JPS5970836A - Intake device of rotary piston engine - Google Patents

Intake device of rotary piston engine

Info

Publication number
JPS5970836A
JPS5970836A JP57181965A JP18196582A JPS5970836A JP S5970836 A JPS5970836 A JP S5970836A JP 57181965 A JP57181965 A JP 57181965A JP 18196582 A JP18196582 A JP 18196582A JP S5970836 A JPS5970836 A JP S5970836A
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
engine
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57181965A
Other languages
Japanese (ja)
Other versions
JPS619493B2 (en
Inventor
Hideo Shiraishi
白石 英夫
Toshimichi Akagi
赤木 年道
Haruo Okimoto
沖本 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57181965A priority Critical patent/JPS5970836A/en
Publication of JPS5970836A publication Critical patent/JPS5970836A/en
Publication of JPS619493B2 publication Critical patent/JPS619493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve the output of an engine from its medium speed range, by both obtaining a supercharge effect through the proper pulsation effect of intake in each cylinder itself and supplementing a decrease of the output in the bottom part of pulsation with an exhaust interference effect mutually between cylinders, when the two-cylinder engine of side intake port type is driven at a high speed. CONSTITUTION:When an engine is driven at a high speed, an expansion wave, generated in passages 16a, 16b by a start of intake of an intake port 3, is repeated with the inversion and reflection to a compression wave by the adequate length of a passage between each intake port 3 and an expansion chamber 21 and propagated to the intake port 3 immediately before full closing in each cylinder 1A, 1B, and an output is improved by its own supercharge effect of the wave. While a compression wave, generated in, for instance, the passage 16b at opening, is propagated to the intake port 3 immediately before full closing with a 180 deg. phase difference in the cylinder 1A by setting the length of a passage between the intake ports 3, 3 from the range of medium speed. In such way, an output at the medium speed being the bottom part between the secondary pulsation and the tertiary pulsation in an intake proper pulsation effect can be improved.

Description

【発明の詳細な説明】 本発明は、ロータリピストンエンジンの吸気装置に関し
、詳しくはナイト吸気ポート式の2気筒ロータリピスト
ンエンジンにJ3いて、吸気通路内に発生づる吸気圧力
波を利用してエンジンの中回転時から高回転時に亙っで
過給効果を得るようにしlζものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a rotary piston engine, and more specifically, for a two-cylinder rotary piston engine with a night intake port type, the present invention relates to an intake system for a rotary piston engine. This invention relates to a device that obtains a supercharging effect from medium rotation to high rotation.

一般に、リーイド吸気ボー1〜式の2気筒ロータリピス
トンエンジンは、2節トロコイド状の内周面を備えた[
1−タハウジングと、その両側に位置し吸気通路が間口
する吸気ポー1−を備えたサイドハウジングとで形成さ
れたケーシング内を、略三角形状のロータがエキセント
リックシャフトに支承されて遊星回転運動覆るものであ
って、かつ各気筒のロータがエキセントリックシャフト
の回転角で180°の位相差を持つものであり、内気筒
間で上記180°の位相差を保ちながら各気筒にあい−
Cロータの回転に伴い吸気、圧縮、爆発、膨張および排
気の各行程を順次行うようにしたものである。
In general, a two-cylinder rotary piston engine with a lead-in intake bow type has a two-section trochoidal inner circumferential surface.
A substantially triangular rotor is supported by an eccentric shaft and performs planetary rotation within a casing formed by a 1-star housing and a side housing equipped with an intake port 1- located on both sides of the casing and having an intake passage. The rotor of each cylinder has a phase difference of 180° in the rotation angle of the eccentric shaft, and the rotor of each cylinder has a phase difference of 180° with respect to the rotation angle of the eccentric shaft.
As the C rotor rotates, intake, compression, explosion, expansion, and exhaust strokes are performed in sequence.

ところで、従来、このようなロータリピストンエンジン
において、吸気通路に過給機を設けて、吸気を過給りる
ことにより、充填効率を高めて出力向上を図ることはよ
く知られているが、過給機装備のために構造が大がかり
となるとともにコストアップとなる嫌いがあった。
By the way, it is well known that conventionally, in such a rotary piston engine, a supercharger is provided in the intake passage to supercharge the intake air, thereby increasing the charging efficiency and increasing the output. The feeding equipment required a large-scale structure and increased costs.

まlζ、従来、吸気圧力波により過給効果を得る技術と
して、実公昭45−’2321号公報に開示されている
ように、単一気筒のロータリビス1−ンエンジンにおい
て、吸気管を刈払の異なる2木の通路に分け、それぞれ
別の吸気ボートを有し、エンジン高回転時は2本の吸気
通路を用い、低回転時は閉塞位置の遅い方の吸気通路を
閉山し、吸気を早目に閉塞することにJ:す、吸気管の
XJ法やエンジン回転数の関数である吸気の最大圧力時
点での吸気の閉塞による過給作用を利用して広範囲の 
 ′エンジン回転域に亙っで好適な充填効率を1qるよ
うにしたものが提案されている。しかし、このものは、
単一気筒のロータリビスミーンエンジンに対するものぐ
あって、吸気通路内で発生づ−る吸気圧力波をどのよう
に利用するのか、その構成1作用が定かでなく、直ちに
実用に供し1りないものであった。しかも、吸気ポート
としてペリポーhを用いているため、吸気ポー1〜は吸
気作動室が閉じる前に排気作動室と連通ずることになり
、排気作動室からの排気ガスの吹き返しにより過給効果
を得ることが困ガ1であった。特に、近年の市販車では
、騒音低減や排気ガス浄化のためにエンジン排圧が上昇
し、高回転高負荷時通常のエンジンで400〜600 
mm HIJ  (ゲージ圧)程度にターボ過給機イ」
エンジンでは1000mml100O以上になっており
、上記ベリポート方式による充填効率向上は期待できな
いものとなっている。
Conventionally, as a technique for obtaining a supercharging effect using intake pressure waves, as disclosed in Japanese Utility Model Publication No. 45-'2321, in a single-cylinder rotary revitalization engine, the intake pipe was brushed. The engine is divided into two passages with different diameters, each with its own intake boat, and when the engine is running at high speeds, the two intake passages are used, and when the engine is running at low rotations, the intake passage that is in the later position is closed to speed up the intake. J: It is possible to prevent eye blockage by using the XJ method of the intake pipe and the supercharging effect caused by the blockage of the intake air at the maximum pressure of the intake air, which is a function of the engine speed.
'A system has been proposed in which the preferred charging efficiency is 1q over the engine rotation range. But this one is
For a single-cylinder rotary visminer engine, it is not clear how to utilize the intake pressure waves generated in the intake passage, and it is not immediately practical. there were. Moreover, since Periport h is used as the intake port, intake ports 1~ communicate with the exhaust working chamber before the intake working chamber closes, and a supercharging effect is obtained by blowing back exhaust gas from the exhaust working chamber. That was the first problem. In particular, in recent commercial vehicles, the engine exhaust pressure has increased to reduce noise and purify exhaust gas, and at high speeds and high loads, a normal engine has a pressure of 400 to 600
mm HIJ (gauge pressure)
In the engine, the amount is 1000 mml100 O or more, and no improvement in filling efficiency by the Veriport method can be expected.

