area to the combustion chamber among the high-load intake port and low-load intake port is set to be larger than the other. Set earlier than the opening timing of the intake port, the intake passage between each cylinder via the communication passage in the intake system with the larger minimum passage cross-sectional area among the above-mentioned high-load intake passage and low-load intake passage. The passage length is set so that when the engine rotates at high speeds of 5,000 to 7,000 rpm, the compression wave that occurs when the intake port of one cylinder opens propagates to the intake ports of other cylinders at the end of the intake stroke to perform supercharging. Set the passage length of the intake passage between each cylinder via the communication passage in the other intake system to the above 5000.
- than the standard rotation speed set between 7000rpm
An engine characterized in that, at low rotation speeds of 1000 to 2000 rpm, compression waves generated when the intake port of one cylinder is closed propagate to the intake ports of other cylinders at the end of the intake stroke to perform supercharging. intake device. 2 In a 2-cylinder or 3-cylinder 4-cycle engine, the passage length L S of the intake passage between each cylinder via the communication passage when supercharging is performed by the compression wave when the intake port is opened, and the intake port closing The passage length L P of the intake passage between each cylinder via the communication passage when supercharging is performed by the compression wave of 60/360N)×a L P = {(720/Z)−θ 1 }×(60/360N)×a (Here, Z is the number of cylinders, and θ S is the opening of the intake port with the larger opening cross-sectional area. The period θ O is the period from the opening of the intake port until the opening compression wave is substantially generated, and the period just before the intake port of another cylinder closes, where the opening compression wave is propagated in order to effectively perform supercharging. The invalid period, which is the sum of the period from the time to the closing, θ 1
is the period from when the intake port closes until the compression wave at closing actually occurs, and the period from just before the intake ports of other cylinders close when the compression wave at closing is propagated in order to effectively perform supercharging. The engine intake system according to claim 1, wherein N is the engine rotational speed and a is the propagation speed of the pressure wave. 3 In a 4-cylinder 4-cycle engine, the length of the intake passage between each cylinder via the communication passage when supercharging is performed by the compression wave when the intake port is opened.
L S and the passage length L P of the intake passage between each cylinder via the communication passage when supercharging is performed by the compression wave when the intake port is closed, are calculated using the following formula L S = (θ S −180− θ O ) × (60/360N) × a L P = {(720/Z) − θ 1 } × (60/360N) × a (Here, Z is the number of cylinders, and θ S is the number of cylinders with larger opening area. The opening period of the intake port, θ O is the period from the opening of the intake port until the opening compression wave is substantially generated, and the intake air of other cylinders to which the opening compression wave is propagated in order to effectively perform supercharging. The ineffective period, which is the sum of the period from just before the port closes to the time when the port closes, θ 1 is the period from when the intake port closes to when the compression wave is substantially generated at the time of closing, and corresponds to the period for effective supercharging. A patent set by the invalid period, which is the sum of the period from just before closing to the closing of the intake ports of other cylinders through which compression waves are propagated during closing, where N is the engine rotation speed and a is the propagation speed of pressure waves. An intake system for an engine according to claim 1.
JP57190618A 1982-10-28 1982-10-28 Intake apparatus for engine Granted JPS5979038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190618A JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190618A JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Publications (2)

Publication Number Publication Date
JPS5979038A JPS5979038A (en) 1984-05-08
JPH0452375B2 true JPH0452375B2 (en) 1992-08-21

Family

ID=16261063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190618A Granted JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Country Status (1)

Country Link
JP (1) JPS5979038A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT400741B (en) * 1989-01-20 1996-03-25 Avl Verbrennungskraft Messtech INTAKE SYSTEM FOR COMBUSTION ENGINES WITH SEVERAL CYLINDERS, ESPECIALLY V-ARRANGED

Also Published As

Publication number Publication date
JPS5979038A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
JPS6211169B2 (en)
JPH0452377B2 (en)
JPH0452375B2 (en)
JPH0452372B2 (en)
JPH0559249B2 (en)
JPH0452374B2 (en)
JPH0337009B2 (en)
JPH0452376B2 (en)
JPH0452373B2 (en)
JPH0128209B2 (en)
JPS60222523A (en) Suction device of engine
JP2583528B2 (en) Engine intake system
JPS6326261B2 (en)
JPS60222524A (en) Suction device of engine
JPH0337012B2 (en)
JPS6323370B2 (en)
JPS6340251B2 (en)
JPS5979044A (en) Intake apparatus for rotary piston engine
JPS59141726A (en) Intake apparatus for rotary piston engine
JPH0337011B2 (en)
JPH0337013B2 (en)
JPH01182525A (en) Valve timing control device for engine
JPS5970835A (en) Intake device of rotary piston engine
JPS6326262B2 (en)
JPS5970834A (en) Intake device of rotary piston engine