JPS5979038A - Intake apparatus for engine - Google Patents

Intake apparatus for engine

Info

Publication number
JPS5979038A
JPS5979038A JP57190618A JP19061882A JPS5979038A JP S5979038 A JPS5979038 A JP S5979038A JP 57190618 A JP57190618 A JP 57190618A JP 19061882 A JP19061882 A JP 19061882A JP S5979038 A JPS5979038 A JP S5979038A
Authority
JP
Japan
Prior art keywords
intake
load
cylinder
passage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57190618A
Other languages
Japanese (ja)
Other versions
JPH0452375B2 (en
Inventor
Hideo Shiraishi
白石 英夫
Haruo Okimoto
沖本 晴男
Toshimichi Akagi
赤木 年道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57190618A priority Critical patent/JPS5979038A/en
Publication of JPS5979038A publication Critical patent/JPS5979038A/en
Publication of JPH0452375B2 publication Critical patent/JPH0452375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/116Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To raise the charging efficiency of an engine over a wide range of engine operation from its medium-speed operation to high-speed operation, by utilizing the effect of interference between cylinders that is caused by a high- load intake system at the time of high speed operation of the engine and the effect of interference beween cylinders that is caused by a low-load intake system at the time of low-speed operation of the engine. CONSTITUTION:Compression wave produced near a high-load intake port 14 when a high-load intake valve 20 of a second cylinder 1B is opened is transmitted to a high-load intake port 14 of a first cylinder 1A at the end of suction stroke via a second high-load intake passage 10b, a connecting passage 16 and a first high-load intake passage 10a. On the other hand, compression wave produced near a low-load intake port 13 of an intake passage 9b when a low-load intake valve of the second cylinder 1B is opened is transmitted to a low-load intake port 13 of the first cylinder 1A at the end of suction stroke via the second low-load intake passage 9b, a connecting passage 18 and a first low-load intake passage 9a.

Description

【発明の詳細な説明】 本発明は、エンジンの吸気装置に関し、特に低負荷用と
高負荷用との2系統の独立した吸気通路を備えた多気筒
エンジンにおいて吸気通路内に発生する吸気圧力波を利
用してエンジンの中回転域から高回転域に亘って過給効
果を得るようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake system, and in particular to a multi-cylinder engine equipped with two independent intake passages, one for low load and one for high load. This invention relates to an engine that utilizes this to obtain a supercharging effect from the medium rotation range to the high rotation range of the engine.

一般に、多気筒エンジンにおいて、各気筒へ独立して開
口する2系統の低負荷用吸気通路と高負荷用吸気通路と
を有する吸気通路を備え、該吸気通路は、少なくとも低
負荷用吸気通路を流れる吸気量を変化させる1次弁と、
高負荷用吸気通路を流れる吸気量を変化させる2次弁と
を有しており、エンジンの低負荷時には、上記1次弁の
みを開作動して通路面積の狭い低負荷用吸気通路のみか
ら吸気を各気筒に供給することにより、吸気流速を速め
て燃焼安定性を向上させる一方、エンジンの高負荷時に
は、上記2次弁をも間作前して高負荷用吸気通路からも
吸気の供給を行うことにより、充填効率を高めて出力向
上を図るようにした。いわゆるデュアルインダクション
方式の吸気システムはよく知られている。
Generally, a multi-cylinder engine includes an intake passage having two systems, a low-load intake passage and a high-load intake passage, which open independently to each cylinder, and the intake passage has at least a low-load intake passage. A primary valve that changes the amount of intake air,
It has a secondary valve that changes the amount of intake air flowing through the high-load intake passage, and when the engine is under low load, only the above-mentioned primary valve opens and intake air is taken only from the low-load intake passage with a narrow passage area. By supplying air to each cylinder, the intake flow rate is increased and combustion stability is improved. At the same time, when the engine is under high load, the above-mentioned secondary valve is also pre-intercropped to supply intake air from the high-load intake passage as well. By doing so, we were able to increase filling efficiency and improve output. So-called dual induction air intake systems are well known.

ところで、従来、エンジンの充填効率向」二、出力向」
二ヲ図るべく吸気通路に過給機を設けて吸気を過給する
技術はよ(知られているが、過給機装備のため、構造が
犬がかりとなるとともにコストアップとなる嫌いがあっ
た。
By the way, conventionally, the engine's charging efficiency has been improved.
In order to achieve this, the technology of supercharging the intake air by installing a supercharger in the intake passage is known (although it is known, the structure is complicated and the cost increases due to the supercharger being installed). .

また、従来、エンジンの吸気通路内に発生する吸気圧力
波により過給効果を得る技術として、実公昭45−23
21号公報に開示されているように、単一気筒エンジン
において、吸気管を寸法の異なる2本の通路に分け、か
つそれぞれ別の吸気ポートを有し、エンジン高回転時は
2本の吸気通路を用い、低回転時には閉塞位置の遅い方
の吸気通路を閉止し吸気を早目に閉塞することによム吸
気管の寸法やエンジン回転数の関数である吸気の最大圧
力時点での吸気の閉塞による過給作用を利用して広範囲
のエンジン回転域に亘って好適な充填効率を得るように
したものか提案されている。
In addition, as a technology to obtain a supercharging effect by the intake pressure waves generated in the intake passage of the engine,
As disclosed in Publication No. 21, in a single-cylinder engine, the intake pipe is divided into two passages with different dimensions, each having a separate intake port, and when the engine rotates at high speeds, the intake pipe is divided into two passages with different dimensions. At low engine speeds, the intake passage with the later closing position is closed and the intake air is blocked early, thereby blocking the intake air at the point of maximum intake pressure, which is a function of the intake pipe dimensions and engine speed. It has been proposed to obtain suitable charging efficiency over a wide range of engine speeds by utilizing the supercharging effect of .

しかし、このものは1.単一気筒のエンジンに対するも
のであって、吸気通路内に発生する吸気圧力波をどのよ
うに利用するのか、その構成、作用が定かでなく、直ち
に実用に供し得々いものであった。
However, this one is 1. It was designed for a single-cylinder engine, and its structure and operation were unclear, such as how to utilize the intake pressure waves generated in the intake passage, and it was difficult to immediately put it into practical use.

そこで、本発明者等は、エンジンの吸気特性を検討する
に、 (1)吸気ポート開口時には燃焼室の残留排気がスの圧
力によって吸気が圧縮され、吸気通路内の吸気ポート部
分に圧縮波が発生しており、この開口時圧縮波は、近年
の市販車では碕音低減や排気ガス浄化のためにエンジン
排圧が高くなっていることから特に強く発生すること(
11)吸気ポート閉口時には吸気の慣性により吸気が圧
縮されて吸気通路内の吸気ポート部分に圧縮波が発生す
ること を知見した。
Therefore, when examining the intake characteristics of the engine, the inventors found that: (1) When the intake port is opened, the residual exhaust gas in the combustion chamber is compressed by the pressure of gas, and a compression wave is generated at the intake port part in the intake passage. This compression wave at the time of opening is particularly strong in recent commercial vehicles due to the increased engine exhaust pressure to reduce rustling noise and purify exhaust gas (
11) It was found that when the intake port is closed, the intake air is compressed due to the inertia of the intake air, and a compression wave is generated at the intake port portion in the intake passage.