そこで、本発明者等は、ロータリピストンエンジンにお
けるリーイド吸気ボートの吸気特性を検討するに、 (+)  吸気ポー1へ間口時には作動室の残留排気ガ
スの圧力によって吸気が圧縮され、吸気通路内の吸気ポ
ート部分に圧縮波が発生ずること(i)  吸気ポート
の吸気開始により吸気通路内に膨張波が発生づ−ること を知見した。このことから、一方の気筒での上記(+)
の間口時圧縮波を他方の気筒の特に吸気の吹き返しが生
じる全開直前の吸気ボートに作用せしめれば過給効果が
1gられること(以下、排気干渉効果という)、J5よ
び各気筒での上記(n)の膨張波を圧縮波に反転させて
該各気筒の同じく全開直前の吸気ボー1−に作用けしめ
れば過給効果が得られること(以下、吸気個有脈動効果
という)を見い出したのである。上記排気干渉効果は、
近年、エンジンの排気系に排気浄化用の触媒装置が介設
されて排圧が高く設定されている関係上、ぞの効果が大
である。
Therefore, the present inventors studied the intake characteristics of the lead intake boat in a rotary piston engine and found that (+) When the intake port 1 is opened, the intake air is compressed by the pressure of the residual exhaust gas in the working chamber, and the air inside the intake passage is compressed. Compression waves are generated in the intake port portion (i) It has been found that expansion waves are generated in the intake passage when the intake port begins to intake air. From this, the above (+) in one cylinder
If the frontage compression wave is applied to the other cylinder, especially the intake boat just before full opening, where intake air blowback occurs, the supercharging effect will be increased by 1g (hereinafter referred to as exhaust interference effect). It has been discovered that a supercharging effect can be obtained by inverting the expansion wave (n) into a compression wave and applying it to the intake bow 1- of each cylinder just before full opening (hereinafter referred to as the intake individual pulsation effect). It is. The above exhaust interference effect is
In recent years, catalyst devices for purifying exhaust gas have been installed in engine exhaust systems, and the exhaust pressure has been set high, so this effect is significant.

すなわち、本発明は、上記の如きサイド吸気ボート式の
2気筒ロータリビス1−ンエンジンにおいて、吸気ポー
トの開口期間、各気筒の吸気通路を連通しかつ膨張波を
圧縮波に反転するための拡大室の位置、該拡大室から各
気筒の吸気ボートまでの通路長さ、および内気筒の吸気
ボート間の通路長さを適切に設定することにより、50
00〜7000 ppmのエンジン高回転時には吸気個
右脈′vノ効果により、過給を行う一方、該吸気個有脈
動の谷部が生じるエンジン回転時にはそれを補償すべく
排気干渉効果により過給を行い、過給機等を用いること
なく既存の吸気系の僅かな設h]変更による極めて簡単
な構成でもってエンジンの中回転時から高回転11.4
に亙って充填効率を高めて出力向上を図ることを目的と
するものである。
That is, the present invention provides a side-intake boat-type two-cylinder rotary revitalization engine as described above, during which the intake port is opened, the expansion is performed to connect the intake passages of each cylinder and to reverse expansion waves into compression waves. By appropriately setting the position of the chamber, the passage length from the enlarged chamber to the intake boats of each cylinder, and the passage length between the intake boats of the inner cylinders,
At high engine speeds of 00 to 7,000 ppm, supercharging is performed due to the intake pulsation effect, while at engine rotations where the troughs of the intake pulsation occur, supercharging is performed using the exhaust interference effect to compensate for this. With a very simple configuration by making slight changes to the existing intake system without using a supercharger etc., the engine speed can be increased from medium to high speeds of 11.4
The purpose of this is to increase filling efficiency and improve output.

この目的を達成するため、本発明の構成は、2節I−ロ
コイド状の内周面を備えたロータハウジングと、その両
側に位置し吸気通路が開口する吸気ボートを備えたり゛
イドハウジングとで形成されたケーシング内を、略三角
形状の[1−夕がエキセン1〜リツクシt?フトに支承
され′C遊星回転運動するものであって、各日−タがエ
キセントリックシレ71−の回転角で180°の位相差
を持つ2気筒ロータリビス1〜ンエンジンにおいて、 a、吸気ボー1−の間口期間θをエキセン1〜リツクシ
ヤフトの回転角で270〜32o°の範囲に設定するこ
と、 b、スロツI〜ルバルブ下流において各気筒の吸気通路
を連通ずる連通路を有する拡大室を設(プること、 C1該拡大室から各気筒の吸気ボートまでの吸気通路の
通路長さ91を0.35〜0.63mになるように設定
4ること の条件のもとで、5000−7000 r″pmのエン
ジン高回転時、各気筒の吸気ボートの吸気開始により吸
気通路内に発生する膨張波を上記拡大室で反転して反射
した圧縮波の2次脈動波を該合気筒の全開直前の吸気ボ
ートに伝播さuく過給を行う一方、上記圧縮波の2次脈
動波とその3次脈動波との谷部が発生するエンジン回転
時に、一方の気筒の吸気ポート開口時に吸気通路内に発
生ずる圧縮波を上記連通路を介して他方の気筒の全開直
前の吸気ボー1−に伝播させ、過給を行うようにしたも
ので、よって各気筒自身の吸気個有脈動効果と気筒相互
間の排気干渉効果によりエンジンの中回転域から高回転
域に亙って充填効率を高めるようにしたものである。
In order to achieve this object, the configuration of the present invention includes a rotor housing having a two-node I-lochoid inner circumferential surface, and an intake boat located on both sides of the rotor housing with an intake passage opening therein. Inside the formed casing, a substantially triangular shape is formed. In a two-cylinder rotary vis 1 engine which is supported by a shaft and has a planetary rotation movement, and each cylinder has a phase difference of 180° at the rotation angle of an eccentric cylinder 71, a. - Setting the frontage period θ to be in the range of 270 to 32 degrees at the rotation angle of the eccentric 1 to the lift shaft; b. Setting an enlarged chamber having a communication passage that communicates the intake passages of each cylinder downstream of the throttle I to the lever valve. C1 Under the condition that the length 91 of the intake passage from the enlarged chamber to the intake boat of each cylinder is set to 0.35 to 0.63 m, 5000 to 7000 r. When the engine rotates at a high speed of 500 pm, the expansion wave generated in the intake passage by the start of intake from the intake boat of each cylinder is reversed in the expansion chamber and the secondary pulsating wave of the compression wave reflected is generated immediately before the joint cylinder is fully opened. While supercharging is carried out by propagating to the intake boat, when the engine rotates when the trough between the secondary pulsating wave of the compression wave and its tertiary pulsating wave occurs, there is a supercharging inside the intake passage when the intake port of one cylinder is opened. The generated compression wave is propagated through the communication passage to the intake bow 1- of the other cylinder just before it is fully opened, thereby performing supercharging. The exhaust interference effect increases the charging efficiency from the mid- to high-speed range of the engine.

