JPS5970834A - Intake device of rotary piston engine - Google Patents

Intake device of rotary piston engine

Info

Publication number
JPS5970834A
JPS5970834A JP57181963A JP18196382A JPS5970834A JP S5970834 A JPS5970834 A JP S5970834A JP 57181963 A JP57181963 A JP 57181963A JP 18196382 A JP18196382 A JP 18196382A JP S5970834 A JPS5970834 A JP S5970834A
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
engine
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57181963A
Other languages
Japanese (ja)
Other versions
JPS619491B2 (en
Inventor
Asao Tadokoro
朝雄 田所
Haruo Okimoto
沖本 晴男
Ikuo Matsuda
松田 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57181963A priority Critical patent/JPS5970834A/en
Publication of JPS5970834A publication Critical patent/JPS5970834A/en
Publication of JPS619491B2 publication Critical patent/JPS619491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve the output of an engine by simple constitution without causing any necessity for a supercharger or the like, by propagating a compression wave, generated when intake ports in one cylinder are opened,and a secondary pulsating wave, generated due to a start of intake, to intake ports immediately before their full closing in the other cylinder when the two-cylinder engine of side intake port type is driven at a high speed. CONSTITUTION:When an engine is driven at a high speed, a compression wave, generated in a passage 18b when intake ports 3a, 3b of, for instance, a cylinder 1B are opened, is propagated to intake ports 3a, 3b immediately before their full closing and operated with a 180 deg. phase difference in a cylinder 1A via a passage in an accurate length between the intake ports of the both cylinders. Simultaneously, an expansion wave, generated in a passage 18a due to a start of intake of the cylinder 1A, is propagated to the intake ports 3a, 3b immediately before their full closing in the cylinder 1A by repeating inversion and reflection through a passage in an adequate length between the intake ports and an expansion chamber 23. Similarly, a compression wave, generated in the cylinder 1A, and a secondary pulsating wave, generated in the cylinder 1B by its own action, are propagated to also the cylinder 1B, and a supercharge is performed, thus capable of simplifying construction of the engine.

Description

【発明の詳細な説明】 本発明は、ロータリピストンエンジンの吸気装置に関し
、特にサイド吸気ボート式の2気筒ロータリピストンエ
ンジンにおいて、吸気通路内に発生する吸気圧力波を利
用してエンジンの高負荷高回転時(3ニ過給効果を得る
ようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a rotary piston engine, and in particular for a side-intake boat type two-cylinder rotary piston engine, the present invention utilizes intake pressure waves generated in the intake passage to reduce the engine's high load. This relates to a device that obtains a supercharging effect during rotation (3 times).

一般に、サイド吸気ボート式の2気筒ロータリビスI−
ンエンジンは、2節トロコイド状の内周面を備えtcロ
ータハウジングと、その両側に位置し。
Generally, side intake boat type two-cylinder rotary vis I-
The engine has a two-section trochoidal inner peripheral surface and is located on both sides of the TC rotor housing.

吸気通路が間「1づる吸気ボートを備えたサイドハウジ
ングとで形成されたケーシング内を、略三角形状のロー
タがエキセンl−リンクシャフトに支承されて遊星回転
運動覆るものであって、かつ各気筒のロータがエキセン
トリックシレフトの回転角で180°の位相差を持つも
のCあり、内気筒間で上記180°の位相差を保ちなが
ら各気筒においてロータの回転に伴い吸気、圧縮、爆発
、膨張および排気の各行程を順次行うようにしたもので
ある。
A substantially triangular rotor is supported by an eccentric L-link shaft and rotates planetarily within a casing formed by an intake passage and a side housing provided with an intake boat, and each cylinder There is a type C in which the rotor has a phase difference of 180° at the rotation angle of the eccentric left, and while maintaining the above 180° phase difference between the inner cylinders, intake, compression, explosion, expansion and Each exhaust stroke is performed sequentially.

ところで、従来、このようなロータリピストンエンジン
において、吸気通路に過給機を設けて、吸気を過給覆る
ことにより、充填効率を高めて出力向上を図ることはよ
く知られているが、過給機装備のために構造が人がかり
となるとともにコストアップとなる嫌いがあった。
By the way, it is well known that conventionally, in such a rotary piston engine, a supercharger is installed in the intake passage to supercharge the intake air, thereby increasing charging efficiency and improving output. Because of the aircraft equipment, the structure required a lot of work and costs increased.

また、従来、吸気圧力・波により過給効果をI+する技
術として、実公昭45−2321号公報に開示されてい
るように、単一気筒のロータリビス1−ンエンジンにお
いで、吸気管を相法の異なる2木の通路に分け、それぞ
れ別の吸気ボー1へを有し、エンジン高回転時は2本の
吸気通路を用い、低回転時は閉塞位置の遅い方の吸気通
路を閉止し、吸気を早目に閉塞することにより、吸気管
の相法やエンジン回転数の関数である吸気の最大圧力時
点での吸気の閉塞による過給作用を利用して広範囲のエ
ンジン回転域に亙って好適な充填効率を得るようにした
ものが提案されている。しかし、このものは、単一気筒
のロータリビス1−ンエンジンに対でるものであって、
吸気通路内で発生ゴる吸気圧力波をどのように利用する
のか、その構成2作用が定かでなく、直ちに実用に供し
得ないものであった。しかも、吸気ボートとしてペリボ
ー1−を用いているため、吸気ボートは吸気作動室が閉
じる前に排気作動室と連通ずることになり、排気作動室
からの排気ガスの吹き返しにより過給効果を得ることが
困難(・あった。特に、近年の市販車では、騒音低減や
排気ガス浄化のためにエンジン排圧が」ニテ7し、高回
転高負荷時通常のエンジンで400〜600mml−1
(1(ゲージ圧)程度にターボ過給機イ」エンジンでは
1000100O以上になっており上記ベリボー1へ方
式による充填効率向上は期待できないものとなっている
Conventionally, as a technique for increasing the supercharging effect by using intake pressure/waves, as disclosed in Japanese Utility Model Publication No. 45-2321, in a single-cylinder rotary revitalization engine, the intake pipe is Divided into two passages with different speeds, each with a separate intake bow 1, the two intake passages are used at high engine speeds, and the intake passage with a slower closing position is closed at low engine speeds. By closing the intake air early, the system utilizes the supercharging effect caused by the intake air blockage at the maximum intake pressure, which is a function of the phase law of the intake pipe and the engine speed, over a wide range of engine speeds. A method has been proposed in which a suitable filling efficiency is obtained. However, this one is compatible with a single cylinder rotary vis-one engine,
It is not clear how to utilize the intake pressure waves generated in the intake passage, and the effect of the second structure is not clear, so it cannot be put to practical use immediately. Moreover, since Peribeau 1- is used as the intake boat, the intake boat communicates with the exhaust working chamber before the intake working chamber closes, and a supercharging effect can be obtained by blowing back exhaust gas from the exhaust working chamber. In particular, in recent commercial vehicles, the engine exhaust pressure has been increased to reduce noise and purify exhaust gas, and at high speeds and high loads, a normal engine has a pressure of 400 to 600 mml-1.
In the engine, the pressure is more than 1,000,100 O, and no improvement in charging efficiency can be expected by the Veriveau 1 method.