このことから、本発明は、上記の如き2系統の独立した
吸気通路を備えた多気筒エンジンにおいて、一つの気筒
での上記(1)の開口時圧縮波を他気筒の特に吸気の吹
き返しが生じる吸気行程終期に作用せしめれば効果的に
過給効果が得られること(以下、排気干渉効果という)
、および一つの気筒での上記(11)の閉口時圧縮波を
稚気筒の同じ(吸〜 気行程終期に作用せしめれば効果的に過給効果が得られ
ること(以下、吸気慣性効果という)に着目し、この気
筒間干渉効果(排気干渉効果および吸気慣性効果)を利
用することによってエンジンの充填効率向上を意図する
ものである。
Therefore, in a multi-cylinder engine equipped with two independent intake passages as described above, the present invention is capable of converting the compression wave of the above (1) when opening in one cylinder to other cylinders, in particular, causing intake air to blow back. A supercharging effect can be effectively obtained if it is applied at the end of the intake stroke (hereinafter referred to as the exhaust interference effect).
, and that a supercharging effect can be effectively obtained by applying the closing compression wave of (11) above in one cylinder to the same period (from the intake to the end of the air stroke) in the young cylinder (hereinafter referred to as the intake inertia effect). The aim is to improve the engine filling efficiency by focusing on this inter-cylinder interference effect (exhaust interference effect and intake inertia effect).

すなわち、本発明の目的は、上記の如き2系統の吸気通
路を備えた多気筒エンジンの吸気系を、低負荷用および
高負荷用吸気系統の一方においてエンジン高回転域で、
他方においてそれより低回転域でそれぞれ」−記の如(
一つの気筒の開口に生しる圧力波(開ロ時圧縮波、開口
時圧縮波)を吸気行程終期にある他気筒に有効に伝播さ
せて効果的に過給効果を得るように設定することにより
、過給機等を用いることな(既存の吸気系の僅かな設計
変更による簡単々構成でもって、エンジンの中回転域か
ら高回転域に亘って充填効率を高めて出力向上を有効に
図らんとするものである。
That is, an object of the present invention is to improve the intake system of a multi-cylinder engine having two intake passages as described above, in one of the low-load and high-load intake systems in a high engine rotation range.
On the other hand, in the lower rotation range, respectively'' - as shown (
Settings are made so that the pressure waves generated at the opening of one cylinder (compression wave when opening, compression wave when opening) are effectively propagated to other cylinders at the end of the intake stroke to effectively obtain a supercharging effect. This makes it possible to effectively improve output by increasing charging efficiency from the mid- to high-speed range of the engine, without using a supercharger, etc. (with a simple configuration by making slight design changes to the existing intake system). It is intended to be

この目的を達成するため、本発明の構成は、各気筒へ独
立して開口する低負荷用吸気通路と高負荷用吸気通路と
を有する吸気通路を備え、該吸気通路は、少な(とも低
負荷用吸気通路を流れる吸気量を変化させる1次弁と、
高負荷用吸気通路を流れる吸気量を変化させる2次弁と
を有するエンジンの吸気装置であって、上記1次弁およ
び2次弁の下流において各気筒の低負荷用吸気通路同志
および高負荷用吸気通路同志をそれぞれ各吸気通路の最
小通路面積以上の通路面積を持つ連通路で連通し、該連
通路を介しての各気筒間の低負荷用吸気通路および高負
荷用吸気通路の通路長さを、いずれか一方が5000〜
7000rpmのエンジン高回転時に一つの気筒の開口
に生じる圧力波が吸気行程終期にある他気筒に伝播して
過給を行うとともに、他方が」1記5000〜7000
 rpm  の間に設定した基準回転数よりも1000
〜2000rpm低回転側で一つの気筒の開口に生じる
圧力波が吸気行程終期にある他気筒に伝播して過給を行
うように設定したもので、低負荷用および高負荷用吸気
系統の一方の高回転域での気筒間干渉効果と、他方のそ
れより低回転域での気筒間干渉効果とKよってエンジン
の中回転域から高回転域に亘って充填効率を効果的に高
めるようにしたものである。
In order to achieve this object, the configuration of the present invention includes an intake passage having a low-load intake passage and a high-load intake passage that open independently to each cylinder, and the intake passage has a low-load intake passage and a high-load intake passage. a primary valve that changes the amount of intake air flowing through the intake passage;
An intake system for an engine having a secondary valve that changes the amount of intake air flowing through a high-load intake passage, the engine having a secondary valve that changes the amount of intake air flowing through a high-load intake passage, and downstream of the primary valve and the secondary valve, the low-load intake passage of each cylinder and the high-load intake passage. The intake passages are connected to each other by a communication passage having a passage area larger than the minimum passage area of each intake passage, and the passage length of the low-load intake passage and the high-load intake passage between each cylinder via the communication passage. , either one is 5000~
When the engine rotates at a high speed of 7000 rpm, the pressure wave generated at the opening of one cylinder propagates to the other cylinder at the end of the intake stroke, supercharging it, and the other cylinder
1000 more than the reference rotation speed set between rpm
It is set so that the pressure wave generated at the opening of one cylinder at the low speed side of ~2000 rpm propagates to the other cylinder at the end of the intake stroke to perform supercharging. The inter-cylinder interference effect in the high-speed range, and the inter-cylinder interference effect in the lower-speed range, effectively increases the charging efficiency from the mid-speed range to the high-speed range of the engine. It is.

ここにおいて、上記気筒間干渉効果を得るエンジン高回
転時としての5000〜7000rpmの限定は、一般
に最高出力および最高速度かこの範囲に設定されている
ことから、エンジンの高負荷高回転領域であって高出力
を要し、充填効率向上、出力向上に有効な領域であるこ
とによる。
Here, the limitation of 5000 to 7000 rpm as the engine high speed to obtain the above-mentioned inter-cylinder interference effect is generally set within this range of maximum output and maximum speed. This is because it requires high output and is an effective area for improving filling efficiency and output.

また、」1記低負荷用吸気通路と高負荷用吸気通路とを
1次弁および2次弁の下流において独立にする理由は、
各気筒の低負荷用および高負荷用吸気通路でそれぞれ発
生した圧力波が他方に分散したり、相互に干渉し合って
弱まるのを防止するためであり、特に低負荷用吸気通路
と高負荷用吸気通路とはデュアルインダクション吸気シ
ステムでの要求の違いから吸気ポートの開閉タイミング
や長さが異なり、一方の圧力波が他方によって減少させ
られることになるからである。
In addition, the reason for making the low-load intake passage and the high-load intake passage independent in the downstream of the primary valve and the secondary valve is as follows.
This is to prevent the pressure waves generated in the low-load and high-load intake passages of each cylinder from dispersing to the other, or from interfering and weakening each other. This is because the opening/closing timing and length of the intake port are different from those of the intake passage due to differences in requirements in the dual induction intake system, and the pressure waves of one are reduced by the other.

また、上記各連通路の1次弁又は2次弁下流位置設定は
、1次弁および2次弁の存在が圧力波の伝播の抵抗とな
るのでそれを避けるためてあり、圧力波をその減衰を小
さくして有効に伝播させるためである。
In addition, the downstream position of the primary valve or secondary valve in each of the communication passages is set to avoid the presence of the primary valve and secondary valve, which acts as resistance to the propagation of pressure waves, and to attenuate the pressure waves. This is to reduce the size of the signal and propagate it effectively.

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図および第2図はデュアルインダクションタイプの
4バルブ式2気筒4サイクルエンジンに本発明を適用し
た基本構造例としての第1実施例を示す。同図において
、1AおよびIE4;l:第1気筒および第2気筒であ
り、2は各気筒1A 、 1Bにおいてシリンダ3とピ
ストン4とで形成された燃焼室である。
FIGS. 1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a dual induction type four-valve two-cylinder four-stroke engine. In the figure, 1A and IE4; 1 are the first cylinder and the second cylinder, and 2 is a combustion chamber formed by the cylinder 3 and piston 4 in each cylinder 1A and 1B.