ここにおいて、上記吸気個有脈動効果を冑るエンジン高
回転時としての5000〜7000 ppmの限定は、
一般に最高出力d3.l:び最高速度がこの範囲に設定
されていることから、エンジンの高負荷高回転運転領域
であっC1充填効率向上、出力向上に有効な領域である
ことによる。
Here, the limitation of 5000 to 7000 ppm at high engine speed to eliminate the intake air pulsation effect is as follows:
Generally maximum output d3. 1 and the maximum speed are set within this range, which is a high load, high rotation operating range of the engine, which is an effective range for improving C1 charging efficiency and output.

また、排気干渉効果を得るエンジン回転域N2は、」二
記吸気個右脈動効果での2次脈動を得る5000〜70
00 ppmの範囲内に設定される基準回転数N1どそ
の3次脈動(エンジン回転N+/1.5)との間の谷部
を補償すべく、該谷部を中心(そのエンジン回転域N+
/1.25)にその前後中間までのエンジン回転域に設
定されたもので、J:ってN2 =N+ /(1,25
±0.125)どなる。
In addition, the engine rotation range N2 to obtain the exhaust interference effect is 5000 to 70 to obtain the secondary pulsation in the intake right pulsation effect.
In order to compensate for the valley between the reference rotation speed N1, which is set within the range of 00 ppm, and the third pulsation (engine rotation N+/1.5),
/1.25), and the engine rotation range is set to the middle of the front and back.
±0.125) Howl.

また、上記設定事項aでの吸気ボート開口期間θの設定
は、その下限である270°は吸入上死点(TDC)か
ら下死点(BDC)までの幾何学的な吸気行程の最低期
間であり、有効に吸気を行うためには少なくともこれ以
上に設定する必要がある。一方、上限である320°は
、一つの気筒の連続する二つの作動室が吸気ボートを介
しで連通する、I9!言すれば、各作動室の開口期間が
ラツプリ−るのを防止するためで、ロータ側面による吸
気ボートの実質的な開閉からは開口期間の上限は360
°であるが、ロータ側面に装着されるサイドシールにJ
:る間口期間はそれよりし約40°大きく、このサイド
シールに小る開口期間のラップを避けるために[1−夕
側面による吸気ボー1〜聞[二1期間を32°以下にお
さえる必要がある。開[1明間を320°以下に設定覆
ることにより、リーイドシール外側のロータ側面とサイ
ドハウジング内周面との間の微少間隙を介しての吸気作
動室とその後続の排気作動室の連通を防止し、アイドリ
ング等の低負荷・低回転時にお(〕る吸気作動室への排
気ガスの持ち込みを防止し、安定した燃焼を確保づるこ
とができる1、尚、本発明の吸気ボートの間口期間はロ
ータ側面による吸気ボーl〜の実質的な開閉期間であっ
て、サイドシールによるものではない。これは、本発明
で問題とする高い回転域における有効な、圧力波の発生
伝播に関しては、リーイドシール外側の微少間隙は実質
的に影響1を及ぼさないためである。
In addition, regarding the setting of the intake boat opening period θ in setting item a above, the lower limit of 270° is the minimum period of the geometrical intake stroke from intake top dead center (TDC) to bottom dead center (BDC). Yes, it is necessary to set it at least higher than this in order to effectively inhale. On the other hand, the upper limit of 320° is I9! where two consecutive working chambers of one cylinder communicate through the intake boat! In other words, this is to prevent the opening period of each working chamber from lapping, and the upper limit of the opening period is 360 degrees due to the substantial opening and closing of the intake boat by the side surface of the rotor.
°, but the side seal attached to the side of the rotor has J
:The opening period is about 40 degrees larger than that, and in order to avoid the wrap of the small opening period on this side seal, it is necessary to suppress the intake bow period by 1 to 21 degrees to 32 degrees or less. be. By covering the opening [1 brightness is set to 320° or less, communication between the intake working chamber and the subsequent exhaust working chamber is prevented through the minute gap between the rotor side surface on the outside of the lead seal and the inner peripheral surface of the side housing. Therefore, it is possible to prevent exhaust gas from being brought into the intake working chamber during low loads and low rotations such as idling, and to ensure stable combustion. This is the actual opening/closing period of the intake ball l~ by the side of the rotor, and not by the side seal.This is the effective opening/closing period of the intake ball l~ by the side seal.This is due to the fact that the outside of the lead seal This is because the minute gap does not substantially have the influence 1.

また、上記設定事項すでの連通路を右でる拡大室のスロ
ワ1ヘルバルブ下流位跡設定は、スロワ1〜ルバルブの
存在が圧力波(圧縮波および膨張波)の伝播の抵抗とな
るのでそれを避けるためであり、圧力波をその減衰を小
ざくして有効に伝播させるためである。
In addition, regarding the setting of the downstream position of the throat 1 hell valve of the expansion chamber that exits the communication path to the right in the above settings, the existence of the throat 1 to 1 hell valves acts as a resistance to the propagation of pressure waves (compression waves and expansion waves), so it must be This is to prevent pressure waves from attenuating and propagate them effectively.

