JPS6323370B2 - - Google Patents

Info

Publication number
JPS6323370B2
JPS6323370B2 JP9128083A JP9128083A JPS6323370B2 JP S6323370 B2 JPS6323370 B2 JP S6323370B2 JP 9128083 A JP9128083 A JP 9128083A JP 9128083 A JP9128083 A JP 9128083A JP S6323370 B2 JPS6323370 B2 JP S6323370B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
exhaust
passage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9128083A
Other languages
Japanese (ja)
Other versions
JPS59215918A (en
Inventor
Haruo Okimoto
Ikuo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP58091280A priority Critical patent/JPS59215918A/en
Publication of JPS59215918A publication Critical patent/JPS59215918A/en
Publication of JPS6323370B2 publication Critical patent/JPS6323370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過給機を備えた多気筒エンジンの吸
気装置に関し、詳しくは吸気通路内に発生する吸
気圧力波を利用した過給効果によりエンジンの異
常燃焼を防止するようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a multi-cylinder engine equipped with a supercharger. This invention relates to something that prevents abnormal combustion in an engine.

(従来技術) 従来より、エンジンの吸気通路に過給機を設け
て、吸気を過給することにより、吸気の充填効率
を高めて出力向上を図るようにすることは知られ
ている。
(Prior Art) Conventionally, it has been known to provide a supercharger in the intake passage of an engine to supercharge the intake air, thereby increasing the filling efficiency of the intake air and increasing output.

また、従来、エンジンの吸気通路内に発生する
吸気圧力波により過給効果を得る技術として、実
公昭45−2321号公報に開示されているように、単
一気筒エンジンにおいて、吸気管を寸法の異なる
2本の通路に分け、かつそれぞれ別の吸気ポート
を有し、エンジン高回転時は2本の吸気通路を用
い、低回転時には閉塞位置の遅い方の吸気通路を
閉止し吸気を早目に閉塞することにより、吸気管
の寸法やエンジン回転数の関数である吸気の最大
圧力時点での吸気の閉塞による過給作用を利用し
て広範囲のエンジン回転域に亘つて好適な充填効
率を得るようにしたものが提案されている。しか
し、このものは、単一気筒のエンジンに対するも
のであつて、吸気通路内に発生する吸気圧力波を
どのように利用するのか、その構成、作用が定か
でなく、直ちに実用に供し得ないものであつた。
In addition, as disclosed in Japanese Utility Model Publication No. 45-2321, a technique for obtaining a supercharging effect using intake pressure waves generated in the intake passage of an engine has conventionally been used in a single-cylinder engine to reduce the size of the intake pipe. Divided into two different passages, each with a separate intake port, the two intake passages are used when the engine is running at high speeds, and at low engine speeds, the intake passage that is at the later closing position is closed, allowing for early intake. By occluding the intake air, it is possible to obtain suitable charging efficiency over a wide range of engine speeds by utilizing the supercharging effect caused by the occlusion of the intake air at the maximum pressure of the intake air, which is a function of the intake pipe dimensions and engine speed. It has been proposed that However, this method is for a single-cylinder engine, and it is not clear how to use the intake pressure waves generated in the intake passage, its structure, and operation, and it cannot be put into practical use right away. It was hot.