5は一端がエアクリーナ6を介して大気に開口して各気
筒IA、IBに吸気を供給するだめの主吸気通路であっ
て、該主吸気通路5には吸入空気量を検出するエアフロ
ーメータ7が艷慇されていノ″ る。上記主吸気通路5はエアフローメータ7下流におい
で隔壁8によって主低負荷用吸気通路9と主高負荷用吸
気通路10とに仕切られ、該主低負荷用吸気通路9には
、エンジン負荷の増大に応じて間作!IuJ L所定負
荷以」二になると全開となってエンジン低負荷持主低〕
荷用吸気通路9を流れる吸気量を変化させる1久方11
が配設され、また上記主高負荷用吸気通路10には、エ
ンジン負荷が所定負荷以」二になると開作動してエンジ
ン高負萌持主高負荷用吸気通路10を流れる吸気量を変
化させる2次弁が配設されている。さらに、上記主低負
荷用吸気通路9は、1久方11下流において同形状寸法
の第1および第2低負荷用吸気通路9a 、9bに分岐
されたのち各々低負荷用吸気ポート13,13を介して
各気筒IA、IBの燃焼室2.2に連通しており、また
上記主高負荷用吸気通路10は、2久方12下流におい
て同形状寸法の第1および第2高負荷用吸気通路iQa
、iobに分岐されたのち各々高負荷用吸気ポート14
゜14を介して各気筒IA、IBの燃焼室2,2に連通
している。よって、各気筒IA、IBに対して、低負荷
用吸気通路9a、9bと高負荷用吸気通路10a 、1
0bとは1久方11および2久方12の下流において各
々独立して燃焼室2に開口するように構成されている。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 and supplies intake air to each cylinder IA and IB. The main intake passage 5 is partitioned downstream of the air flow meter 7 by a partition wall 8 into a main low-load intake passage 9 and a main high-load intake passage 10. At 9, intercrop according to the increase in engine load! When the IuJ L predetermined load or more reaches 2, it is fully opened and the engine with low load is lowered.
1 Kukata 11 for changing the amount of intake air flowing through the cargo intake passage 9
is disposed in the main high-load intake passage 10, and the main high-load intake passage 10 is opened when the engine load exceeds a predetermined load to change the amount of intake air flowing through the main high-load intake passage 10 when the engine load is high. A secondary valve is provided. Furthermore, the main low-load intake passage 9 is branched into first and second low-load intake passages 9a and 9b having the same shape and dimensions at the downstream side 11, and then connected to low-load intake ports 13 and 13, respectively. The main high-load intake passage 10 communicates with the combustion chambers 2.2 of each cylinder IA and IB through the main high-load intake passage 10. iQa
, iob, and then each high-load intake port 14
It communicates with the combustion chambers 2, 2 of each cylinder IA, IB via 14. Therefore, for each cylinder IA, IB, low load intake passages 9a, 9b and high load intake passages 10a, 1
0b is configured to independently open into the combustion chamber 2 downstream of the first direction 11 and the second direction 12.

」ユ記各高負荷用吸気通路10a 、iobの最小通路
面IJi A sは各低負荷用吸気通路9a 、9bの
最小通路面積Apよりも太き(設定され(As>Ap)
、また各高負荷用吸気通路10a、10bの通路長さl
!Sは各低負荷用吸気通路9a 、9bの通路長さI!
Pよりも短かく設定されてお!1l(I!S<ep)、
特に高負荷用吸気通路10a、10b[よる圧力波の伝
播をその減衰を小さくして有効に行い得るようにしてい
る。
The minimum passage surface IJi As of each high-load intake passage 10a and iob is set to be thicker than the minimum passage area Ap of each low-load intake passage 9a and 9b (As>Ap).
, and the passage length l of each high-load intake passage 10a, 10b.
! S is the passage length I of each low-load intake passage 9a, 9b!
It is set shorter than P! 1l (I!S<ep),
In particular, the propagation of pressure waves through the high-load intake passages 10a and 10b is made more effective by reducing its attenuation.

また、上記各低負荷用吸気通路9a、9b(当然後述の
連通路18より下流に位置する)にはそれぞれ上記エア
フローメータ7の出力に基づく吸大空気量に応じて燃料
噴射量が制御される電磁弁式の燃料噴射ノズル15.1
5が配設されており、燃料の良好な応答性を確保するよ
うにしている。
Further, the fuel injection amount is controlled in each of the low-load intake passages 9a and 9b (of course located downstream of the communication passage 18 described later) in accordance with the intake air amount based on the output of the air flow meter 7. Solenoid valve type fuel injection nozzle 15.1
5 is arranged to ensure good fuel response.

そして、」二肥土高負荷用吸気通路10の分岐部は、2
久方12下流に位置していて、第1および第2高負荷用
吸気通路10a、10b同志を連通ずる連通路16を有
する拡大室17によって構成されている。上記連通路1
6の通路面積Acsは、圧力波をその減衰を小さくして
有効に伝達するように各面負荷用吸気通路10a、10
bの最小通路面積へ〇と同等かそれ以上に設定されてい
る( Acs≧As)。
And, the branch part of the intake passage 10 for high load is 2.
The enlarged chamber 17 is located downstream of the intake passage 12 and has a communication passage 16 that communicates the first and second high-load intake passages 10a and 10b. Above communication path 1
The passage area Acs of No. 6 is set so that pressure waves are effectively transmitted with less attenuation.
The minimum passage area of b is set to be equal to or greater than 〇 (Acs≧As).

また、上記主低負荷用吸気通路9の分岐部は、1久方1
1下流に位置していて、第1および第2低負荷用吸気通
路9a 、9b同志を連通ずる連通路18を有する拡大
室19によって構成されている。上記連通路18の通路
面積Acpは、同じ(圧力波を有効に伝達するように各
低負荷用吸気通路9a、9bの最小通路面積Ap以上に
設定されている( Acp≧Ap )。
In addition, the branch part of the main low-load intake passage 9 is
It is constituted by an enlarged chamber 19 located one downstream and having a communication passage 18 that communicates the first and second low-load intake passages 9a and 9b. The passage area Acp of the communicating passage 18 is set to be equal to or larger than the minimum passage area Ap of each low-load intake passage 9a, 9b so as to effectively transmit pressure waves (Acp≧Ap).

尚、上記拡大室17 、 ’1 ?は、エンジンの加速
運転時又は減速運転時等の過渡運転時での吸入空気のサ
ージタンクとして機能し、加速時での息付きや減速時で
の燃料のオーバリッチによる失火等を防止して燃料の良
好な応答性を確保するものである。
In addition, the above-mentioned expansion room 17, '1? functions as a surge tank for intake air during transient operations such as when the engine is accelerating or decelerating, and prevents misfires caused by breathing during acceleration or over-rich fuel during deceleration. This ensures good responsiveness.

さらに、上記各高負荷用吸気ポート14には該高負荷用
吸気ポート14を開閉する高負荷用吸気弁20が設けら
れ、また図示していないか各低負荷用吸気ポート16に
は該低負荷用吸気ポート16を開閉する低負荷用吸気弁
が設けられている。
Further, each high-load intake port 14 is provided with a high-load intake valve 20 for opening and closing the high-load intake port 14, and each low-load intake port 16 (not shown) is provided with a high-load intake valve 20 for opening and closing the high-load intake port 14. A low-load intake valve that opens and closes the intake port 16 is provided.

尚、各気筒1A、1Bにおいて、21および22ばそれ
ぞれ一端が大気に開口し他端が排気ポート23.24を
介して各気筒1A、1Bの燃焼室2に開口して燃焼室2
からの排気ガスを排出する第1および第2排気通路であ
って、上記各排気ポート23.24には該排気ポート2
3.24を開閉する排気弁25.25が設けられている
。また、図示していないが、上記各気筒IA、1Bの各
排気通路21.21.22.22の下流集合部には排気
ガス浄化用の触媒装置等が介設されていて、排圧が高く
kっている。
In each cylinder 1A, 1B, one end of each cylinder 21 and 22 opens to the atmosphere, and the other end opens to the combustion chamber 2 of each cylinder 1A, 1B through an exhaust port 23.24.
first and second exhaust passages for discharging exhaust gas from the exhaust port 2;
An exhaust valve 25.25 is provided to open and close 3.24. Although not shown, a catalyst device for purifying exhaust gas is installed at the downstream collecting portion of each exhaust passage 21, 21, 22, 22 of each cylinder IA, 1B, and the exhaust pressure is high. I'm looking forward to it.