そこで、本発明者等は、ロータリピストンエンジンにお
けるサイド吸気ポートの吸気特性を検討Jるに、 (1)  吸気ボー1−間口時には作動室の残留排気ガ
スの圧力によって吸気が圧縮され、吸気通路内の吸気ボ
ート部分に圧縮波が発生ずること(n)  吸気ボート
の吸気開始により吸気通路内に膨張波が発生すること を知見した。このことから、一方の気筒での上記(+)
の圧縮波を他方の気筒の吸気ボート、特に吸気の吹き返
しが生じる全開直前に作用せしめれば、出力要求の高い
エンジン高負荷高回転時に有効に過給効果が得られるこ
と(以下、排気干渉効果という)、および各気筒での上
記(i)の膨張波を圧縮波に反転さUて該各気筒の全閉
直前の吸気ボー1へに作用せしめれば、同じくエンジン
高負荷高回転時に有効に過給効果が得られること(以下
、吸気個有脈動効果という)を見い出したのである。特
に、このうち排気干渉効果は、近年、エンジンの排気系
に排気浄化用のFfl! !m装置が介設されて1圧が
高く設定されている関係上、その効果が顕著なものであ
る。尚、サイド吸気ボーhと異なり、吸気通路がロータ
ハウジングに開口覆るペリフゴーラル吸気ボートの場合
には、該吸気ボー1−が常に作動室に開口しているため
、上記排気干渉効果は生じない。
Therefore, the present inventors studied the intake characteristics of the side intake port in a rotary piston engine and found that (1) At the time of intake bow 1 - frontage, the intake air is compressed by the pressure of the residual exhaust gas in the working chamber, and the intake air is compressed in the intake passage. Compression waves are generated in the intake boat portion of the engine (n) It has been found that expansion waves are generated in the intake passage when the intake boat starts to intake air. From this, the above (+) in one cylinder
If the compression wave is applied to the intake boat of the other cylinder, especially just before full opening when intake air blowback occurs, an effective supercharging effect can be obtained at high engine load and high rotation speeds where output is required (hereinafter referred to as exhaust interference effect). ), and if the expansion wave in (i) above in each cylinder is reversed into a compression wave and applied to the intake bow 1 just before the cylinder is fully closed, it will also be effective when the engine is under high load and at high rotation speeds. They discovered that a supercharging effect can be obtained (hereinafter referred to as the intake-specific pulsation effect). In particular, among these, the exhaust interference effect has recently been introduced into the engine exhaust system using Ffl! for exhaust purification. ! The effect is remarkable because the m device is interposed and the 1 pressure is set high. Note that, unlike the side intake bow h, in the case of a peripheral intake boat in which the intake passage opens and covers the rotor housing, the intake bow 1- always opens into the working chamber, so the above-mentioned exhaust interference effect does not occur.

すなわら、本発明は、上記の如きリーイド吸気ポート・
式の2気筒ロータリピストンエンジンにおいて、吸気ボ
ートの開口期間、各気筒の吸気通路を連通しかつ膨張波
を圧縮波に反転するための拡大室の位置、両気筒の吸気
ポート間の通路長さ、および上記拡大室から各気筒の吸
気ボートまでの通路長さを適切に設定して、5000〜
7000 rpmのエンジン高回転時、排気干渉効果お
よび吸気個有脈動効果により過給を行うようにすること
により、過給機等を用いることなく既存の吸気系の僅か
な設計変更による極めて簡単な構成でもってエンジンの
高負荷高回転時の充填効率を高めて出力向上を図ること
を目的とするものである。
In other words, the present invention provides a lead intake port as described above.
In the two-cylinder rotary piston engine of the formula, the opening period of the intake boat, the position of the expansion chamber for communicating the intake passages of each cylinder and reversing expansion waves into compression waves, the length of the passage between the intake ports of both cylinders, And by appropriately setting the passage length from the expansion chamber to the intake boat of each cylinder,
When the engine rotates at a high speed of 7,000 rpm, supercharging is performed using the exhaust interference effect and the intake air pulsation effect, allowing for an extremely simple configuration with a slight design change to the existing intake system without using a supercharger etc. The purpose of this is to improve the engine's power output by increasing the charging efficiency when the engine is under high load and rotating at high speeds.

この目的を達成するため、本発明の構成は、2節トロコ
イド状の内周面を備えたロータハウジングと、その両側
に位置し吸気通路が開口′する吸気ボートを備えたサイ
ドハウジングとで形成されたケーシング内を、略三角形
状のロータがエキセントリックシャツ)−に支承されて
遊星回転運動するものであって、各ロータがエキセント
リックシャフトの回転角で180°の位相差を持つ2気
筒ロークリピストンエンジンにおいて、 a、吸気ボートの開口期間θをエキセントリックシャフ
トの回転角で300〜320°の範囲に設定づること す、各気筒の吸気通路をスロットルバルブ下流において
連通する連通路を有する拡大室を設けること C1該連通路およびその下流の吸気通路によって形成さ
れる両気筒の吸気ボート間の通路長さLを0.82〜1
.37mになるように設定すること d、上記拡大室から各気筒の吸気ボー1へまでの吸気通
路の通路長さplを0.41〜0.63和になるにうに
設定づること の条件のもとで、5000〜70001’1)IIIの
エンジン高回転時、一方の気筒の吸気ボー1〜開口時に
吸気通路内に発生ずる圧縮波を一ト記連通路を介して使
方の気筒の全開直前の吸気ボー1〜に伝播させるととも
に、各気筒の吸気ボートの吸気開始により吸気通路内に
発生ずる膨張波を一ヒ記拡大室で反転して反射した圧縮
波2次脈動波を該各気筒の全開直前の吸気ボートに伝播
させることにより過給を行うようにしたもので、よって
気筒相互間の排気干渉効果と各気筒自身の吸気個有脈動
効果との相剰作用によりエンジン高負荷高回転時の充j
眞効率を署しく高めるようにしたものである。
In order to achieve this object, the structure of the present invention is formed by a rotor housing having a two-bar trochoidal inner circumferential surface, and a side housing having intake boats located on both sides of the rotor housing and having intake passages opening therein. A two-cylinder rotary piston engine in which a roughly triangular rotor is supported by an eccentric shaft and performs planetary rotation inside a casing, and each rotor has a phase difference of 180° at the rotation angle of the eccentric shaft. In the following, a. The opening period θ of the intake boat is set in the range of 300 to 320 degrees based on the rotation angle of the eccentric shaft, and an enlarged chamber having a communication passage that communicates the intake passages of each cylinder downstream of the throttle valve is provided. C1 The length L of the passage between the intake boats of both cylinders formed by the communication passage and the intake passage downstream thereof is 0.82 to 1.
.. The length of the intake passage from the enlarged chamber to the intake bow 1 of each cylinder is set to be 0.41 to 0.63. When the engine is running at a high speed of 5000 to 70001'1), the compression wave generated in the intake passage when the intake bow of one cylinder is opened is transmitted through the communication passage just before the cylinder in use is fully opened. At the same time, the expansion wave generated in the intake passage by the start of intake of the intake boat of each cylinder is reversed and reflected in the expansion chamber, and the compression wave secondary pulsating wave is transmitted to the intake bow 1~ of each cylinder. Supercharging is carried out by propagating the air to the intake boat just before full opening, and the interaction between the exhaust interference effect between the cylinders and the individual pulsation effect of each cylinder's own intake air causes supercharging to occur during high engine loads and high rotations. full of
It is designed to significantly increase efficiency.