さらに、上記設定事項Cでの拡大室と各気筒の吸気ボー
1へ間との通路長さ91は、5000〜700Qrpm
のエンジン高回転時に吸気個有脈動効果を得るにうに設
定されたもので、 9、+−(θ−θj ) X (60/36ON)XC X1/2Z                    
 ・・・ (I>の式から求められた値である。すなわ
ち、上記式において、吸気ポート開口期間θ−270〜
320°であり、θ1は吸気ボー1−開口から膨張波が
発生覆るまでの期間と該膨張波を反転した圧縮波の2次
脈動波が伝播される吸気ポート全閉直前がら全閉までの
1111間とを合算した無効期間であって、θ1ヒ10
0’であり、よって(θ−θ1)は膨張波発生から圧縮
波の2次脈動波伝播までに要するエキセントリックシャ
ツ1〜の回転角度を表わす。
Furthermore, the passage length 91 between the expansion chamber and the intake bow 1 of each cylinder in the above setting C is 5000 to 700 Qrpm.
This is set to obtain a unique intake pulsation effect at high engine speeds. 9, +-(θ-θj)
... This is a value calculated from the formula of (I>. That is, in the above formula, the intake port opening period θ-270~
320°, and θ1 is 1111 from just before the intake port is fully closed to when the second pulsation wave of the compression wave, which is the inversion of the expansion wave, is propagated. θ1hi10
0', and therefore (θ-θ1) represents the rotation angle of the eccentric shirt 1 required from the generation of the expansion wave to the propagation of the secondary pulsating wave of the compression wave.

また、エンジン回転数でN+ =5000〜700Qr
pmで、60/36ON+ は1°回転t ル(1) 
ニ要する時間(秒)を表わす。まlζ、Cは圧力波の伝
播速度でC=343m /s  (20℃)である。
Also, the engine speed is N+ = 5000~700Qr.
pm, 60/36ON+ is 1° rotation (1)
D Represents the time (seconds) required. ζ, C is the propagation velocity of the pressure wave, and C=343 m 2 /s (20° C.).

さらに、2は脈動波の正の次数で2次脈動を利用するの
でZ=2であり、1/21は2次脈動が2往復する行程
の逆数を表わづ。よってこれらの値から、9 + 〜0
.35〜0.63mとなる。
Further, 2 is a positive order of the pulsating wave and since the secondary pulsation is used, Z=2, and 1/21 represents the reciprocal of the stroke in which the secondary pulsation makes two reciprocations. Therefore, from these values, 9 + ~0
.. It will be 35-0.63m.

尚、ここで、本発明において、吸気個有脈動効果を得る
に当って2次脈動を用いる理由は、1次脈動は上記効果
が大である反面、通路長さ91が長くなり1ぎ、2次脈
動の場合に対して2倍の長さとなるので車載性が悪く、
また吸気抵抗を増加させる傾向がある。一方、3次脈動
は通路長さ91が2次脈動に対して2/3の長さに短(
なる反面、2次脈動に対して上記効果が約15〜25%
程度低下し、また吸気抵抗がさほど変わらない。
Here, in the present invention, the reason why secondary pulsation is used to obtain the intake-specific pulsation effect is that while primary pulsation has the above-mentioned effect, the passage length 91 becomes longer, It is twice as long as the next pulsation, making it difficult to mount on a vehicle.
It also tends to increase intake resistance. On the other hand, in the case of tertiary pulsation, the passage length 91 is 2/3 shorter than that of secondary pulsation (
On the other hand, the above effect against secondary pulsation is about 15-25%.
The degree of this decreases, and the intake resistance does not change much.

このことから、通路長さplを可及的にλ0くしながら
吸気個有脈動効果を有効に発揮さけるためである。
For this reason, the purpose is to make the passage length pl as low as λ0 while effectively exerting the unique pulsation effect of the intake air.

さらにまた、上記設定事項dでの山気筒の吸気ポート間
の通路長さLは、5000〜7000rpm/<1.2
5±0.125)のエンジン中回転時に排気干渉効果を
得るように設定されたちのcll−一(θ−180−〇
+) ) X 60 / 360 N 2 X c   −(II
 )の式から求められた値である。すなわち、上記式に
おいて、吸気ポート開口期間θ−270〜320°であ
り、180°は内気筒間の位相差であり、またθ0は無
効期間であって、吸気ポート間口から圧縮波が発生する
までの期間と該開口時圧縮波が伝播される吸気ポーミル
全開直前から全開までの期間とを合算したちのθθ哄2
0°であり、よって(θ−180−00)は一方の吸気
ボー1〜での圧縮波発生から他方の吸気ポートへの伝播
までに要り゛るエキセントリックシトフトの回転角度を
表わす。また、N2 =N+ / (1,25±0.1
25)rpm(N+は5000〜7000 rpmの間
に設定された2次脈動の基準回転数)であり、60/ 
360 N 2は1°回転するのに要J゛る時間(秒)
を表わす。またCは圧縮波の伝播速度(音速)であって
20℃でc=343m/sである。今、最適例として、
N2=4’OOO〜5000ppm (1)場合、これ
らの値から、9.+ 〜0.80〜1.71mとなる。
Furthermore, the passage length L between the intake ports of the mountain cylinder in the above setting d is 5000 to 7000 rpm/<1.2
Our cll-1 (θ-180-〇+)) X 60 / 360 N 2 X c-(II
) is the value obtained from the formula. That is, in the above equation, the intake port opening period is θ-270 to 320°, 180° is the phase difference between the inner cylinders, and θ0 is the invalid period until the compression wave is generated from the intake port opening. and the period from just before full opening of the intake pommill to full opening during which the opening compression wave is propagated.
Therefore, (θ-180-00) represents the rotation angle of the eccentric shift required from generation of the compression wave at one intake port 1 to propagation to the other intake port. Also, N2 = N+ / (1,25±0.1
25) rpm (N+ is the reference rotation speed of secondary pulsation set between 5000 and 7000 rpm), and 60/
360 N2 is the time required to rotate 1 degree (seconds)
represents. Further, C is the propagation velocity (sound velocity) of the compression wave, and is c=343 m/s at 20°C. Now, as a perfect example,
If N2=4'OOO~5000ppm (1), from these values, 9. + ~0.80~1.71m.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図において、1△および1Bはサイド
吸気ポート式の2気筒ロータリビス1−ンエンジンにお
ける第1気筒および第2気筒であって、各気筒1A、1
Bは、各々、2節[−ロコイド状の内周面2aを備えた
ロータハウジング2ど、その両側に位置し後述の吸気通
路16a、16bが開口する吸気ポート3を備えたサイ
ドハウジング4.4とで形成されたケーシング5内を、
略三角形状のロータ6がエキセントリックシト71〜7
に支承されて遊星回転運動し、かつ各気筒1A。
In Figs. 1 and 2, 1△ and 1B are the first and second cylinders in a side intake port type two-cylinder rotary rev engine, and each cylinder 1A, 1
B is a rotor housing 2 having a two-section inner circumferential surface 2a, and a side housing 4.4 having an intake port 3 located on both sides of the rotor housing 2, which has an intake passage 16a, 16b to be described later. The inside of the casing 5 formed by
The approximately triangular rotor 6 is an eccentric seat 71-7
It is supported by a cylinder for planetary rotational movement, and each cylinder 1A.