また、上記高負荷用吸気弁20の開弁時期(高負荷用吸
気ポート14の開口時期)t/i低負荷用吸気弁(図示
せず)の開弁時期(低負荷用吸気ポート16の開口時期
)より以早に設定されてお9、高負荷用吸気通路10a
 、10bにおいて開口時圧縮波を強(発生させるよう
にしている。また、高負荷用吸気弁20の閉弁時期(高
負荷用吸気ポート14の閉口時期)は低負荷用吸気弁の
閉弁時期(低負荷用吸気ポート13の閉口時期)より思
違に設定されており、高負荷用吸気通路10a。
In addition, the opening timing of the intake valve 20 for high load (opening timing of the intake port 14 for high load), t/i, the opening timing of the intake valve for low load (not shown) (opening timing of the intake port 16 for low load) 9, high load intake passage 10a.
, 10b, a strong compression wave is generated when opening. Also, the closing timing of the high-load intake valve 20 (the closing timing of the high-load intake port 14) is the same as the closing timing of the low-load intake valve. (The closing timing of the low-load intake port 13) is incorrectly set, and the high-load intake passage 10a.

10bにおいて開口時圧縮波を強く発生させるとともに
、気筒間干渉において吸気行程終期の高負荷用吸気ポー
ト14に伝播された開口時および開口時圧縮波が低負荷
用吸気ポート13から吹き抜けるのを防止して有効に過
給効果を得るようにしている。
10b, and prevents the opening compression wave propagated to the high-load intake port 14 at the end of the intake stroke from blowing through from the low-load intake port 13 due to inter-cylinder interference. to effectively obtain the supercharging effect.

加えて、」1記連通路16を介しての両気筒I A+1
B間の高負荷用吸気通路10a、10bの通路長さLe
(つまり高負荷用吸気ポー)14.14間の連通長さ)
は、連通路16の通路長さzceと該連通路16下流の
第1.第2高負荷用吸気通路10 a−、10bの各通
路長さIs、 lSとを加算したもの(L s = l
cs +21s)であり、5000〜7000rpm 
 の回転域で両気筒IA、IB間で気筒間干渉効果(排
気干渉効果、吸気慣性効果)を得るように設定されてい
る。排気干渉効果を得る場合には、 の式から求められた値に設定される。尚、上記(■)式
において、Zは気筒数で2気筒の場合Z=2であり、7
20  は気筒間の位相差を示し、θSは高負荷用吸気
弁20の開弁期間で、また偽は高負荷用吸気弁20の開
弁(高負荷用吸気ポート14の開口)から開口時圧縮波
が実質的に発生するまでの期間と効果的(て過給を行う
ために該開口時圧縮波を伝播きせる時期から高負荷用吸
気弁20の閉弁(高負荷用吸気ポート14の閉口)まで
の期間とを合算した無効期間で、開弁特性等によって異
720 なるが約10〜50°であり、よって(丁子θS−θ0
)は一方の気筒での開口時圧縮波の発生から吸気行程終
期にある他方の気筒への伝播までに要するクランクシャ
フトの回転角度を表わす。
In addition, both cylinders IA+1 via the communication passage 16
Passage length Le of high-load intake passages 10a and 10b between B
(In other words, high-load intake port) 14. Communication length between 14)
is the passage length zce of the communication passage 16 and the first zce downstream of the communication passage 16. The sum of the passage lengths Is and 1S of the second high-load intake passages 10a- and 10b (Ls = l
cs +21s) and 5000-7000rpm
It is set so that an inter-cylinder interference effect (exhaust interference effect, intake inertia effect) is obtained between both cylinders IA and IB in the rotation range of . When obtaining the exhaust interference effect, it is set to the value determined from the formula. In addition, in the above formula (■), Z is the number of cylinders, and in the case of 2 cylinders, Z = 2, and 7
20 indicates the phase difference between the cylinders, θS is the opening period of the high-load intake valve 20, and false is the compression period from the opening of the high-load intake valve 20 (opening of the high-load intake port 14) to the opening period. The period from when the compression wave propagates during the opening to perform effective supercharging to when the high-load intake valve 20 is closed (the high-load intake port 14 is closed) The invalid period is the sum of the period up to
) represents the rotation angle of the crankshaft required from generation of the opening compression wave in one cylinder to propagation to the other cylinder at the end of the intake stroke.

また、Nはエンジン回転数でN = 5000−700
Orpmであり、−東−は1°回転するに要する時間(
秒)6ON を表わす。また、aは圧力波の伝播速度(音速)で、2
0°Cでa = 343 %である。
Also, N is the engine rotation speed N = 5000-700
Orpm, and -east- is the time required to rotate 1 degree (
seconds) represents 6ON. In addition, a is the propagation velocity (sound velocity) of the pressure wave, and 2
At 0°C a = 343%.

また、」1記通路長さLeは、5000−700Orp
mの回転域で両気筒1A、iB間で吸気慣性効果を得る
場合には、 Ls−(モーθ)×旦× a 1 36ON 、     −4n) の式から求められた値に設定される。尚、上記(II)
式において、θ1は閉口時圧縮波が実質的に発生してか
ら高負荷用吸気弁20の閉弁(高負荷用吸気ポト14閉
口)までの期間と効果的に過給を行うために該閉Iコ時
圧縮波を伝播させる時期から高負荷用吸気弁20の閉弁
までの期間とを合算した無効期間で同じく約10〜50
°であり、(震立−θ1)−二一方の気筒での閉口時圧
縮波の発生から吸気行程終期にある他方の気筒への伝播
までに要するクランクシャフトの回転角度を表イっす。
In addition, the passage length Le is 5000-700 Orp.
When obtaining the intake inertia effect between both cylinders 1A and iB in the rotation range of m, the value is set to a value determined from the formula: Ls-(mo θ)×dan×a 1 36ON, -4n). In addition, above (II)
In the equation, θ1 is the period from when the compression wave is substantially generated at the time of closing until the closing of the high-load intake valve 20 (when the high-load intake port 14 is closed), and the period during which the valve is closed for effective supercharging. The invalid period, which is the sum of the period from when the compression wave is propagated to when the high-load intake valve 20 closes, is about 10 to 50.
The rotation angle of the crankshaft required from the generation of the closing compression wave in one cylinder to the propagation to the other cylinder at the end of the intake stroke is represented by (Earth - θ1) -2.

その他(は上記(■)式の場合と同じである。Other (() is the same as in the case of formula (■) above.

さらに、上記連通路18を介しての両気筒1A。Further, both cylinders 1A are connected to each other via the communication passage 18.

1B間の低負荷用吸気通路9a 、9bの通路長さLp
(つまり低負荷用吸気ポー)16.”13間の連通長さ
)は、同様に、連通路18の通路長さeapと該連通路
18下流の第1.第2低負荷用吸気通路9a 、9bの
各通路長さ’P+lPとを加算したもの(Lp:lCp
 +2zp)であり、上記5000−7000rpm 
 の間で設定された基準回転数よりも11000−20
0Orp低回転側(例えば4000−5000rpm)
で両気筒1A 、iB間で気筒量子・渉効果(排気干渉
効果、吸気慣性効果)を得るように設定されている。
Passage length Lp of low-load intake passages 9a and 9b between 1B
(In other words, intake port for low load)16. Similarly, the communication length between the communication passage 18 and the passage length 'P+lP of the first and second low-load intake passages 9a and 9b downstream of the communication passage 18 are calculated as follows. The sum (Lp:lCp
+2zp) and above 5000-7000rpm
11000-20 than the standard rotation speed set between
0Orp low rotation side (e.g. 4000-5000rpm)
It is set to obtain a cylinder quantum interference effect (exhaust interference effect, intake inertia effect) between both cylinders 1A and iB.