ここにJ3いて、上記エンジン高回転時としての500
0〜7000rp111の限定は、 fla ニ最高出
力J3よび最高速度がこの範囲に設定されていることか
ら、エンジンの高負荷高回転運転状態であって、充填効
率向上、出力向上に有効な領域であることによるもので
市る。
Here at J3, 500 at the time of high engine speed mentioned above.
Since the maximum output J3 and maximum speed are set within this range, the limit of 0 to 7000 rpm is a high-load, high-speed engine operating state, and is an effective range for improving charging efficiency and output. It depends on the situation.

また、」1記設定事項aでの吸気ボート開口期間θの上
限である320°は、サイド吸気ボートを介して先行作
動室と後続作動室が連通ずるのを防止するためで・、ロ
ータ側面による実質的な開口期間よりサイドシールによ
る開口期間は約40’大きくなり、このサイドシール開
口期間のラップを避けるノζめに間に40’以上の間隔
を設ける必要がある。これ以下にIFi口t’JJ間を
抑さえることにより、サイドシール外側のサイドハウジ
ング内摺面とロータ側面との間の微少間隙(通常200
μ程度)を介しての吸気作動室とそれに続く排気作動室
との連通を防止し、アイドリンクのような低回転低負荷
時における排気ガスの吸気作動室への持ちこみを防+L
 L安定した燃焼を確保でるものである。一方、その下
限は、し≧29.1の関係から後述の(I)式および(
I[>式によりθ≧300゜となるのである。
In addition, the upper limit of the intake boat opening period θ in 1. setting a is 320° to prevent communication between the preceding working chamber and the succeeding working chamber via the side intake boat. The opening period due to the side seal is approximately 40' longer than the actual opening period, and in order to avoid overlapping of the side seal opening period, it is necessary to provide an interval of 40' or more between them. By suppressing the distance between IFi ports t' and JJ to less than this, the minute gap (usually 200
This prevents communication between the intake working chamber and the subsequent exhaust working chamber through the ignition (approximately μ), and prevents exhaust gas from being brought into the intake working chamber during low rotation and low load conditions such as in idle links.
L: It is possible to ensure stable combustion. On the other hand, the lower limit of the equation (I) and (
According to the formula I[>, θ≧300°.

また、上記設定事項1)での連通路を有Jる拡大室のス
ロットルバルブ下流位置設定は、スロワ1ヘルバルブの
存在が圧力波(圧縮波および膨張波)の伝播の抵抗とな
るのでそれを避cノるためであり、圧力波をその減衰を
小さくして有効に伝播させるためである。
In addition, in setting the downstream position of the throttle valve of the expansion chamber with the communication passage in setting item 1) above, the presence of the thrower 1 hell valve acts as resistance to the propagation of pressure waves (compression waves and expansion waves), so it should be avoided. This is to reduce the attenuation of pressure waves and propagate them effectively.

さらに、上記設定事項Cでの雨気筒の吸気ボート間の通
路長さしは、排気干渉効果を稗るように設定されたもの
で、 L=(θ−180−01〕) X (60/36ON)Xc   ・・・(I)の式か
ら求められた値である。すなわち、上記式において、θ
は吸気ボート間口期間でθ−300〜320°であり、
180°は両気筒間の位相差であり、またθ0は無効期
間であって、吸気ボート開口から圧縮波が実質的に発生
ずるまでの期間と効果的に過給を行うために該開口圧縮
波を伝播させる吸気ボー1〜全開直前の時期から全開ま
での期間とを合算したもので約20’である。よって(
θ−180−θ0)は一方の吸気ボートでの圧縮波発生
から他方の吸気ボー1へへの伝播までに要するエキレノ
1〜リツクシレフトの回転角度を表わす。また、Nはエ
ンジン回転数でN=5000〜7ooorpmrあり、
60/36ONは1°回転するのに要する時間〈秒)を
表わす。また、Cは圧縮波の伝播速度〈音速)であって
、20°CT″C=343m/sである。これらの値か
ら、し−0゜82〜1.37711となる。
Furthermore, the length of the passage between the intake boats of the rain cylinder in setting item C above was set to examine the exhaust interference effect, and L = (θ-180-01) x (60/36ON )Xc... is the value determined from the formula (I). That is, in the above formula, θ
is θ-300 to 320° during the intake boat frontage period,
180° is the phase difference between both cylinders, and θ0 is the ineffective period, which is the period from the intake boat opening until the compression wave is substantially generated, and the period when the opening compression wave is used to effectively perform supercharging. The sum of the period from the time immediately before full opening to the time from the time immediately before full opening to full opening, which propagates the intake bow 1, is approximately 20'. Therefore (
.theta.-180-.theta.0) represents the rotation angle of the electric engine 1 to the pump left required from generation of a compression wave at one intake boat to propagation to the other intake boat 1. Also, N is the engine rotation speed, N = 5000 to 7ooorpmr,
60/36ON represents the time (seconds) required to rotate 1°. Further, C is the propagation velocity (sonic speed) of the compression wave, and is 20° CT''C=343 m/s. From these values, -0°82 to 1.37711.