1Bのロータ6.6はエキセン1〜リツクシ17)l〜
7の回転角で180°の位相差を持ち、上記各[1−タ
ロの回転に伴ってケーシング5内を3つの作動室8.8
.’3に区画して、各々の気筒1△、1Bにおいて上記
180°の位相差でもって吸気、圧縮、爆発、膨張およ
び排気の各行程を順次行うものである。尚、9は各気筒
1A、1Bにおいて1コータハウジング2に開設された
排気ボート、10および11はリーディング側およびト
レーリング側点火プラグ、12はロータ6の側面に装着
された」ノイドシール、13はロータ6の各頂部に装省
された1ペツクスシール、14はロータ6の各頂部両側
面に装着されたコーナシールである。
The rotor 6.6 of 1B is eccentric 1~Rikushi 17)l~
It has a phase difference of 180° at a rotation angle of 7, and as each [1-Taro rotates, three working chambers 8.8
.. In each cylinder 1Δ, 1B, the intake, compression, explosion, expansion, and exhaust strokes are performed sequentially with a phase difference of 180°. In addition, 9 is an exhaust boat established in 1 coater housing 2 in each cylinder 1A, 1B, 10 and 11 are leading side and trailing side spark plugs, 12 is a "noid seal" attached to the side of rotor 6, and 13 is a 1 pixel seals are mounted on each top of the rotor 6, and corner seals 14 are mounted on both sides of each top of the rotor 6.

上記吸気ボート3はロータ6側面(実Z4的にはサイド
シール12)によって開閉され、該吸気ボート3の間D
 1.!IJ間θはエキレントリックシャフト7の回転
角で270〜320°の範囲に設定されている。
The intake boat 3 is opened and closed by the side surface of the rotor 6 (actually the side seal 12), and between the intake boats 3 D
1. ! The IJ interval θ is set in the range of 270 to 320 degrees based on the rotation angle of the eccentric shaft 7.

一方、15はエアクリーナ、16は山気WJ1Δ。On the other hand, 15 is an air cleaner, and 16 is Yamaki WJ1Δ.

1Bに吸気を供給するための主吸気通路であって、該主
吸気通路16には吸入空気量を検出するエアフローメー
タ17およびその下流に吸入空気量を制御J−るスl]
ツ]−ルバルブ18が配設されている。
1B, the main intake passage 16 includes an air flow meter 17 for detecting the amount of intake air, and downstream thereof an air flow meter 17 for controlling the amount of intake air.
A double valve 18 is provided.

上記主吸気通路16は等長の第1および第2吸気通路1
6a、16bに分岐されたのら上記吸気ボート3,3を
介して各気筒IA、1Bの作動室8゜8に連通されてお
り、また、該第1および第2吸気通路i5a、161)
にはそれぞれ上記エアフロ−メータ17の出力に応じて
燃料噴側量を制御する電磁弁式の燃料噴射ノズル19.
19が配設されているう ぞして、上記主吸気通路16の分岐部はスロットルバル
ブ18下流に位置し、該分岐部は、第1吸気通路16a
と第2吸気通路161]とを連通りる連通路20を有す
る拡大室21によって構成されている。上記連通路20
の通路面積は圧力波(排気干渉効果での圧縮波)をその
減衰を小さくして有効に伝達するように第1.第2吸気
通路16a、16t)の最小通路面積と同等かそれ以上
に設定されている。また、上記拡大室21の容積は、エ
ンジン排気量に対して0.5〜2倍に設定されており、
0.5倍以下では膨張波と圧縮波間の反転効果が得られ
ない一方、2倍以上では圧力波が拡散してしまい吸気個
有脈動効果が著しく低下することに依る。また、上記拡
大室21は、エンジンの加速時又(よ減速時等の過渡運
転時にd5りる吸入空気のザージタンクとして機能し、
燃i3+の良好な応答性を確保するものである。
The main intake passage 16 has first and second intake passages 1 of equal length.
The first and second intake passages i5a and 161) are branched into the first and second intake passages i5a and 16b, and are connected to the working chambers 88 of the cylinders IA and 1B via the intake boats 3 and 3, respectively.
are each equipped with an electromagnetic valve type fuel injection nozzle 19 that controls the amount of fuel injected according to the output of the air flow meter 17.
19 is arranged, the branch part of the main intake passage 16 is located downstream of the throttle valve 18, and the branch part is located downstream of the first intake passage 16a.
and a second intake passage 161]. The above communication path 20
The passage area of the first section is designed to effectively transmit pressure waves (compression waves due to exhaust interference effect) by reducing their attenuation. It is set to be equal to or larger than the minimum passage area of the second intake passages 16a, 16t). Further, the volume of the expansion chamber 21 is set to 0.5 to 2 times the engine displacement,
If it is less than 0.5 times, the reversal effect between expansion waves and compression waves cannot be obtained, while if it is more than 2 times, the pressure waves will be diffused, and the unique pulsation effect of the intake air will be significantly reduced. Further, the expansion chamber 21 functions as a surge tank for intake air during transient operation such as during engine acceleration or deceleration,
This ensures good responsiveness of the fuel i3+.

また、上記第1.第2吸気通路16a、16tiの通路
長さ9.1、つまり該各吸気通路16a、161)の拡
大室21への開口端面から作動蛮8への聞1コく吸気ボ
ー1〜3)までの通路長さ9+は、5000〜7000
 ppmのエンジン高回転時を基準として上記(I)式
から U+=((270〜3201− 100)X60/36
0X (5000〜7000)X343X1/2X2 − 〇 、  35〜0.  63  (m)に設定さ
れている。
Also, the above 1. The passage length 9.1 of the second intake passages 16a, 16ti, that is, the distance from the opening end surface of each intake passage 16a, 161) to the enlarged chamber 21 to the intake bow 1 to 3) to the operating bar 8 is 9.1. Passage length 9+ is 5000 to 7000
Based on the above formula (I), U+ = ((270 ~ 3201 - 100)
0X (5000~7000)X343X1/2X2 - 〇, 35~0. 63 (m).

さらに、上記山気筒IA、1Bの吸気ボート3゜3間の
通路長さしは、連通路20の通路長さ92と該連通路2
0下流の第1および第2吸気通路16a、1611の各
通路長さ9+、9+ とを加算したものとなり<L=9
2 +2Q+ >、該通路長さ1−は、2次脈動を得る
基準回転数N1の1/(1゜25±0.125’)の回
転域N2で、(II)式から求める値に設定されている
。尚、この場合、上記通路長さ91および92はそれぞ
れ各通路の中心長さをとっている。
Furthermore, the passage length between the intake boats 3.3 of the mountain cylinders IA and 1B is the passage length 92 of the communication passage 20 and the passage length 92 of the communication passage 20.
0 downstream of the first and second intake passages 16a, 1611, each passage length 9+, 9+ is added <L=9
2 +2Q+ >, the passage length 1- is set to a value obtained from equation (II) in a rotation range N2 of 1/(1°25±0.125') of the reference rotation speed N1 for obtaining secondary pulsation. ing. In this case, the passage lengths 91 and 92 are each the center length of each passage.