そして、排気干渉効果を得る場合には、720    
   60 Lp−(−+ θP−θo)  x  −x  a  
   −(IうZ            36ON の式により、また吸気慣性効果を得る場合には、720
         60 Lp=(−−〇、)  X         X  a
         ・ (■うZ、36ON の式により求められた値に設定される。尚、上記(1’
i式において、θPは低負荷用吸気弁の開弁期間であっ
て、その他は上記(I) 、 (It)式と同じである
When obtaining the exhaust interference effect, 720
60 Lp-(-+ θP-θo) x −x a
-(IUZ 36ON According to the formula, and when obtaining the intake inertia effect, 720
60 Lp=(--〇,) X X a
・ (■UZ, 36ON It is set to the value obtained by the formula. In addition, the above (1'
In formula i, θP is the opening period of the low-load intake valve, and other aspects are the same as formulas (I) and (It) above.

尚、」1記(T)、ω) 、 (1’) 、 (Hう式
では、圧力波の伝播に対する吸入空気の流れの影響を無
視している。
Note that in the formula 1 (T), ω), (1'), (H), the influence of the flow of intake air on the propagation of pressure waves is ignored.

これは、流速が音速に比べて小さく、吸気通路の長さに
ほとんど変化をもたらさないためである。
This is because the flow velocity is smaller than the speed of sound and causes almost no change in the length of the intake passage.

次に、上記第1実施例の作用について第3図により説明
するに、高出力を要する5000〜7000rpmのエ
ンジン高回転時には、2久方12の開作動ICより主低
負荷用吸気通路9と共に主高負荷用吸気通路10も開か
れて、各気筒1A 、 1Bに対し、各高負荷用吸気通
路10a、1C1bからも各低負荷用吸気通路9a 、
9bとは独立して吸気の供給が行われる。その際、一方
の気筒例えば第2気筒1Bの高負荷用吸気弁20の開弁
による高負荷用吸気ポート14開日時または該高負荷用
吸気弁20の閉弁による高負荷用吸気ポート14閉日時
にそれぞれ第2高負荷用吸気通路10bの高負荷用吸気
ポート14付近に発生した開口時圧縮波または閉口時圧
縮波は、両気筒1A、1B間の高負荷用吸気通路10a
、10bの通路長さLsを5000〜7000rpm 
のエンジン高回転時を基準として上記(I)又は(n)
式により求められる値て設定したことにより、第2高負
荷用吸気通路10b一連通路16−第1高負荷用吸気通
路10aを経て、吸気行程終期にある第1気筒1Aの高
負荷用吸気ポート14に伝播する。その結果、この開口
時圧縮波または閉口時圧縮波により、吸気が吸気行程終
期にある第1気筒1Aの高負荷用吸気ポート14よシ燃
焼室2内へ押し込まれて強い過給が行われることになる
(高負荷用吸気系統での排気干渉効果または吸気慣性効
果)。
Next, the operation of the first embodiment will be explained with reference to FIG. 3. When the engine rotates at a high speed of 5,000 to 7,000 rpm, which requires high output, the opening operation IC of The high-load intake passage 10 is also opened, and the high-load intake passages 10a, 1C1b are also connected to the low-load intake passages 9a, 1C1b for each cylinder 1A, 1B.
Intake air is supplied independently of 9b. At that time, the date and time when the high-load intake port 14 of one cylinder, for example, the second cylinder 1B, is opened by opening the high-load intake valve 20, or the high-load intake port 14 is closed by closing the high-load intake valve 20. The opening compression wave or the closing compression wave generated in the vicinity of the high load intake port 14 of the second high load intake passage 10b, respectively, is generated in the high load intake passage 10a between the two cylinders 1A and 1B.
, the passage length Ls of 10b is set at 5000 to 7000 rpm.
The above (I) or (n) is based on the high engine speed of
By setting the value obtained by the formula, the high-load intake port 14 of the first cylinder 1A at the end of the intake stroke passes through the second high-load intake passage 10b continuous passage 16 and the first high-load intake passage 10a. propagate to. As a result, this opening compression wave or closing compression wave forces the intake air into the combustion chamber 2 through the high-load intake port 14 of the first cylinder 1A at the end of the intake stroke, resulting in strong supercharging. (exhaust interference effect or intake inertia effect in high-load intake system).

それと同時に、第2気筒1Bの低負荷用吸気弁の開弁に
よる低負荷用吸気ポート16開ロ時または低負荷用吸気
弁の閉弁による低負荷用吸気ポート16閉ロ時如それぞ
れ第2低負荷用吸気通路9bの低負荷用吸気ポート16
付近に発生した開口時圧縮波または閉口時圧縮波は、両
気筒1A、1B間の低負荷用吸気通路9g、9bの通路
長さLPを上記5000〜7000rpm の基準回転
数よpも1000〜200Orpm低回転側で上記(I
つ又は(II’i式により求められる値に設定したこと
により、第2低負荷用吸気通路9b一連通路18−第1
低負荷用吸気通路9aを経て、同じく上記吸気行程終期
にある第1気筒1Aの低負荷用吸気ポート16に伝播し
て過給が行われる(低負荷用吸気系統での排気干渉効果
または吸気慣性効果Σ。
At the same time, when the low-load intake port 16 is opened by opening the low-load intake valve of the second cylinder 1B, or when the low-load intake port 16 is closed by closing the low-load intake valve, the second Low load intake port 16 of load intake passage 9b
The opening compression wave or the closing compression wave generated in the vicinity causes the passage length LP of the low-load intake passages 9g and 9b between both cylinders 1A and 1B to be 1000 to 200 rpm from the reference rotation speed of 5000 to 7000 rpm. Above (I) on the low rotation side
or (by setting the value determined by the II'i formula, the second low-load intake passage 9b continuous passage 18-first
Supercharging is carried out via the low-load intake passage 9a to the low-load intake port 16 of the first cylinder 1A, which is also at the end of the intake stroke (exhaust interference effect or intake inertia in the low-load intake system). Effect Σ.

また、同様に、第2気筒1Bにおいても、吸気行程終期
にある各吸気ポート13.14に対して第1気筒1Aの
各吸気ポート13.14からの開口時圧縮波又は開口時
圧縮波がそれぞれ伝播して過給が行われる。
Similarly, in the second cylinder 1B, the opening compression wave or the opening compression wave from each intake port 13.14 of the first cylinder 1A is applied to each intake port 13.14 at the end of the intake stroke. Supercharging is carried out through propagation.

したがって、このように高負荷用吸気系統における50
00〜700Orpmのエンジン高回転域での気筒間干
渉効果(排気干渉効果、吸気慣性効果)による過給効果
と、低負荷用吸気系統における上記5000〜7000
rpmJ:りも低回転域での気筒間干渉効果による過給
効果とによって、第4図に示すように、エンジンの中回
転域から高回転域に亘って充填効率が、増大して出力を
有効に向上させるこ七ができる。尚、第4図では、各気
筒lA、1Bの各吸気通路9a +9b、ioa 、1
0bを各々独立させた従来例(破線で示す)に対し、高
負荷用吸気系統で6000rpmを基準にして気筒間干
渉効果(実線で示す)を、低負荷用吸気系統で400O
rpmを基準として気筒間干渉効果(一点鎖線で示す)
をそれぞれ得るようにした場合におけるエンジンの出力
トルク特性を示す。
Therefore, in this way, 50% in a high-load intake system
The supercharging effect due to inter-cylinder interference effect (exhaust interference effect, intake inertia effect) in the engine high speed range of 00 to 700 rpm, and the above 5000 to 7000 rpm in the low-load intake system.
rpmJ: As shown in Figure 4, due to the supercharging effect due to the inter-cylinder interference effect in the low rotation range, the charging efficiency increases from the mid to high engine rotation range, making the output more effective. There are seven things you can do to improve your skills. In addition, in FIG. 4, each intake passage 9a + 9b, ioa, 1 of each cylinder lA, 1B
In contrast to the conventional example (indicated by the broken line) in which 0b is made independent from each other, the inter-cylinder interference effect (indicated by the solid line) with the high-load intake system set at 6000 rpm is compared to the 400 rpm in the low-load intake system.
Inter-cylinder interference effect based on rpm (indicated by a dashed line)
The output torque characteristics of the engine are shown in the case where the following are obtained.