さらにまた、上記設定事項dでの拡大室と各気筒の吸気
ボー1〜どの間の通路長さ91は、2次脈動波にJ:る
吸気個有脈動効果を得るように設定されたちのぐ、 91−(θ−θ+ )’X60/36ONxcX1/2
Z    ・・・(IF’)の式から求められた値であ
る。すなわら、−F間代において、吸気ポート開口期間
θ−300〜320°であり、またθ1は吸気ボート間
口から膨張波が発生するまでの期間と該膨張波を反転し
た圧縮波の2次脈動波が伝播される吸気ポート全開自前
から全開までの期間とを合算した無効期間であって、0
1哄100°であり、よって(θ−01)は膨張波発生
から圧縮波の2次脈動波伝拙にでに要づるエキセントリ
ックシャツ1−の回転角度を表わ一す。また、エンジン
回転数N=5000〜70QQrpn+で、上記(I>
式と同様に60/36 ONは1°回転づ−るのに要す
る時間(秒)を表ねり。
Furthermore, the passage length 91 between the enlarged chamber and the intake bow 1 to which of each cylinder in the setting item d above is set to obtain the unique intake pulsation effect on the secondary pulsation wave. , 91-(θ-θ+)'X60/36ONxcX1/2
Z is a value determined from the formula (IF'). In other words, in the -F clocus, the intake port opening period θ is -300 to 320°, and θ1 is the period from the intake boat frontage until the expansion wave is generated, and the secondary compression wave which is the inversion of the expansion wave. An invalid period that is the sum of the period from when the intake port is fully opened to when the pulsating wave is propagated, and is 0.
One wave is 100 degrees, and therefore (θ-01) represents the rotation angle of the eccentric shirt 1 required from the generation of the expansion wave to the propagation of the secondary pulsation wave of the compression wave. In addition, at engine speed N=5000 to 70QQrpn+, the above (I>
Similar to the formula, 60/36 ON represents the time (seconds) required to rotate 1 degree.

また、圧力波の伝播速度c =343m /s  (2
0℃)である。さらに、lは脈動波の正の次数で2次脈
動を利用するのでZ=2ぐあり、1/21は2次脈動が
2往復する行程の逆数を表ねり。Jζって、これらの値
から、N+=0.4’l〜0.63mとなる。
In addition, the propagation speed of the pressure wave c = 343 m / s (2
0°C). Furthermore, since l is the positive order of the pulsating wave and uses the secondary pulsation, Z=2, and 1/21 represents the reciprocal of the stroke of the secondary pulsation going back and forth twice. From these values, Jζ becomes N+=0.4'l to 0.63m.

尚、ここで、本発明において、吸気個有脈動効果を得る
に当って2次脈動を用いる理由は、1次脈動は上記効果
が大である反面、通路長さ夕1が長くなりすぎ、2次脈
動の場合に対して2倍の長ざとなるのr車載性が悪く、
また吸気抵抗を増加させる傾向がある。一方、3次脈動
は通路長さplが2次脈動に対して2/3の長さに短く
なる反面、2次脈動に対して」−記効果が約15〜25
%程度低■し、また吸気抵抗がさほど変わらない。
Here, in the present invention, the reason why secondary pulsation is used to obtain the intake-specific pulsation effect is that while primary pulsation has the above-mentioned effect, the passage length 1 becomes too long, and 2 The length is twice as long as in the case of next pulsation, which makes it difficult to mount on a vehicle.
It also tends to increase intake resistance. On the other hand, for tertiary pulsation, the path length pl is shortened to 2/3 of that for secondary pulsation, but on the other hand, the effect is approximately 15 to 25
% is low, and the intake resistance does not change much.

このことから、通路長さρ1を可及的に短くしながら吸
気個有脈動効果を有効に発揮させるためである。
For this reason, the purpose is to effectively exhibit the intake-specific pulsation effect while making the passage length ρ1 as short as possible.

また、(i)、(II)式では、圧力波の伝播に対する
吸入空気の流れの影響を無視している。これは、流速が
音速に化べて小さく、吸気通路の長さにほとんど変化を
もたらさないためである。
Furthermore, in equations (i) and (II), the influence of the flow of intake air on the propagation of pressure waves is ignored. This is because the flow velocity is small when converted to the velocity of sound, and causes almost no change in the length of the intake passage.

以下、本発明を図面に示覆実施例に基づいて詳細に説明
づる。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図d3よび第2図において、1Aおよび1Bはサイ
1z吸気ボー1一式の2気筒ロークリピストンエンジン
における第1気筒および第2気筒であって、各気筒1△
、1Bは、各々、2節トロコイド状の内周面2aを備え
たロータハウジング2と、その両側に位置し低負荷用お
よび高負荷用吸気ポート3a 、3bを備えたサイドハ
ウジング4,4とで形成されたケーシング5内を、略三
角形状のロータ6がエキセントリックシャツ1へ7に支
承されて遊星回転運動し、かつ各気筒IA、1Bのロー
タ6.6はエキセントリックシャフ1−7の回転角ぐ1
80°の位相差を持ち、上記各ロータ6の回転に伴って
ケーシング5内を3つの作動室8゜8.8に区画して、
各々の気筒1A、IBにおいて上記130°の位相差で
もって吸気、圧縮、爆発、膨張および排気の各行程を順
次行うものである。尚、9は各気筒1A、IBにおいて
ロータハウジング2に開設された排気ボー1−110お
よび11はリーディング側およびトレーリング側点火プ
ラグ、12はロータ6の側面に装着されたリーイドシー
ル、13はロータ6の各頂部に装着されたアペックスシ
ール、14はロータ6の各頂部両側面に装着されたコー
ナシールである。
In Fig. 1 d3 and Fig. 2, 1A and 1B are the first and second cylinders in a two-cylinder rotary piston engine with a size 1z intake bow 1 set, and each cylinder 1△
, 1B each include a rotor housing 2 having a two-bar trochoidal inner peripheral surface 2a, and side housings 4, 4 located on both sides thereof and having low-load and high-load intake ports 3a and 3b. Inside the formed casing 5, a substantially triangular rotor 6 is supported by the eccentric shaft 1 at 7 and performs planetary rotation, and the rotor 6.6 of each cylinder IA, 1B rotates around the rotation angle of the eccentric shaft 1-7. 1
With a phase difference of 80°, the inside of the casing 5 is divided into three working chambers of 8° 8.8° as each rotor 6 rotates,
The intake, compression, explosion, expansion, and exhaust strokes are sequentially performed in each cylinder 1A and IB with a phase difference of 130°. In addition, 9 is the exhaust bow 1-110 opened in the rotor housing 2 in each cylinder 1A, IB, and 11 is the leading side and trailing side spark plug, 12 is the lead seal attached to the side of the rotor 6, and 13 is the rotor 6 Apex seals 14 are attached to the top of the rotor 6, and corner seals 14 are attached to both sides of the top of the rotor 6.