ところで、上記の如き過給機付エンジンにおい
ては、過給による吸気圧力の上昇により吸気温度
が高くなるため、エンジン低回転運転域、特に高
温高負荷低回転運転域でノツキングが発生しやす
いという問題がある。そのため、例えば排気ター
ボ過給機を備えたエンジンにおいては、タービン
上流の排気通路にウエイストゲート弁を設けて、
該ウエイストゲート弁をブロア下流の吸気圧力
(過給圧)によつて作動制御し、排気ガスの一部
をタービンをバイパスして流下させることによ
り、ブロア(過給機)下流の吸気圧力を設定値を
越えないように一定に保持して、ノツキングの発
生防止を図ることが広く採用されている。
By the way, in the above-mentioned supercharged engine, the intake air temperature increases due to the increase in intake pressure due to supercharging, so there is a problem that knocking is likely to occur in the engine's low-speed operating range, especially in the high-temperature, high-load, low-speed operating range. There is. Therefore, for example, in an engine equipped with an exhaust turbo supercharger, a waste gate valve is provided in the exhaust passage upstream of the turbine.
The intake pressure downstream of the blower (supercharger) is set by controlling the operation of the waste gate valve using the intake pressure (supercharging pressure) downstream of the blower, and allowing a portion of the exhaust gas to bypass the turbine and flow down. It is widely used to prevent the occurrence of knocking by maintaining a constant value so as not to exceed the value.

しかるに、このようにウエイストゲート弁等に
より過給圧の上限値を規制制御した場合、エンジ
ン高回転運転域では排気ポートにかかる排気圧力
が過給機下流の吸気圧力(過給圧)よりも大きく
なる。このため、吸排気のオーバラツプ時、排気
通路から燃焼室へ高温の排気ガスが多量に持ち込
まれ、また燃焼室から吸気通路へあるいは排気通
路から燃焼室を介して吸気通路へ多量の高温排気
ガスが吹き返され、その結果、エンジンの早期着
火(プリイグニツシヨン)やノツキングなどの異
常燃焼が発生するという問題があつた。
However, when the upper limit of supercharging pressure is regulated and controlled using a waste gate valve, etc., the exhaust pressure applied to the exhaust port is greater than the intake pressure (supercharging pressure) downstream of the supercharger in the engine high speed operating range. Become. Therefore, when the intake and exhaust air overlap, a large amount of high-temperature exhaust gas is brought into the combustion chamber from the exhaust passage, and a large amount of high-temperature exhaust gas is also carried from the combustion chamber to the intake passage or from the exhaust passage to the intake passage via the combustion chamber. As a result, there was a problem in that abnormal combustion such as premature engine ignition and knocking occurred.

(発明の目的) そこで、本発明はかかる点に鑑み、上記の如き
過給機付エンジンの吸気特性として、排気ポート
にかかる排気圧力が過給機下流の吸気圧力よりも
大きくなるエンジン運転域では、吸気ポート開口
時には燃焼室の残留排気ガスの圧力によつて吸気
が圧縮され、吸気通路内の吸気ポート部分に上記
排気圧力と同等の圧力の圧縮波が発生することを
知見し、この知見に基づいて、過給機付多気筒エ
ンジンでは一つの気筒での上記吸気ポート開口時
の圧縮波を該気筒の吸気ポート開口後最も早く吸
気ポートを開く他の気筒の吸気ポート開口直後
(吸排気のオーバラツプ時)に作用せしめれば効
果的に過給効果が得られること(以下、排気干渉
効果という)に着目してなされたものであり、こ
の排気干渉効果による過給効果により、つまり吸
排気のオーバラツプ時の排気圧力に対抗し得る圧
力の伝播圧縮波により、既存の吸気系の僅かな設
計変更による簡単な構成でもつて、吸排気のオー
バラツプ時の排気ガスの持ち込み量および吹き返
し量を低減させて、エンジンの異常燃焼を効果的
に防止することを目的とするものである。
(Object of the Invention) Therefore, in view of this point, the present invention provides intake characteristics of a supercharged engine as described above in an engine operating range where the exhaust pressure applied to the exhaust port is greater than the intake pressure downstream of the supercharger. It was discovered that when the intake port is opened, the intake air is compressed by the pressure of the residual exhaust gas in the combustion chamber, and a compression wave with a pressure equivalent to the above exhaust pressure is generated in the intake port part of the intake passage. Based on this, in a multi-cylinder engine with a supercharger, the compression wave at the time of opening of the intake port in one cylinder is determined by the compression wave at the time of opening of the intake port of one cylinder. This was done based on the fact that a supercharging effect can be effectively obtained (hereinafter referred to as the "exhaust interference effect") if the supercharging effect is applied (at the time of overlap). Due to the propagating compression waves of pressure that can counteract the exhaust pressure at the time of overlap, the amount of exhaust gas brought in and the amount of blowback when the intake and exhaust air overlap can be reduced even with a simple configuration by making slight design changes to the existing intake system. The purpose is to effectively prevent abnormal combustion in the engine.