また、その場合、排気干渉効果および吸気慣性効果を得
るだめの圧力波伝播経路である高負荷用吸気通路10a
、10bは、低負荷用吸気通路9a 、9bよりも通路
面積が犬で、しかも通路長さが短かいこ、!=に、J:
す、圧力波の伝播の抵抗が小さく、高負荷用吸気系統で
の気筒間干渉効果を有効に発揮して、特に高出力を要す
るエンジン高回転時(5000〜700Orpm )で
の出力要求に合致し有利である。
In that case, the high-load intake passage 10a is a pressure wave propagation path for obtaining the exhaust interference effect and the intake inertia effect.
, 10b have a larger passage area and shorter passage length than the low-load intake passages 9a and 9b! =に、J:
It has low resistance to pressure wave propagation, effectively exerts the inter-cylinder interference effect in the high-load intake system, and meets output requirements especially at high engine speeds (5000 to 700 rpm), which require high output. It's advantageous.

また、上記連通路16.18は、それぞれ1次作11お
よび2次作12の下流に位置し、しかも該各連通路1<
S、18の通路面積Acp、Ace を各吸気通路9a
 19b、10a 、10bの最小通路面積Ap、As
以上としたので、上記答弁11゜12や各連通路16.
18自身によって圧力波が減衰されることがな(、上記
排気干渉効果および吸気慣性効果を有効に発揮できる。
Further, the communication passages 16 and 18 are located downstream of the primary production 11 and the secondary production 12, respectively, and each communication passage 1<
The passage area Acp, Ace of S, 18 is defined as each intake passage 9a.
Minimum passage area Ap, As of 19b, 10a, 10b
Since the above has been made, the above answers 11 and 12 and each communication path 16.
The pressure waves are not attenuated by the pressure wave 18 itself (the above-mentioned exhaust interference effect and intake inertia effect can be effectively exerted).

さらに、上記高負荷用吸気ポート14の開口時′期を低
負荷用吸気ポート13よりも以早としたことにより、特
に高負荷用吸気ポート14開日時の開口時圧縮波を強(
発生でき、排気干渉効果による過給効果の向上によシ効
果的である。また、高負荷用吸気ポート14の閉口時期
を低負荷用吸気ポート13よりも思違としたことにより
、開口時圧縮波を強(発生でき吸気慣性効果の向上に有
利であるとともに、気筒間干渉効果での圧縮波の低負荷
用吸気ポート16からの吹き抜けを防止でき有利である
Furthermore, by making the opening timing of the high-load intake port 14 earlier than that of the low-load intake port 13, the compression wave when the high-load intake port 14 opens is particularly strong (
This is effective in improving the supercharging effect due to the exhaust interference effect. In addition, by making the closing timing of the high-load intake port 14 different from that of the low-load intake port 13, a strong compression wave can be generated at the time of opening, which is advantageous in improving the intake inertia effect, and there is no interference between cylinders. This is advantageous in that it can prevent compression waves from blowing through from the low-load intake port 16.

また、燃料供給装置としての燃料噴射ノズル15は、連
通路18下流の低負荷用吸気通路9a。
Further, the fuel injection nozzle 15 serving as a fuel supply device is located in the low-load intake passage 9a downstream of the communication passage 18.

9bに設けられているので、気筒間干渉効果を得る」二
で吸気通路長さが長(なることによる燃料の応答性の悪
化を防止して、良好な燃料応答性を確保できるとともに
、全運転域で吸気の供給を行い燃料の供給が可能な低負
荷用吸気通路9a、9bのみの設置で済み、燃料供給装
置の簡略化を図ることができる。
9b, to obtain an inter-cylinder interference effect." 2) prevents deterioration of fuel response due to long intake passages, ensuring good fuel response, and ensuring good fuel response during full operation. It is sufficient to install only the low-load intake passages 9a and 9b, which can supply intake air and fuel in the area, and the fuel supply system can be simplified.

また、上記排気干渉効果および吸気慣性効果による過給
効果は、連通路16.18の位置およびその通路面積、
並びに該連通路16.18を介しての両気筒1A、iB
間の高負荷用吸気通路1゜a、10bおよび低負荷用吸
気通路9a、9bの各通路長さLs、Lp等を上述の如
(設定することによって得られ、過給機等を要さないの
で、既存の吸気系の僅かな設計変更で済み、構造が極め
て簡単なものであり、よって容易にかつ安価に実施する
ことができる。
In addition, the supercharging effect due to the exhaust interference effect and the intake inertia effect is determined by the position of the communication passage 16, 18 and its passage area,
and both cylinders 1A and iB via the communication passage 16.18.
This can be obtained by setting the lengths Ls, Lp, etc. of the high-load intake passages 1°a, 10b and the low-load intake passages 9a, 9b as described above (no need for a supercharger, etc.). Therefore, only a slight design change to the existing intake system is required, and the structure is extremely simple, so it can be implemented easily and at low cost.

尚、本発明は上記実施例に限定されるものではなく、そ
の他種々の変形例をも包含するものである。例えば、上
記実施例では、各気筒IA、IBにおいて低負荷用およ
び高負荷用吸気通路9a。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, in the above embodiment, the low-load and high-load intake passages 9a are provided in each cylinder IA and IB.

9b 、10a 、10bを各々独立した低負荷用およ
び高負荷用吸気ポート13.14を介して燃焼室2に開
口させたが、第5図に示す第2実ガル例のように、単一
の吸気ポート26を介して燃焼室2に開口させるととも
に、該吸気ポート26を単一の吸気弁27で開閉するよ
うにしてもよく、上記第1実施例と同様の作用効果を奏
することができる。(尚、第5図において上記第1実施
例と同一の部分については同一の符号を付してその説明
を省略する。) また、上記第1実施例では2気筒4サイクルエンジンに
適用した例を示したが、本発明はデュアルインダクショ
ンタイプのその他各種多気筒エンジンに対しても適用で
きるのは勿論のことである3例えば、その−例きして第
6図に4バルブ式の4気筒4サイクルエンジンに適用し
た第3実施例を示す(尚、第1実施例と同一の部分につ
いては同一の符号を付してその詳細な説明は省略する)
9b, 10a, and 10b are opened into the combustion chamber 2 through independent low-load and high-load intake ports 13.14, but as in the second actual gal example shown in FIG. The combustion chamber 2 may be opened through the intake port 26, and the intake port 26 may be opened and closed by a single intake valve 27, and the same effects as in the first embodiment can be achieved. (In FIG. 5, the same parts as in the first embodiment are given the same reference numerals and their explanations are omitted.) In addition, in the first embodiment, an example applied to a two-cylinder four-stroke engine is shown. However, the present invention can of course be applied to various other types of dual induction type multi-cylinder engines.3For example, as shown in FIG. A third embodiment applied to an engine is shown (the same parts as in the first embodiment are given the same reference numerals and detailed explanation thereof is omitted).
.