上記各気筒IA、IBの高負荷用吸気ボート3b近くに
は該高負荷用吸気ボート3bの開口面積を可変制御する
回転バルブ15が配設され、該回転バルブ15にはエン
ジン排圧に応じて回転バルブ15を作動制御するダイヤ
フラム装置よりなるアクチュエータ16が連結され゛(
おり、エンジン排圧に応じて高負荷用吸気ボート3bの
開口面積を可変制御し、エンジン高負荷時には400O
rpm以上で該高負荷用吸気ポート3bの開口面積を全
開づるようにしている。また、上記各気筒1A。
A rotary valve 15 for variably controlling the opening area of the high-load intake boat 3b is disposed near the high-load intake boat 3b of each cylinder IA, IB. An actuator 16 consisting of a diaphragm device that controls the operation of the rotary valve 15 is connected (
The opening area of the high-load intake boat 3b is variably controlled according to the engine exhaust pressure, and the opening area of the high-load intake boat 3b is adjusted to 400 O when the engine is under high load.
The opening area of the high-load intake port 3b is fully opened at rpm or higher. Moreover, each cylinder 1A mentioned above.

IBの低負荷用および高負荷用吸気ポート3a。IB low load and high load intake ports 3a.

3bはロータ6側面にJ:って開閉され、エンジンの高
負荷高回転時(5000〜7000 ppmのエンジン
高回転時)にd5いて該吸気ボー1〜38,3bの間口
期間θはエキセントリックシャフト7の回転角で300
〜320°の範囲に設定されている。
3b is opened and closed by J: on the side of the rotor 6, and when the engine is under high load and at high revolutions (at high engine revolutions of 5,000 to 7,000 ppm), it is d5. 300 at a rotation angle of
It is set in the range of ~320°.

一方、17は■アクリーナ、18は両気筒1A。On the other hand, 17 is ■Acrina, and 18 is both cylinders 1A.

1Bに吸気を供給するための主吸気通路であって、該主
吸気通路18には吸入空気量を検出するエアフローメー
タ1つおよびその下流に吸入空気量を制御リ−るスロッ
トルバルブ20が配設されている。
1B, the main intake passage 18 is provided with one air flow meter for detecting the amount of intake air and a throttle valve 20 downstream thereof for controlling the amount of intake air. has been done.

上記主吸気通路18は等長の第1および第2吸気通路1
8a、18bに分岐されたのら上記各気筒IA、Bの低
負荷用および高負荷用吸気ポート3a、3bを介して各
気筒1△、1Bの作動室8に連通されている。また、該
第1および第2吸気通路18a、18bにはそれぞれ上
記エアフローメータ19の出力に応じて燃わI噴1!K
Ifnを制御覆る電磁弁式の燃料噴射ノズル21.21
が配設されている。
The main intake passage 18 has first and second intake passages 1 of equal length.
The intake ports 8a and 18b are connected to the working chambers 8 of the cylinders 1Δ and 1B via the low-load and high-load intake ports 3a and 3b of the cylinders IA and B, respectively. Further, the first and second intake passages 18a and 18b are filled with combustion I injection 1! according to the output of the air flow meter 19, respectively. K
Solenoid valve type fuel injection nozzle that controls Ifn 21.21
is installed.

そして、上記主吸気通路18の分岐部はスロットルバル
ブ20下流に位置し、該分岐部は、第1吸気通路18a
と第2吸気通路18bとを連通りる連通路22を右する
拡大室23によって構成されている。上記連通路22の
通路面積は圧力波(排気干渉効果での圧縮波)をその減
衰を小さくして有ダ1に伝達するように第1.第2吸気
通路18a、18bの最小)m路面積と同等かそれ以上
に設定されている。また、上記拡大室23の容積は、エ
ンジン排気量に対して0.5〜2倍(低負荷用および高
負荷用の2系統の吸気ボート3a 、 3bを設けた場
合ではその1−一タルで)に設定されてJ3す、0.5
倍以下では膨張波の圧縮波への反転効果が?!7られな
い一方、2 イIS以上では圧力波が拡散してしまい吸
気個有脈動効果が著しく低下することに依る。また、上
記拡大室23は、エンジンの加速時又は減速時等の過渡
運転時における吸入空気のザージタンクとして機能し、
燃料の良好な応答性を確保づるものである。
The branch part of the main intake passage 18 is located downstream of the throttle valve 20, and the branch part is located downstream of the first intake passage 18a.
It is constituted by an enlarged chamber 23 on the right side of a communication passage 22 which communicates with the second intake passage 18b. The passage area of the communication passage 22 is set such that the pressure wave (compression wave due to exhaust interference effect) is transmitted to the cylinder 1 with reduced attenuation. It is set to be equal to or larger than the minimum (m) road area of the second intake passages 18a, 18b. In addition, the volume of the expansion chamber 23 is 0.5 to 2 times the engine displacement (in the case where two systems of intake boats 3a and 3b for low load and high load are provided, 1 - 1 tal). ) is set to J3, 0.5
Is there an effect of reversal of the expansion wave to the compression wave below the double? ! On the other hand, at IS of 2 or more, the pressure waves are diffused and the unique pulsation effect of the intake air is significantly reduced. Further, the expansion chamber 23 functions as a surge tank for intake air during transient operation such as during acceleration or deceleration of the engine,
This ensures good fuel response.

また、上記両気筒1Δ、1[3の吸気ボート3a。Further, the intake boat 3a of both cylinders 1Δ, 1[3.

31)と3a 、3bとの間の通路長さしは、連通路2
2の通路長さ92と該連通路22下流の第1および第2
吸気通路1(’3a、18bの各通路長さ91.91と
を加棹したものとなり(L = 924−291)、該
通路長さしは、5000〜7000rpmのエンジン高
回転時を基準として上記<I)式%式% ) ( に設定されている。尚、この場合、上記通路長さQ+J
′3よび92はそれぞれ各通路の中心良さをとっている
31) and 3a, 3b is the communication path 2.
2 passage length 92 and the first and second passage lengths downstream of the communication passage 22.
The length of each passage in intake passage 1 ('3a and 18b is 91.91) is lengthened (L = 924-291), and the passage length is the same as above based on the engine high rotation of 5000 to 7000 rpm. <I) Formula % Formula % ) ( is set to . In this case, the above passage length Q + J
'3 and 92 respectively take the center height of each passage.

加えて、上記第1.第2吸気通路18a、18bの通路
長さ91、つまり該各吸気通路18a。
In addition, the above 1. Passage length 91 of the second intake passages 18a, 18b, that is, each intake passage 18a.