(発明の構成) この目的を達成するための本発明の技術的解決
手段は、過給機を備えた多気筒エンジンにおける
過給機下流の吸気通路において各気筒間の吸気通
路長さを、吸気行程が連続する気筒間で同一に
し、かつ排気ポートに作用する排気圧力が過給機
下流の吸気圧力よりも大きくなるエンジン運転域
で、各気筒の吸気ポート開口時に該吸気ポートに
発生する圧縮波が該気筒の吸気ポート開口後最も
早く吸気ポートを開く他の気筒の吸気ポートの開
口直後に伝播して過給を行うように設定したもの
である。このことにより、いわゆる排気干渉効果
による過給効果によつて、つまり気筒の吸排気の
オーバラツプ時において排気圧力と等しい圧力の
開口時圧縮波が吸気ポートに伝播して吸排気の圧
力差がなくなることによつて、排気ガスの持ち込
みや吹き返しを抑制するようにしたものである。
(Structure of the Invention) The technical solution of the present invention to achieve this object is to adjust the length of the intake passage between each cylinder in the intake passage downstream of the supercharger in a multi-cylinder engine equipped with a supercharger. Compression waves that occur at the intake port of each cylinder when the intake port of each cylinder opens in an engine operating range where the stroke is the same for consecutive cylinders and the exhaust pressure acting on the exhaust port is greater than the intake pressure downstream of the supercharger. is set to propagate and perform supercharging immediately after the intake ports of other cylinders are opened the earliest after the intake ports of the cylinder are opened. As a result, due to the supercharging effect due to the so-called exhaust interference effect, in other words, when the intake and exhaust of the cylinder overlap, a compression wave at the time of opening with a pressure equal to the exhaust pressure propagates to the intake port, eliminating the pressure difference between the intake and exhaust. This suppresses the introduction of exhaust gas and blowback.

ここにおいて、上記排気干渉効果を得る気筒間
の吸気通路長さLは、4サイクルレシプロエンジ
ンの場合、 L=(720/Z) ×(60/360・N)×a …() の式によつて求められた値に設定される。上記
()式において、Zは気筒数で、(720/Z)は
吸気行程が連続する気筒間の位相差、つまり一つ
の気筒での開口時圧縮波の発生からその気筒の吸
気ポート開口後最も早く吸気ポートを開く他の気
筒の吸気ポート開口直後への伝播までに要するク
ランクシヤフトの回転角度を表わす。また、Nは
エンジン回転数で、(60/360N)は1゜回転するに
要する時間(秒)を表わす。また、aは圧力波
(圧縮波)の伝播速度(音速)である。尚、上記
()式では、圧力波の伝播に対する吸入空気の
流れの影響を無視しているが、これは流速が音速
に比べて小さく、吸気通路の長さにほとんど変化
をもたらさないためである。
Here, the length L of the intake passage between cylinders to obtain the above exhaust interference effect is calculated by the following formula in the case of a 4-stroke reciprocating engine: L=(720/Z)×(60/360・N)×a...() is set to the value determined. In the above equation (), Z is the number of cylinders, and (720/Z) is the phase difference between consecutive cylinders in the intake stroke. It represents the rotation angle of the crankshaft required for propagation to immediately after the opening of the intake port of another cylinder, which opens the intake port earlier. Also, N is the engine rotation speed, and (60/360N) represents the time (seconds) required to rotate 1°. Further, a is the propagation velocity (sound velocity) of the pressure wave (compression wave). Note that the above equation () ignores the influence of the intake air flow on the propagation of pressure waves, but this is because the flow velocity is smaller than the speed of sound and causes almost no change in the length of the intake passage. .