尚、第2図中、22は排気ポー1−〇に接続された排気
通路、23は排気通路22の途中に介設された触媒装置
く図示せず)を補助づる排気浄化用の拡大マニホールド
である。
In Fig. 2, 22 is an exhaust passage connected to the exhaust ports 1-0, and 23 is an enlarged manifold for exhaust purification that assists a catalyst device (not shown) interposed in the middle of the exhaust passage 22. be.

次に、上記実施例の作用を第3図により説明するに、5
000〜7000 ppmのエンジン高回転時には、第
1およq第2気筒1△、IBにおいて各吸気ボーI〜3
の吸気開始により第1.第2吸気通路16a、16b内
に発生した膨張波は、該各吸気ボート3と拡大室21と
の間の通路長さ91を5000〜7000 rl)mの
エンジン高回転時を基準として」上記(1)式により0
.35〜0.63Trlに設定したことにより、第1.
第2吸気通路16a、16b→拡大室21(圧縮波に反
転して反*i > →第1.第2吸気通路16a、16
b→吸気ボート3(膨張波に反転して反射)→第1.第
2吸気通路16a、16b→拡大室21(圧縮波に反転
して反!)l)→第1.第2吸気通路16a。
Next, the operation of the above embodiment will be explained with reference to FIG. 5.
At high engine speeds of 000 to 7000 ppm, each intake bow I to 3 in the first and q second cylinders 1△ and IB
1st due to the start of inspiration. The expansion waves generated in the second intake passages 16a and 16b are caused by the passage length 91 between each intake boat 3 and the expansion chamber 21 being 5,000 to 7,000 rl) m at high engine speed. 1) 0 by formula
.. By setting it to 35 to 0.63Trl, the first.
2nd intake passages 16a, 16b → expansion chamber 21 (inverted to compression wave, reverse *i > → 1st and 2nd intake passages 16a, 16
b → Intake boat 3 (reflected as an expansion wave) → 1st. Second intake passages 16a, 16b→expansion chamber 21 (reverse to compression wave!)l)→first. Second intake passage 16a.

16bを経−C1圧縮波の2次脈動波としτ合気筒1Δ
、113の全閉直前の吸気ボート3に伝播される。その
結果、この2次脈動圧縮波により、全開直前の各気筒1
△、1Bの吸気ボート3がらの吸気の吹き返しが抑制さ
れて吸気が作動室8内へ押し込まれ、つまり過給が行わ
れることになる。にって、各気筒1△、IB自身での吸
気個有脈動効果による過給効果により、5000〜70
00 rpmのエンジン高回転時での充填効率が増大し
て出力を向上させることができる。
16b is the secondary pulsating wave of the -C1 compression wave, and τ joint cylinder 1Δ
, 113 is propagated to the intake boat 3 immediately before fully closing. As a result, this secondary pulsating compression wave causes each cylinder to open just before full opening.
Δ, blowback of the intake air from the intake boat 3 of 1B is suppressed and the intake air is forced into the working chamber 8, that is, supercharging is performed. Therefore, each cylinder 1△, due to the supercharging effect due to the unique intake pulsation effect in IB itself, 5000 to 70
The charging efficiency at high engine speeds of 0.00 rpm increases and the output can be improved.

また、上記5000〜7ooorpmの間で設定された
2次脈動の基tp=回転数N1よりも低い回転域では、
一方の気筒例えば第2気筒1Bの吸気ポート3開口時に
第2吸気通路16b内に発生した間口時圧縮波は、内気
筒1△、1Bの吸気ボート3.3間の通路長さしを上記
基ハ(回転数N1の1/(1,25±0.125)の回
転域で上記(II>式により定まる所定長さに設定した
ことにより、第2吸気通路16b→拡大室21の連通路
20→第1吸気通路16aを経て、180°の位相差を
もつ第1気筒1Aの全開直前の吸気ボーh 3に伝播さ
れる。その結果、この圧縮波により、全開直前の第1気
筒1Aの吸気ボー1へ3からの吸気の吹き返しが抑制さ
れ、吸気が作動室B内へ押し込まれて過給が行われる。
In addition, in the rotation range lower than the secondary pulsation base tp = rotation speed N1 set between 5000 and 7ooorpm,
The frontage compression wave generated in the second intake passage 16b when the intake port 3 of one cylinder, for example, the second cylinder 1B, is opened is based on the passage length between the intake boats 3.3 of the inner cylinder 1Δ and 1B. By setting the predetermined length determined by the above formula (II> in the rotation range of 1/(1,25±0.125) of the rotation speed N1, the communication passage 20 from the second intake passage 16b to the expansion chamber 21 → Via the first intake passage 16a, it is propagated to the intake bow h3 of the first cylinder 1A just before full opening, which has a phase difference of 180°.As a result, this compression wave causes the intake air of the first cylinder 1A just before full opening. The blowback of the intake air from 3 to BO 1 is suppressed, and the intake air is forced into the working chamber B to perform supercharging.

続いて、第1気筒1△の吸気ボート3の間口時に発生ず
る圧縮波も同様に第2気筒IBの全開直前の吸気ボート
3に伝播されて過給が行われる。以後同様にして、気筒
1△。
Subsequently, the compression wave generated at the frontage of the intake boat 3 of the first cylinder 1Δ is similarly propagated to the intake boat 3 of the second cylinder IB just before it is fully opened, and supercharging is performed. After that, do the same for cylinder 1△.

1B相互間での排気干渉効果による過給効果により、」
:記吸気個有脈動効果での2次脈動とその3次脈動との
谷部に相当づるエンジン中回転時での充填効率を充足補
償して出力の向上を図ることができる。
Due to the supercharging effect due to the exhaust interference effect between 1B,
: It is possible to improve the output by sufficiently compensating for the filling efficiency during engine rotation, which corresponds to the valley between the secondary pulsation and its tertiary pulsation in the intake-specific pulsation effect.

したがって、第4図に示すように、各気筒IA。Therefore, as shown in FIG. 4, each cylinder IA.