181)の拡大室23への開口端面から作動室8への開
口(低負荷用、高負荷用吸気ポート3a、3h)までの
通路長さρ1は、5000〜7000ppmのエンジン
高回転時を基準として上記(I[)式から 9、+ −(−(300〜320)−100))X60
/360X (5000〜7000)X343X1/2
X2 〜0.41〜0.63 (mj に設定されている。
The passage length ρ1 from the opening end face to the expansion chamber 23 of 181) to the opening to the working chamber 8 (low-load and high-load intake ports 3a, 3h) is based on the engine high speed of 5000 to 7000 ppm. From the above formula (I[), 9, + − (− (300 to 320) − 100))
/360X (5000~7000)X343X1/2
X2 ~0.41~0.63 (set to mj.

尚、第2図中、24は排気ポー1−9に接続された排気
通路、25は排気通路24の途中に介設された触媒装@
(図示せず)を補助する排気浄化用の拡大マニホールド
である。
In FIG. 2, 24 is an exhaust passage connected to the exhaust port 1-9, and 25 is a catalyst device interposed in the middle of the exhaust passage 24.
(not shown) is an enlarged manifold for exhaust gas purification.

次に、その作用を第3図により説明Jるに、高出力を要
する5000〜7000 rpmのエンジン高回転時、
一方の気筒例えば第2気筒1Bの吸気ボーl〜3a 、
3b開口時に第2吸気通路18b内に発生した開口時圧
縮波は、両気筒1A、IBの吸気ボート3a 、3bと
3a 、3bとの間の通路長さLを上記5000〜70
00 ppmのエンジン高回転時を基準として上記(I
>式により0.82〜1.37mに設定したことにより
、第2吸気通路’18b→拡大室23の連通路22→第
1吸気通路18aを経て、180°の位相差をもつ第1
気筒1Δの全開直前の吸気ボート3a 、3bに伝播さ
れる。それと同時に、第1気筒1△において、吸気ボー
]〜3a、3bの吸気開始により第1吸気通路18a内
に発生した膨張波は、該吸気ボート3a 、3bと拡大
室23との間の通路長さIl+を5000〜7000 
rpmのエンジン高回転時を基準として上記(II)式
により0.41〜0.63mに設定したことにより、第
1吸気通路18a→拡大空23(圧縮波に反転反射)→
第1吸気通路18a−+吸気ボー1−3a、3b(膨張
波に反転層IJII )→第1吸気通路18a→拡大室
23(圧縮波に反転層9A)→第1吸気通路18aを経
て、圧縮波の2次脈動圧縮波として該第1気筒1△の全
開直前吸気ボート3a、3bに伝播される。その結果、
上記開口圧縮波および2次脈動圧縮波により、吸気が全
開直前の第1気筒1Aの吸気ボート3a。
Next, the effect will be explained with reference to Fig. 3.When the engine rotates at a high speed of 5000 to 7000 rpm, which requires high output,
Intake balls 1 to 3a of one cylinder, for example, the second cylinder 1B,
The opening compression wave generated in the second intake passage 18b when 3b is opened increases the passage length L between the intake boats 3a, 3b and 3a, 3b of both cylinders 1A and IB to the above 5000 to 70 mm.
The above (I
> By setting the range to 0.82 to 1.37 m using the formula, the first intake passage with a phase difference of 180° is
It is propagated to the intake boats 3a and 3b just before the cylinder 1Δ is fully opened. At the same time, in the first cylinder 1△, an expansion wave generated in the first intake passage 18a due to the start of intake from the intake boats 3a, 3b spreads along the path length between the intake boats 3a, 3b and the expansion chamber 23. Sa Il + 5000-7000
By setting the range to 0.41 to 0.63 m using the above formula (II) based on the high engine speed of rpm, the first intake passage 18a → expanded air 23 (inverted reflection in compression wave) →
First intake passage 18a-+Intake bow 1-3a, 3b (inversion layer IJII for expansion waves) → First intake passage 18a → Expansion chamber 23 (inversion layer 9A for compression waves) → Compression via the first intake passage 18a The wave is propagated as a secondary pulsating compression wave to the intake boats 3a and 3b of the first cylinder 1Δ just before full opening. the result,
Due to the opening compression wave and the secondary pulsating compression wave, the intake boat 3a of the first cylinder 1A is just before the intake is fully opened.

3bより作動室8内へ押し込まれて過給が行われること
になる。同様に、第2気筒1Bにおいても、全開直前の
吸気ボート3a 、3bに、第1気筒1Aからの開口時
圧縮波および第2気筒1B自身の2次脈動圧縮波が伝播
されて過給が行われる。
3b into the working chamber 8 to perform supercharging. Similarly, in the second cylinder 1B, the opening compression wave from the first cylinder 1A and the second pulsating compression wave of the second cylinder 1B itself are propagated to the intake boats 3a and 3b just before full opening, and supercharging is performed. be exposed.

したがって、このように、各気筒1’A、1Bにおいて
、全開直前の吸気ボーt−3a、3bに対重る排気干渉
効果および吸気個有脈動効果による過給効果によって、
第4図に示すようにエンジンの高負荷高回転時(500
0〜7000rpm )での充填効率が著しく増大して
出力を大巾に向上させることができる。尚、第4図では
、各気筒の吸気通路を独立させて6000 rpmを基
準として2次の吸気個有脈動効果のみを得るにうにした
場合(破線で示す)に対して、これに加えて6000r
pmを基i1tとして排気干渉効果を得るようにした場
合(実線で示す)におけるエンジンの出力トルク特性を
示す。
Therefore, in each cylinder 1'A, 1B, due to the supercharging effect due to the exhaust interference effect and the intake individual pulsation effect on the intake boats t-3a, 3b just before full opening,
As shown in Figure 4, when the engine is under high load and at high rotation speeds (500
The charging efficiency in the range from 0 to 7000 rpm is significantly increased, and the output can be greatly improved. In addition, in Fig. 4, in contrast to the case where the intake passages of each cylinder are made independent to obtain only the second-order intake pulsation effect with reference to 6000 rpm (as shown by the broken line), in addition to this, 6000 r.p.m.
The output torque characteristics of the engine are shown when the exhaust interference effect is obtained (indicated by a solid line) using pm as the base i1t.

また、上記連通路22を有Jる拡大室23は、スロット
ルバルブ20下流に位置するので、該スロワ1〜ルバル
ブ20によって圧力波が減衰されることがなく、上記排
気干渉効果および吸気個有脈動効果を有効に発揮するこ
とができ、過給効果の確実化を図ることができる。
Further, since the expansion chamber 23 having the communication passage 22 is located downstream of the throttle valve 20, the pressure waves are not attenuated by the throttle valve 1 to the throttle valve 20, and the exhaust interference effect and intake pulsation occur. The effect can be effectively exhibited, and the supercharging effect can be ensured.