(発明の効果) したがつて、本発明によれば、過給機付多気筒
エンジンにおいて、排気圧力が過給圧よりも大き
くなるエンジン高回転運転域で各気筒間で排気干
渉効果による過給効果を得るようにしたので、既
存の吸気系の僅かな設計変更による簡単な構成で
もつて、吸排気のオーバラツプ時での排気ガスの
持ち込み量および吹き返し量を少なくすることが
でき、よつて早期着火(プリイグニツシヨン)や
ノツキングなどのエンジンの異常燃焼を有効に防
止できるとともに、その防止化を容易にかつ安価
に実施できるものである。
(Effects of the Invention) Therefore, according to the present invention, in a multi-cylinder engine with a supercharger, supercharging is performed between each cylinder due to the exhaust interference effect in the engine high-speed operating range where the exhaust pressure is greater than the boost pressure. As a result, the amount of exhaust gas brought in and the amount blown back when the intake and exhaust systems overlap can be reduced even with a simple configuration by making slight design changes to the existing intake system, thereby reducing early ignition. Abnormal engine combustion such as pre-ignition and knocking can be effectively prevented, and the prevention can be easily and inexpensively implemented.

(実施例) 以下、本発明の技術的手段の具体例としての実
施例を図面に基づいて説明する。
(Example) Hereinafter, an example as a specific example of the technical means of the present invention will be described based on the drawings.

第1図および第2図は本発明を4気筒4サイク
ルエンジンに適用した基本構造例としての第1実
施例を示す。同図において、1A〜1Dは第1〜
第4気筒であり、2は各気筒1A〜1Dにおいて
シリンダ3とピストン4とで形成された燃焼室で
ある。
FIGS. 1 and 2 show a first embodiment as a basic structural example in which the present invention is applied to a four-cylinder, four-cycle engine. In the same figure, 1A to 1D are the first to
It is the fourth cylinder, and 2 is a combustion chamber formed by the cylinder 3 and the piston 4 in each of the cylinders 1A to 1D.

5は一端がエアクリーナ6を介して大気に開口
して各気筒1A〜1Dに吸気を供給するための主
吸気通路であつて、該主吸気通路5には、吸入空
気流量を検出するエアフローメータ7が配設さ
れ、該エアフローメータ7の下流には吸入空気量
を制御するスロツトル弁8が配設されている。上
記主吸気通路5は、スロツトル弁8下流において
第1〜第4吸気通路5a〜5dに分岐されたのち
各々吸気ポート9,9,…を介して各気筒1A〜
1Dの燃焼室2,2,…に連通している。
Reference numeral 5 denotes a main intake passage whose one end opens to the atmosphere via an air cleaner 6 to supply intake air to each cylinder 1A to 1D, and an air flow meter 7 for detecting the intake air flow rate is provided in the main intake passage 5. A throttle valve 8 for controlling the amount of intake air is provided downstream of the air flow meter 7. The main intake passage 5 is branched into first to fourth intake passages 5a to 5d downstream of the throttle valve 8, and then connected to each of the cylinders 1A to 5d via intake ports 9, 9, .
It communicates with the combustion chambers 2, 2, . . . of 1D.

上記各吸気通路5a〜5dにはそれぞれ上記エ
アフローメータ7の出力に基づく吸入空気流量に
応じて燃料噴射量が制御される電磁弁式の燃料噴
射ノズル10,10,…が配設されている。
Each of the intake passages 5a to 5d is provided with electromagnetic valve type fuel injection nozzles 10, 10, . . . whose fuel injection amount is controlled according to the intake air flow rate based on the output of the air flow meter 7.