1Bにおいて、エンジン高回転時(5000へ一700
Orpm>での全開直前の吸気ボート3に対づる吸気個
有脈動効果(破線で示す)による出力向上に加えて、該
吸気個有脈動効果での2次脈動とその3次脈動どの谷部
に相当゛づるエンジン回転時での全開直前の吸気ボー1
−3に対する排気干渉効果(実線で示す)にJ:す」上
記谷部での出力低下を補足して出力向上させ、よってエ
ンジンの中回転域から高回転域に亙って出力向上を図る
ことができる。尚、第4図は、吸気個有脈動効果を60
0Q rpmを% i%として冑るJ:うに設定した場
合の■ンシン出力トルク特性を示す。
1B, at high engine speed (5000 to 700
In addition to the output improvement due to the intake individual pulsation effect (indicated by the broken line) on the intake boat 3 just before full opening at the Intake bow 1 just before full opening when the engine speed is considerably high
-3 to the exhaust interference effect (shown by the solid line) J: Supplements the output decrease in the valley above and improves the output, thereby improving the output from the mid-speed range to the high-speed range of the engine. I can do it. In addition, Fig. 4 shows the intake pulsation effect at 60%.
0Q rpm is set as %i% and the output torque characteristics are shown below.

J、た、上記連通路2oを有する拡大室21は、スロワ
1−ルバルブ18下流に位置するので、該スロットルバ
ルブ18によって圧力波が減衰されることがなく、上記
排気干渉効果および吸気個有脈動効果を有効に発揮Jる
ことができ、過給効果の確実化を図ることができる。
Since the enlarged chamber 21 having the communication passage 2o is located downstream of the throttle valve 18, the pressure waves are not attenuated by the throttle valve 18, and the exhaust interference effect and intake air pulsation are reduced. The effect can be effectively exhibited, and the supercharging effect can be ensured.

また、十記Jlll気干渉効果および吸気個有脈動効果
による過給効果は、各気筒1A、IBの吸気ボー1〜3
の間[1明間、第1吸気通路16aと第2吸気通路16
bとを連通ずる連通路2oを有する拡大室21の位置、
並びに内気筒IA、1Bの吸気ボート3.3間の通路長
さしおよび上記拡大室21と吸気ボート3との間の通路
長さ91を上述の如く設定することにJ:ろて得られ、
過給機等を要さないので、既存の吸気系の僅かな設g1
変史C済み、構造が極めて簡単なものであり、よって容
易にかつ安価に実施でき、構造の簡略化J5よびコスト
ダウン化を大巾に図ることがc′きイ)。
In addition, the supercharging effect due to the air interference effect and the intake air pulsation effect is
Between [1 light interval, first intake passage 16a and second intake passage 16
the position of the expansion chamber 21 having the communication path 2o communicating with b;
In addition, by setting the passage length between the intake boats 3 and 3 of the inner cylinders IA and 1B and the passage length 91 between the expansion chamber 21 and the intake boat 3 as described above,
Since there is no need for a turbocharger, etc., the existing intake system can be slightly installed.
Since the structure is extremely simple, it can be implemented easily and inexpensively, and it is possible to simplify the structure and reduce costs to a large extent.

尚、本発明は上記実施例に限定されるものではなく、そ
の他種々の変形例をも包含りるものである。例えば、上
記実施例では燃料噴射式の1]−タリピストンエンジン
に適用した例を示したが、気化器式のものにも適用でき
るのは勿論のことである。しかし、燃料噴射式の場合、
上記実施例の!1.1.1く燃料噴射ノズル19を連通
路20(拡大室21)下流の吸気通路16a 、 l 
6bに段(プることにJ。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, an example was shown where the present invention was applied to a fuel injection type 1]-taly piston engine, but it goes without saying that the present invention can also be applied to a carburetor type engine. However, in the case of fuel injection type,
The above example! 1.1.1 The fuel injection nozzle 19 is connected to the communication passage 20 (enlarged chamber 21) downstream of the intake passage 16a, l.
Step 6b (Puto J.

って、該吸気通路16a、16bの通路長さ91が長く
なることにJ:る燃料の応答性の悪化を防止できるので
好ましい。
This is preferable because it is possible to prevent deterioration in fuel responsiveness caused by the passage length 91 of the intake passages 16a, 16b becoming longer.

また、上記実施例では、各気筒1Δ、7Bに対し1系統
の吸気ボート3を設けた場合について述べたが、本発明
は各気筒に対し低負荷用と高負荷用との2系統の吸気通
路を設ける場合にも適用できる。この場合、2系統の吸
気系の両方又はいずれか一方がJjl気干渉効果および
吸気個有脈動効果を冑るJ:うに設定づればJ:い。但
し、2系統の吸気ボー1〜の閉1」時期が異なるものに
あっては閉口時期の)ヱい方に上記効果を得るように設
定することが好ましい。
Further, in the above embodiment, a case was described in which one system of intake boats 3 was provided for each cylinder 1Δ, 7B, but the present invention provides two systems of intake passages for each cylinder, one for low load and one for high load. It can also be applied when installing. In this case, if both or one of the two intake systems is set to suppress the Jjl air interference effect and the intake air unique pulsation effect. However, if the closing timings of the two systems are different, it is preferable to set the closing timing of the two systems so as to obtain the above effect.

加えて、各気筒の吸気ボートの間口時期は上死点後エキ
セン1ヘリツタシャフトの回転角で30〜60’の範囲
に設定することが充填効率の向上を図る上で好ましい。
In addition, in order to improve charging efficiency, it is preferable to set the frontage timing of the intake boat of each cylinder to a range of 30 to 60' in terms of the rotation angle of the eccentric 1 helical shaft after top dead center.

また、吸排気オーバラップ期間はエキレノ1〜リツクシ
11フトの回転角でO〜20°の範囲に設定することが
、充填効率の向上を図るとともに、タイリュージョンガ
スの持込み量を少なくしてエンジン低負荷時の失火を防
止できるので好ましい。
In addition, setting the intake/exhaust overlap period in the range of 0 to 20 degrees at a rotation angle of 1 to 11 feet will improve charging efficiency, reduce the amount of taillusion gas brought in, and lower the engine temperature. This is preferable because it can prevent misfires under load.