本例の場合、各気筒1八〜1Dの高負荷用吸気通路10
8〜10dU2次弁12の下流において拡大室17′で
形成される連通路16′によって連通9a〜9dは1次
作11下流において拡大室19′で形成される連通路1
8′によって連通されており、該連通路18′下流の各
低負荷用吸気通路9a〜9d[は燃料噴射ノズル15か
配設されている。また、上記連通路16’、18’を介
して気筒1A〜1D間の高負荷用吸気通路10a〜10
dおよび低負荷用吸気通路9a〜9dの通路長さLs、
Lpは、排気干渉効果を得る場合には上記(I)又は(
I’1式の右辺第1項(開口時圧縮波発生から伝播まで
に要する回転角度)か異なジ(第9図参照)、Ls(p
)=(θ5(p)−180−0゜)X讃、Xa =ω了
により設定され、また吸気慣性効果を得る場合には上記
(TI)又は(n)式によりz=4として設定される。
In this example, the high-load intake passages 10 for each cylinder 18 to 1D
8 to 10 dUThe communication passages 16' are formed by the expansion chamber 17' downstream of the secondary valve 12, and the communication passages 9a to 9d are connected to the communication passage 1 formed by the expansion chamber 19' downstream of the primary valve 11.
8', and a fuel injection nozzle 15 is disposed in each of the low-load intake passages 9a to 9d downstream of the communication passage 18'. Also, the high-load intake passages 10a to 10 between the cylinders 1A to 1D are connected via the communication passages 16' and 18'.
d and the passage length Ls of the low-load intake passages 9a to 9d,
When obtaining the exhaust interference effect, Lp is determined by the above (I) or (
The first term on the right side of equation I'1 (rotation angle required from generation of compression wave to propagation during opening), different angles (see Figure 9), Ls(p
)=(θ5(p)-180-0°) .

尚、3気筒4サイクルエンジンに対しても、図示してい
ないが同様であり、各通路長さLs、Lpを上記(1)
 、 (r5 、 (n) 、 <n′)により設定す
ればよい。
Note that the same applies to a 3-cylinder 4-stroke engine, although not shown, and the lengths of each passage Ls and Lp are set as in (1) above.
, (r5, (n), <n').

また、上記第3実施例(4気筒4サイクルエンジン)で
は、第1、第4気筒iA、1Dの対応する各吸気通路9
a 、9d 、 1Qa 、10dの通路長さlpl 
、lP4.IB□、lS4は同じで、lP、= 1rP
4>’P2 +’p:l’g21’s3も同様に、lp
2’= ’!、8> zs。
In addition, in the third embodiment (four-cylinder four-cycle engine), each intake passage 9 corresponding to the first and fourth cylinders iA and 1D
Passage length lpl of a, 9d, 1Qa, 10d
, lP4. IB□ and lS4 are the same, lP, = 1rP
4>'P2 +'p:l'g21's3 similarly, lp
2'='! ,8>zs.

−163となる。従って、第1気筒1A−第3気筒1C
−第4気筒1D−第2気筒1Bの点火順序では燃焼の連
続する気筒間の通路長さLp、LstI′i全て同じに
なる。すなわち、 Lp = e’px(lP4) + eP2C1P3)
”” ” ’81(lS4) 十’82(’8B)とな
るので、各気筒1六〜1Dの各吸気通路?a〜9d、1
0a−10dd拡大室17’ 、 19’部分の近い所
から分岐させるのが好ましい。
-163. Therefore, 1st cylinder 1A-3rd cylinder 1C
In the ignition order of the fourth cylinder 1D and the second cylinder 1B, the passage lengths Lp and LstI'i between consecutive combustion cylinders are all the same. That is, Lp = e'px(lP4) + eP2C1P3)
"""'81 (lS4) 10'82 ('8B), so each intake passage for each cylinder 16-1D?a-9d, 1
It is preferable to branch from a location near the 0a-10dd expansion chambers 17' and 19'.

さらに、排気干渉効果および吸気慣性効果の気筒間干渉
の態様として、上記第1実施例(2気筒4ザイクルエン
ジン)では高負荷用吸気系統では5000〜7000r
pmの高回転域で、低負荷用吸気系統ではそれより低回
転側でそれぞれ気筒間干渉効果を得るようにしたが、逆
に、低負荷用吸気系統では5000〜70QQrpin
の高回転域で、高負荷用吸気系統ではそれより低回転側
でそれぞれ気筒間干渉効果を得るように設定してもよい
が、上述の如く過給効果の点で上記実施例の設定が好ま
しい。そして、気筒間干渉の作用過程は、一般の2気筒
エンジンの場合、第7図に示すように、既述と同様、排
気干渉効果(実線矢印で示す)および吸気慣性効果(破
線矢印で示す)は第1気筒から第2気筒へ、第2気筒か
ら第1気筒へと順次交互に作用して行(のである。また
、3気筒エンジンの場合には、第8図に示すように、上
記両効果は、2気筒の場合と同様、第1気筒−第2気筒
、第2気筒−第3気筒、第3気筒−第1気筒へと順次作
用して行く。さらに、4気筒エンジンの場合K1−1:
、第9図に示すように、吸気慣性効果は、点火順序逆り
に第1気筒−第3気筒、第3気筒−第4気筒、第4気筒
−第2気筒、第2気筒−第1気筒へと順次作用して行き
、排気干渉効果は、逆に位相が180 ’遅れた気筒か
ら作用を受け、第3気筒−第1気筒、第4気筒−第3気
筒、第2気筒−第4気筒、第1気筒−第2気筒、第3気
筒−第1気筒へ上伸用するのである。よって、このよう
に気筒間干渉を行う気筒間の通路長さLs、Lpを排気
干渉効果又は吸気慣性効果を得るように設定すればよい
Furthermore, as for the inter-cylinder interference of the exhaust interference effect and the intake inertia effect, in the first embodiment (two-cylinder four-cycle engine), the high-load intake system
In the high rotational speed range of pm, the low-load intake system was designed to obtain inter-cylinder interference effects at lower rotational speeds, but conversely, the low-load intake system had a rotation speed of 5000 to 70QQrpin.
In the high-speed rotation range, the high-load intake system may be set to obtain the inter-cylinder interference effect at lower rotation speeds, but as described above, the settings in the above embodiment are preferable in terms of the supercharging effect. . In the case of a general two-cylinder engine, the action process of inter-cylinder interference is as shown in Fig. 7, the exhaust interference effect (indicated by the solid line arrow) and the intake inertia effect (indicated by the broken line arrow), as described above. acts alternately from the first cylinder to the second cylinder, and from the second cylinder to the first cylinder.In addition, in the case of a three-cylinder engine, as shown in Fig. 8, both of the above As in the case of a two-cylinder engine, the effect acts sequentially from the first cylinder to the second cylinder, from the second cylinder to the third cylinder, and from the third cylinder to the first cylinder.Furthermore, in the case of a four-cylinder engine, K1- 1:
, as shown in Fig. 9, the intake inertia effect is caused by the ignition order being reversed: 1st cylinder - 3rd cylinder, 3rd cylinder - 4th cylinder, 4th cylinder - 2nd cylinder, 2nd cylinder - 1st cylinder. On the contrary, the exhaust interference effect acts from the cylinder whose phase is delayed by 180', and the effect is applied from the 3rd cylinder to the 1st cylinder, the 4th cylinder to the 3rd cylinder, and the 2nd cylinder to the 4th cylinder. , from the first cylinder to the second cylinder, and from the third cylinder to the first cylinder. Therefore, the passage lengths Ls and Lp between the cylinders that cause inter-cylinder interference may be set so as to obtain the exhaust interference effect or the intake inertia effect.

また、」1記実施例では、1次作11を主低負荷用吸気
通路9内冗設けた型式のものについて示したが、該1次
弁11を、主低負荷用吸気通路9と主高負荷用吸気通路
10との分岐部上流の主吸気通路5に設けた型式のもの
も採用可能である。
In addition, in the embodiment described in ``1'', the primary valve 11 is provided redundantly in the main low-load intake passage 9, but the primary valve 11 is connected to the main low-load intake passage 9 and A type provided in the main intake passage 5 upstream of the branching part with the load intake passage 10 can also be adopted.