また、上記主吸気通路5の分岐部は、スロツト
ル弁8下流に位置していて、第1〜第4吸気通路
5a〜5dを互いに連通する連通路11を構成し
ている。該連通路11の通路面積Acは各吸気通
路5a〜5dの最小通路面積Aと同等かそれ以上
(Ac≧A)に設定されていて、圧力波をその減衰
を小さくして有効に伝播するようにしている。
尚、図示していないが、主吸気通路5のスロツト
ル弁8と分岐部(連通路11)との間にはエンジ
ンの加速運転時又は減速運転時等の過渡運転時で
の吸入空気のサージングを防ぐための所定容積の
サージタンクを設けて、燃料の良好な応答性を確
保するようにすることが好ましい。
Further, a branch portion of the main intake passage 5 is located downstream of the throttle valve 8, and constitutes a communication passage 11 that communicates the first to fourth intake passages 5a to 5d with each other. The passage area Ac of the communication passage 11 is set to be equal to or larger than the minimum passage area A of each intake passage 5a to 5d (Ac≧A), so that pressure waves can be effectively propagated with less attenuation. I have to.
Although not shown in the figure, there is a connection between the throttle valve 8 of the main intake passage 5 and the branch part (communication passage 11) to prevent surging of intake air during transient operation such as during acceleration or deceleration of the engine. It is preferable to provide a surge tank with a predetermined volume to prevent surges and ensure good response of the fuel.

また、12a〜12dはそれぞれ一端が排気ポ
ート13,13,…を介して各気筒1A〜1Dの
燃焼室2,2,…に連通して燃焼室2からの排気
ガスを排出する第1〜第4排気通路であつて、該
各排気通路12a〜12dの下流端はそれぞれ主
排気通路12に集合されたのち大気に開口してお
り、該主排気通路12の途中には排気ガスを浄化
するための触媒装置14が介設されている。尚、
15は吸気ポート9を開閉する吸気弁、16は排
気ポート13を開閉する排気弁である。
In addition, 12a to 12d each have first to first ends that communicate with the combustion chambers 2, 2, . . . of each cylinder 1A to 1D via exhaust ports 13, 13, . The downstream ends of each of the exhaust passages 12a to 12d are connected to the main exhaust passage 12 and then open to the atmosphere, and there is a passage in the middle of the main exhaust passage 12 for purifying the exhaust gas. A catalyst device 14 is provided. still,
15 is an intake valve that opens and closes the intake port 9, and 16 is an exhaust valve that opens and closes the exhaust port 13.

一方、17は排気ターボ過給機であつて、該過
給機17は、主排気通路12の触媒装置14上流
に配設され排気ガス流によつて回転駆動されるタ
ービン17aと、主吸気通路5のエアフローメー
タ7とスロツトル弁8との間に配設され上記ター
ビン17aによつて駆動されるブロア17bとを
備え、該ブロア17bによつて吸気を各気筒1A
〜1Dに過給するものである。
On the other hand, 17 is an exhaust turbo supercharger, and the supercharger 17 includes a turbine 17a disposed upstream of the catalyst device 14 in the main exhaust passage 12 and rotationally driven by the exhaust gas flow, and a main intake passage. The blower 17b is disposed between the air flow meter 7 of No. 5 and the throttle valve 8 and is driven by the turbine 17a, and the blower 17b directs intake air to each cylinder 1A.
It supercharges up to 1D.