また、上記排気干渉効果および吸気個有脈動効果による
過給効果は、各気筒1A、IBの吸気ボート3a、3b
の開口期間、第1吸気通路18aと第2吸気通路18b
どを連通ずる連通路22を有する拡大室23の位置、並
びに両気筒1A、1B(7)吸気ボート3a 、3b 
、!::3a 、3bとの間の通路長さLおJ:び上記
拡大室23と吸気ボート3a、3bとの間の通路長さp
lを上述の如く設定りることによって得られ、過給機等
を要さないので、既存の吸気系の僅かな設計変更で済み
、構造が極めて簡単なものであり、よって容易にかつ安
価に実施でき、構造の簡略化およびコストダウン化を大
1Jに図ることができる。
In addition, the supercharging effect due to the exhaust interference effect and the intake individual pulsation effect is as follows:
During the opening period, the first intake passage 18a and the second intake passage 18b
The position of the expansion chamber 23 having the communication passage 22 communicating with both cylinders 1A and 1B (7) and the intake boats 3a and 3b.
,! :: Passage length L between the expansion chamber 23 and the intake boats 3a and 3b J: Passage length p between the expansion chamber 23 and the intake boats 3a and 3b
This can be achieved by setting l as described above, and since a supercharger or the like is not required, only a slight design change to the existing intake system is required, and the structure is extremely simple, making it easy and inexpensive. It is possible to simplify the structure and reduce costs to a large extent of 1J.

ざらに、第3図においては、各気筒1△、113のおい
て吸気ボート3a 、3bの閉口時に吸気の慣性により
発生する閉口時圧縮波を、一方の気筒1△(1B)から
他方の気筒1B(1Δ)の全開直前(上述の開口時圧縮
波の伝播時より以前)の吸気ボー1−3a、3bに伝播
させて過給を行うにうにしており(吸気慣性効果という
)、一層の出ツノ向上を図ることができる。
Roughly speaking, in FIG. 3, the compression wave generated by the inertia of intake air when the intake boats 3a and 3b are closed in each cylinder 1Δ, 113 is transferred from one cylinder 1Δ (1B) to the other cylinder. 1B (1Δ) is propagated to the intake bows 1-3a and 3b immediately before full opening (before the propagation of the compression wave at the time of opening mentioned above) to perform supercharging (referred to as the intake inertia effect), which further increases the It is possible to improve the output.

尚、本発明は上記実施例に限定されるものではなく、そ
の他種々の変形例をも包含するものである。例えば、上
記実施例では燃料噴射式のロータリピストンエンジンに
適用した例を示したが、気化器式のものにも適用できる
のは勿論のことである。しかし、燃料噴射式の場合、上
記実施例の如く燃わ1噴射ノズル21を連通路22(拡
大室23)下流の吸気通路18a、18bに設けること
によって、該吸気通路18a、18bの通路長さρ1が
長くなることによる燃料の応答性の悪化を防止できるの
で好ましい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, an example was shown in which the present invention was applied to a fuel injection type rotary piston engine, but it goes without saying that the present invention can also be applied to a carburetor type engine. However, in the case of the fuel injection type, by providing the combustion 1 injection nozzle 21 in the intake passages 18a, 18b downstream of the communication passage 22 (enlarged chamber 23) as in the above embodiment, the passage length of the intake passages 18a, 18b can be increased. This is preferable because deterioration in fuel responsiveness due to an increase in ρ1 can be prevented.

また、」−記丈施例は、各気筒1A、1Bそれぞれ一つ
の吸気通路18a、18bを持つ一系統の吸気システム
を持つものであるが、それらとは別のもう一つの吸気通
路を設けて2系統にターる場合にはその両方又は何れが
一方が排気干渉効果および吸気個有脈動効果を得るよう
に設定4ればよく、本発明目的を十分に達成し得る。但
し、2系統のであって各吸気ボー1〜開口時期が異なる
場合には閉口時期の遅い方に」:記効果を得るように設
定すると大きな効果がある。
In addition, although the embodiment described above has one intake system having one intake passage 18a, 18b for each cylinder 1A, 1B, another intake passage separate from these is provided. When using two systems, it is sufficient to set 4 so that one or both of them can obtain the exhaust interference effect and the intake air unique pulsation effect, and the object of the present invention can be fully achieved. However, if there are two systems and the opening timings of each intake port are different, it is very effective to set the opening timing to the later opening timing.

加えて、各気筒の吸気ボートの開口時期は上死点後エキ
セントリックシャフトの回転角で30〜60”のW!囲
に設定することが充填効率の向上を図る上で好ましい。
In addition, in order to improve charging efficiency, it is preferable to set the opening timing of the intake boat of each cylinder to a W! range of 30 to 60'' at the rotation angle of the eccentric shaft after top dead center.

また、吸排気オーバラップ期間はエキセントリックシャ
フトの回転角で0〜20°の範囲に設定することが、充
填効率の向上を図るとともに、グイリュージョンガスの
持込み量を少なくしてエンジン低負荷時の失火を防止で
きるので好ましい。
In addition, setting the intake/exhaust overlap period to a range of 0 to 20 degrees in terms of the rotation angle of the eccentric shaft improves charging efficiency and reduces the amount of illusion gas brought in to prevent misfires at low engine loads. This is preferable because it can prevent.