以上d1明したように、本発明によれば、サイド吸気ボ
ート式の2気筒ロータリピストンエンジンにおいて、5
000〜7000ppmのエンジン高回転時に各気筒自
身の吸気個有脈動効果により過給効果を(qるとともに
、該吸気個有脈動効果での2次脈動と3次脈動との谷部
に相当するエンジン回転時には気筒相互間の排気干渉効
果により上記谷部での出力低下をうめるよう過給効果を
1ワるJ:うにしたので、過給(幾等を要さずに既存の
吸気系の僅かな設計変更による極めて簡単なl/、を成
でもって、エンジンの中回転域から高回転域に亙って充
1i効率を高めて出力向上を図ることができ、よってエ
ンジン出力向上対策の容易実施化およびロス1〜ダウン
化に大いに寄与できるしので・ある。
As explained above, according to the present invention, in a side-intake boat type two-cylinder rotary piston engine,
At high engine speeds of 000 to 7000 ppm, each cylinder's own intake pulsation effect increases the supercharging effect (q), and at the same time, the engine During rotation, the supercharging effect is increased by 1 to compensate for the decrease in output at the valley due to the exhaust interference effect between the cylinders. By making an extremely simple design change, it is possible to improve the efficiency and output from the mid- to high-speed range of the engine, making it easy to implement measures to improve engine output. This is because it can greatly contribute to reducing losses from 1 to 1.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は全体説明図、第
2図は全体概11g構成図、第3図は第1 J5よび第
2気筒の吸気行程を示す説明図、第4図は本発明による
出力トルク特性を示すグラフであるっ1A・・・第1気
筒、1B・・・第2気筒、2・・・ロータハウジング、
2a・・・2節トロコイド状内周而、3・・・吸気ボー
ト、4・・・サイドハウジング、5・・・ケーシング、
6・・・ロータ、7・・・エキセントリックシャ71〜
.16・・・主吸気通路、16a・・・第1吸気通路、
16b・・・第2吸気通路、18・・・スロットルバル
ブ、20・・・連通路、21・・・拡大室。 =211
The drawings show an embodiment of the present invention, and FIG. 1 is an overall explanatory diagram, FIG. 2 is an overall schematic diagram of 11g, FIG. 3 is an explanatory diagram showing the intake stroke of the first J5 and the second cylinder, and FIG. is a graph showing the output torque characteristics according to the present invention. 1A...first cylinder, 1B...second cylinder, 2...rotor housing,
2a...Two-section trochoidal inner periphery, 3...Intake boat, 4...Side housing, 5...Casing,
6...Rotor, 7...Eccentric shaft 71~
.. 16... Main intake passage, 16a... First intake passage,
16b... Second intake passage, 18... Throttle valve, 20... Communication passage, 21... Expansion chamber. =211

Claims (1)

【特許請求の範囲】[Claims] (1)2節トロコイド状の内周面を備えたロータハウジ
ングと、その両側に位置し吸気通路が間口する吸気ポー
トを備えたサイドハウジングとで形成されたケーシング
内を、略三角形状のロータがエキセントリックシせフト
に支承されて遊星回転運動するものであって、各ロータ
がエキセントリックシVフトの回転角で18o°の位相
差を持つ2気筒ロータリピストンエンジンにa3いて、 a、吸気ボートの開口期間をエキセントリックシャツ1
〜の回転角で270〜320°の範囲に設定すること、 b、スロワ1−ルバルブ下流において各気筒の吸気通路
を連通する連通路を有する拡大室を設りること、 C5該拡大室から各気筒の吸気ボートまでの吸気通路の
通路長さを0.35〜0.63TIIになるように設定
すること の条件のもとで、5000〜7000rl)nlのエン
ジン高回転時、各気筒の吸気ボー1−の吸気開始により
吸気通路内に発生する膨張波を上記拡大室で反転して反
射した圧縮波の2次脈動圧縮波を該合気筒の全開直前の
吸気ボートに伝播させて過給を行う一方、上記圧縮波の
2次脈動波とその3次脈動波との谷部が発生するエンジ
ン回転時に、一方の気筒の吸気ボー1〜間口時に吸気通
路内に発生ずる圧縮波を−F記連通路を介して他方の気
筒の全開直前の吸気ボートに伝播さu1過給を行うよう
にしたことを特徴どする[−1−タリピストンエンジン
の吸気Ha。
(1) A substantially triangular rotor runs inside a casing formed by a rotor housing with a two-section trochoidal inner circumferential surface and a side housing with intake ports located on both sides of the rotor housing with intake ports opening into intake passages. A 2-cylinder rotary piston engine is supported by an eccentric shaft and rotates planetarily, and each rotor has a phase difference of 18° at the rotation angle of the eccentric shaft. Eccentric shirt period 1
B. Providing an enlarged chamber having a communication passage that communicates the intake passages of each cylinder downstream of the throttle valve; C5. Under the condition that the length of the intake passage to the intake boat of each cylinder is set to 0.35 to 0.63 TII, the intake bow of each cylinder is Supercharging is performed by inverting the expansion wave generated in the intake passage by the start of intake in step 1- and propagating the second pulsating compression wave of the reflected compression wave to the intake boat just before the joint cylinder is fully opened. On the other hand, when the engine rotates when the trough between the secondary pulsating wave and the tertiary pulsating wave of the compression wave occurs, the compression wave generated in the intake passage during the intake bow 1 to the opening of one cylinder is connected to -F. [-1-Intake Ha of the Talypiston engine.
JP57181965A 1982-10-15 1982-10-15 Intake device of rotary piston engine Granted JPS5970836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181965A JPS5970836A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181965A JPS5970836A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Publications (2)

Publication Number Publication Date
JPS5970836A true JPS5970836A (en) 1984-04-21
JPS619493B2 JPS619493B2 (en) 1986-03-24

Family

ID=16109960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181965A Granted JPS5970836A (en) 1982-10-15 1982-10-15 Intake device of rotary piston engine

Country Status (1)

Country Link
JP (1) JPS5970836A (en)

Also Published As

Publication number Publication date
JPS619493B2 (en) 1986-03-24

Similar Documents

Publication Publication Date Title
JPS5999034A (en) Intake apparatus for rotary piston engine
JPS6211169B2 (en)
JPS5970836A (en) Intake device of rotary piston engine
JPH0452377B2 (en)
JPH0337009B2 (en)
JPH0559249B2 (en)
JPH0337012B2 (en)
JPS6326261B2 (en)
JPS5970834A (en) Intake device of rotary piston engine
JPH0329968B2 (en)
JPH0337013B2 (en)
JPS5970833A (en) Intake device of rotary piston engine
JPS6326262B2 (en)
JPS5979042A (en) Intake apparatus for rotary piston engine
JPS5979043A (en) Intake apparatus for rotary piston engine
JPS5974331A (en) Intake device for rotary engine
JPS5979041A (en) Intake apparatus for rotary piston engine
JPH0337010B2 (en)
JPH0452374B2 (en)
JPS6340252B2 (en)
JPS5970835A (en) Intake device of rotary piston engine
JPS60222524A (en) Suction device of engine
JPH0452372B2 (en)
JPS5979036A (en) Intake apparatus for engine
JPH0452376B2 (en)