以上説明したように、本発明によれば、低負荷用と高負
荷用との2系統の独立した吸気通路を備えた多気筒エン
ジンにおいて、5000〜7000rpmのエンジン高
回転時、低負荷用および高負荷用吸気系統の一方での気
筒間干渉効果(排気干渉効果、吸気慣性効果)により過
給効果を得るとともに、上記5000−700Orpm
の基準回転数よりも1000〜2000rpm  低回
転側で他方の吸気系統での気筒間干渉効果により過給効
果を得るようにしたので、過給機等を要さずに既存の吸
気系の僅かな設計変更による111単な構成でもって、
エンジンの中回転域から高回転域に亘って充填効率を高
めて出力向上を有効に図ることができ、よってエンジン
の出力向上対策の容易実施化およびコストダウン化に大
いに寄与できるものである。
As explained above, according to the present invention, in a multi-cylinder engine equipped with two independent intake passages, one for low load and one for high load, when the engine rotates at a high speed of 5,000 to 7,000 rpm, A supercharging effect is obtained by the inter-cylinder interference effect (exhaust interference effect, intake inertia effect) on one side of the load intake system, and the above 5000-700Orpm
Since the supercharging effect is obtained by the inter-cylinder interference effect in the other intake system on the low rotation side of 1000 to 2000 rpm than the standard rotation speed of the With 111 simple configuration due to design changes,
It is possible to effectively improve the engine output by increasing the charging efficiency from the medium speed range to the high speed range of the engine, and thus it can greatly contribute to the ease of implementation of measures to improve the engine output and cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図および第2図は第
1実施例を示す全体構成説明図および同要部概略図、第
3図は第1実施例の吸気行程を示す説明図、第4図は出
力トルク特性を示す図、第5図は第2実施例を示す要部
概略図、第6図は第3実施例を示す第1図相当図、第7
図〜第9図はそれぞれ2気筒、3気筒および4気筒エン
ジンでの気筒間干渉を示す説明図である。 1A〜1D・・・第1〜第4気筒、2・・燃焼室、5・
・主吸気通路、7 エアフローメータ、9・・・主低負
荷用吸気通路、9a〜9d・・第1〜第4低負荷用吸気
通路、10 主高負荷用吸気通路、108〜10d・・
第1〜第4高負荷用吸気通路、11・・・1次弁、12
・・・2次弁、15・・・燃料噴射ノズル、16 、1
6’・・・連通路、18.’18’・・連通路。
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are an explanatory diagram of the overall configuration and a schematic diagram of the essential parts of the first embodiment, and FIG. 3 is an explanatory diagram showing the intake stroke of the first embodiment. , FIG. 4 is a diagram showing output torque characteristics, FIG. 5 is a schematic diagram of main parts showing the second embodiment, FIG. 6 is a diagram corresponding to FIG. 1 showing the third embodiment, and FIG. 7 is a diagram showing the output torque characteristics.
9 to 9 are explanatory diagrams showing inter-cylinder interference in two-cylinder, three-cylinder, and four-cylinder engines, respectively. 1A to 1D... 1st to 4th cylinders, 2... Combustion chamber, 5...
・Main intake passage, 7 Air flow meter, 9... Main low load intake passage, 9a to 9d... 1st to 4th low load intake passage, 10 Main high load intake passage, 108 to 10d...
1st to 4th high-load intake passages, 11...primary valve, 12
...Secondary valve, 15...Fuel injection nozzle, 16, 1
6'...Communication path, 18. '18'...Communication path.

Claims (1)

【特許請求の範囲】[Claims] ill  各気筒へ独立して開口する低負荷用吸気通路
と高負荷用吸気通路とを有する吸気通路を備え、該吸気
通路は、少な(とも低負荷用吸気通路を流れる吸気量を
変化させる1次弁と、高負荷用吸気通路を流れる吸気量
を変化させる2次弁とを有するエンジンの吸気装置であ
って、上記1次弁および2次弁の下流において各気筒の
低負荷用吸気通路同志および高負荷用吸気通路同志をそ
れぞれ各吸気通路の最小通路面積以上の通路面積を持つ
連通路で連通し、該連通路を介しての各気筒間の低負荷
用吸気通路および高負荷用吸気通路の通路長さを、いず
れか一方が5000〜7000rpmの工/ジン高回転
時に一つの気筒の開口に生じる圧力波が吸気行程終期に
ある他気筒に伝播して過給を行うように設定するさとも
に、能力が上記5000〜7000rpmの間で設定さ
れた基準回転数よシも1000〜2000rpm低回転
側で一つの気筒の開口に生じる圧力波が吸気行程終期に
ある他気筒に伝播して過給を行うように設定したことを
特徴とするエンジンの吸気装置。
ill The intake passage has a low load intake passage and a high load intake passage that open independently to each cylinder, and the intake passage has a primary intake passage that changes the amount of intake air flowing through the low load intake passage. An intake system for an engine having a valve and a secondary valve that changes the amount of intake air flowing through a high-load intake passage, the intake system comprising a valve and a secondary valve that changes the amount of intake air flowing through a high-load intake passage. The high-load intake passages are connected to each other by a communication passage having a passage area larger than the minimum passage area of each intake passage, and the low-load intake passage and high-load intake passage between each cylinder are connected via the communication passage. The passage length is set so that the pressure wave generated at the opening of one cylinder at high engine/engine revolutions of 5,000 to 7,000 rpm propagates to the other cylinder at the end of the intake stroke to perform supercharging. , the pressure wave generated at the opening of one cylinder at the low rotation side of 1000 to 2000 rpm, compared to the standard rotation speed set when the capacity is between 5000 and 7000 rpm, propagates to the other cylinder at the end of the intake stroke, causing supercharging. An engine intake system characterized in that it is set to perform.
JP57190618A 1982-10-28 1982-10-28 Intake apparatus for engine Granted JPS5979038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190618A JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190618A JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Publications (2)

Publication Number Publication Date
JPS5979038A true JPS5979038A (en) 1984-05-08
JPH0452375B2 JPH0452375B2 (en) 1992-08-21

Family

ID=16261063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190618A Granted JPS5979038A (en) 1982-10-28 1982-10-28 Intake apparatus for engine

Country Status (1)

Country Link
JP (1) JPS5979038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962735A (en) * 1989-01-20 1990-10-16 AVL Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Prof.Dr.Dr.h.c. Hans List Intake system for multi-cylinder internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962735A (en) * 1989-01-20 1990-10-16 AVL Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Prof.Dr.Dr.h.c. Hans List Intake system for multi-cylinder internal combustion engines

Also Published As

Publication number Publication date
JPH0452375B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
JPS6211169B2 (en)
JPS5999034A (en) Intake apparatus for rotary piston engine
JPS5979038A (en) Intake apparatus for engine
JPS5982523A (en) Intake apparatus of engine
JPH0337009B2 (en)
JPH0128209B2 (en)
JPH0337012B2 (en)
JPS5979035A (en) Intake apparatus for engine
JPS6326261B2 (en)
JPH0559249B2 (en)
JPS60222523A (en) Suction device of engine
JPS61116022A (en) Engine intake-air device
JPS5979037A (en) Intake apparatus for engine
JPS60222524A (en) Suction device of engine
JPS5979036A (en) Intake apparatus for engine
JPH0452376B2 (en)
JPS6323370B2 (en)
JPS6340251B2 (en)
JPS59141726A (en) Intake apparatus for rotary piston engine
JPS5979044A (en) Intake apparatus for rotary piston engine
JPS59226264A (en) Suction device for engine
JPS5979042A (en) Intake apparatus for rotary piston engine
JPH0337011B2 (en)
JPS59226230A (en) Intake apparatus for rotary piston engine
JPH0337010B2 (en)