以上説明したように、本発明によれば、サイド吸気ボー
1〜式の2気筒ロータリビス1〜ンエンジンにおいて、
5000〜7000rpmのエンジン高回転時、一方の
気筒の吸気ボートの開口時に発生する圧縮波を他方の気
筒の全開直前の吸気ボーl〜に伝播さげるとともに、各
気筒の吸気ボー1−の吸気開始により発生覆る脈動波を
反転した圧縮波の2次脈動波を該各気筒の全開直前の吸
気ボー1−に伝播させて、排気干渉効果と吸気個有脈動
効果とにより過給効果が得られるので、過給機等を用い
ずに既存の吸気系の僅かな設計変更による極めて簡単な
構成でもって、エンジン高負荷高回転時の充填効率を箸
しく高めて出力向上を大11]に図ることができ、よっ
て−[ンジン出力向上対策の容易かつ有効実施化並びに
コストダウン化に大いに寄与するものである。
As explained above, according to the present invention, in a side intake bow type two-cylinder rotary rev engine,
When the engine rotates at a high speed of 5000 to 7000 rpm, the compression wave generated when the intake boat of one cylinder opens is propagated to the intake bowl 1- of the other cylinder just before it is fully opened, and at the same time, the compression wave generated when the intake boat of one cylinder is opened is propagated to the intake boat 1- of the other cylinder when the intake starts. The secondary pulsating wave of the compression wave, which is the inversion of the generated pulsating wave, is propagated to the intake bow 1- of each cylinder just before full opening, and the supercharging effect is obtained by the exhaust interference effect and the intake unique pulsating effect. With an extremely simple configuration made by making slight design changes to the existing intake system without using a supercharger, it is possible to significantly increase the charging efficiency at high engine loads and high rotations, and to increase the output by a large 11%. Therefore, it greatly contributes to easy and effective implementation of engine output improvement measures and cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体説明図、第
2図は全体概略構成図、第3図は第1および第2気筒の
吸気行程を示す説明図、第4図は本発明にJ:る出力ト
ルク特性を示すグラフである。 1Δ・・・第1気筒、1B・・・第2気筒、2・・・ロ
ータハウジング、2a・・・2節トロコイド妖内周面、
3a・・・低負荷用吸気ボー1〜.3b・・・高負荷用
吸気ボート、4・・・サイドハウジング、5・・・ケー
シング、6・・・ロータ、7・・・エキセントリックシ
ャフト、18・・・主吸気通路、18.l・・・第1吸
気通路、18b・・・第2吸気通路、20・・・スロッ
トルバルブ、22・・・連通路、23・・・拡大室。 11
The drawings show an embodiment of the present invention, and FIG. 1 is an overall explanatory diagram, FIG. 2 is an overall schematic configuration diagram, FIG. 3 is an explanatory diagram showing the intake stroke of the first and second cylinders, and FIG. 4 is an illustration of the main body. It is a graph showing output torque characteristics according to the invention. 1Δ...1st cylinder, 1B...2nd cylinder, 2...rotor housing, 2a...2-section trochoid inner peripheral surface,
3a...Low load intake bow 1~. 3b... High load intake boat, 4... Side housing, 5... Casing, 6... Rotor, 7... Eccentric shaft, 18... Main intake passage, 18. l...First intake passage, 18b... Second intake passage, 20... Throttle valve, 22... Communication passage, 23... Expansion chamber. 11

Claims (1)

【特許請求の範囲】[Claims] (1)2節トロコイド状の内周部を備えたロータハウジ
ングと、その両側に位置し吸気通路が間口でる吸気ボー
トを備えたサイドハウジングとで形成されたケーシング
内を、略三角形状のロータがエキセントリックシャフト
に支承されて′M星回転運動づ”るものであって、各ロ
ータがエキヒントリックシャフトの回転角で1806の
位相差を持つ2気筒ロータリピストンエンジンにおいて
、 a、吸気ボートの開口期間をエキセントリックシャフト
の回転角で270〜32o°の範囲に設定すること、 b、各気筒の吸気通路をスロットルバルブ下流において
連通づ“る連通路を有する拡大室を設けること、 C0該連通路およびその下流の吸気通路にょっで形成さ
れる雨気筒の吸気ボート間の通路長さを0.82〜1.
377IIになるように設定すること d、上記拡大室から各気筒の吸気ポー1〜までの吸気通
路の通路長さを0.41−0.63用になるように設定
づること の条件のもとで、5000〜7000 romのエンジ
ン高回転時、一方の気筒の吸気ボー1〜開口時に吸気通
路内に発生する圧縮波を上記連通路を介して他方の気筒
の全開直前の吸気ボートに伝播させるとともに、各気筒
の吸気ポー1〜吸気間始により吸気通路内に発生づる膨
張波を上記拡大室で反転して反射した圧縮波の2次脈動
波を該合気筒の全開直前の吸気ボートに伝播さ已ること
により過給を行うようにしたことを特徴とするロータリ
ビスl−フェンジンの吸気装置。
(1) A substantially triangular rotor runs inside a casing formed by a rotor housing with a two-bar trochoidal inner circumferential portion and a side housing with intake boats located on both sides of the rotor housing with an intake passageway opening. In a two-cylinder rotary piston engine that is supported by an eccentric shaft and undergoes 'M-star rotational motion, and each rotor has a phase difference of 1806 at the rotation angle of the eccentric shaft, a. Opening period of the intake boat. B. Setting the rotation angle of the eccentric shaft in the range of 270 to 32 degrees; b. Providing an enlarged chamber having a communication passage that connects the intake passages of each cylinder downstream of the throttle valve; The length of the passage between the intake boats of the rain cylinder formed by the downstream intake passage is 0.82 to 1.
Under the conditions that the length of the intake passage from the expansion chamber to the intake port 1 of each cylinder is set to be 0.41-0.63. When the engine rotates at a high speed of 5,000 to 7,000 ROM, the compression wave generated in the intake passage when the intake bow of one cylinder is opened is propagated through the communication passage to the intake boat of the other cylinder just before it is fully opened. , the expansion wave generated in the intake passage from intake port 1 to intake port of each cylinder is reversed in the expansion chamber, and the secondary pulsating wave of the compression wave is reflected and propagated to the intake port of the joint cylinder just before full opening. An intake device for a rotary vis l-fenjin, characterized in that it performs supercharging by rotating the valve.
JP57181963A 1982-10-15 1982-10-15 Intake device of rotary piston engine Granted JPS5970834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181963A JPS5970834A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181963A JPS5970834A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Publications (2)

Publication Number Publication Date
JPS5970834A true JPS5970834A (en) 1984-04-21
JPS619491B2 JPS619491B2 (en) 1986-03-24

Family

ID=16109925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181963A Granted JPS5970834A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Country Status (1)

Country Link
JP (1) JPS5970834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657297A (en) * 1985-04-25 1987-04-14 Mazda Motor Corporation Rear seat apparatus for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657297A (en) * 1985-04-25 1987-04-14 Mazda Motor Corporation Rear seat apparatus for automobile

Also Published As

Publication number Publication date
JPS619491B2 (en) 1986-03-24

Similar Documents

Publication Publication Date Title
JPS5999034A (en) Intake apparatus for rotary piston engine
JPS6211169B2 (en)
JPS5970834A (en) Intake device of rotary piston engine
JPH0337009B2 (en)
JPH0452377B2 (en)
JPH0337012B2 (en)
JPH0329968B2 (en)
JPH0559249B2 (en)
JPS6326261B2 (en)
JPS5970835A (en) Intake device of rotary piston engine
JPS5979042A (en) Intake apparatus for rotary piston engine
JPS6326262B2 (en)
JPH0337013B2 (en)
JPS6340251B2 (en)
JPS5979041A (en) Intake apparatus for rotary piston engine
JPS5970832A (en) Intake device of rotary piston engine
JPS6340252B2 (en)
JPS5970833A (en) Intake device of rotary piston engine
JPH0337010B2 (en)
JPS5974331A (en) Intake device for rotary engine
JPS5970836A (en) Intake device of rotary piston engine
JPS5979043A (en) Intake apparatus for rotary piston engine
JPS5979044A (en) Intake apparatus for rotary piston engine
JPH0337011B2 (en)
JPS59141726A (en) Intake apparatus for rotary piston engine