さらに、18は一端が主排気通路12のタービ
ン17a上流に、他端が該タービン17a下流に
それぞれ開口してタービン17aをバイパスする
バイパス通路であつて、該バイパス通路18に
は、上記ブロア17b下流の主吸気通路5の吸気
圧力(過給圧)に応じて作動制御されるウエイス
トゲート弁19が介設されており、エンジン回転
数の増大により過給圧が設定値以上になるとウエ
イストゲート弁19を開作動せしめて、排気ガス
流をバイパス通路18によつてタービン17aを
バイパスして流下させることにより、過給圧を設
定値を越えないよう一定に保持するように構成さ
れている。すなわち、第4図に示すように、上記
過給圧つまり過給機17(ブロア17b)下流の
吸気圧力Pinはエンジン回転数が増大するに従つ
て比較的急勾配でもつて一次的に増大したのち、
所定回転数以上になると上記ウエイストゲート弁
19の作動により設定値に保持される特性になる
ように設定されている。これに対し、タービン1
7a上流の排気圧力つまり排気ポート13に作用
する排気圧力Pexはエンジン回転数が増大するに
従つて徐々に増大し、所定回転数を越えると上記
設定上限過給圧よりも大きい圧力となる特性を示
す。このため、第4図の如く、上記吸気圧力Pin
が排気圧力Pexよりも大きくなるエンジン運転域
例えばエンジン回転数で2000〜4000rpmのエンジ
ン低回転領域と、逆に排気圧力Pexが吸気圧力
Pinよりも十分大きくなるエンジン運転域例えば
エンジン回転数で5000rpm以上のエンジン高回転
領域とが生じることになる。
Further, reference numeral 18 denotes a bypass passage which has one end opened upstream of the turbine 17a of the main exhaust passage 12 and the other end opened downstream of the turbine 17a to bypass the turbine 17a. A waste gate valve 19 is provided which is operated and controlled according to the intake pressure (supercharging pressure) in the main intake passage 5 of the engine. is opened to cause the exhaust gas flow to flow down through the bypass passage 18, bypassing the turbine 17a, thereby maintaining the supercharging pressure at a constant level so as not to exceed a set value. That is, as shown in FIG. 4, the supercharging pressure, that is, the intake pressure Pin downstream of the supercharger 17 (blower 17b), increases temporarily as the engine speed increases, even at a relatively steep slope, and then increases. ,
The characteristics are set such that when the rotation speed exceeds a predetermined value, the waste gate valve 19 is operated to maintain the set value. On the other hand, turbine 1
The exhaust pressure upstream of 7a, that is, the exhaust pressure Pex acting on the exhaust port 13, gradually increases as the engine speed increases, and when it exceeds a predetermined speed, the pressure becomes higher than the set upper limit supercharging pressure. show. Therefore, as shown in Fig. 4, the above intake pressure Pin
In the engine operating range where Pex is greater than the exhaust pressure Pex, for example, in the low engine speed region of 2000 to 4000 rpm, the exhaust pressure Pex is greater than the intake pressure.
There will be an engine operating range that is sufficiently larger than Pin, such as a high engine speed range of 5000 rpm or more.

加えて、上記第1気筒1Aと第4気筒1Dとの
吸気通路5aと5dはその長さが等長l1に設定さ
れているとともに、第2気筒1Bと第3気筒1C
との吸気通路5bと5cも等長l2に設定されてい
る。そして、1−3−4−2の点火順序における
吸気行程が連続する隣接気筒間の通路長さ、つま
り各気筒と、該気筒の吸気ポート9開口(吸気弁
15の開弁)後に最も早く吸気ポート9を開く他
の気筒との間の上記連通路11を介しての吸気通
路長さLは、互いに同一に設定され、連通路11
の通路長さをlcとした場合L=lc+l1+l2であり、
排気圧力Pexが吸気圧力Pinよりも大きくなるエ
ンジン運転域で上記隣接気筒間で排気干渉効果を
得るように上記()式により求められた値に設
定されている。具体的には、排気圧力Pexが吸気
圧力Pinよりも200mmHg以上も高くなる回転域例
えば5000〜7000rpmの高回転域で排気干渉効果を
得るのが好ましいので、エンジン回転数N=5000
〜7000rpmとし、かつZ=4、音速a=376m/
s(80℃で)、θ0=30とした場合、()式よりL
=1.61〜2.26mとなる。
In addition, the lengths of the intake passages 5a and 5d of the first cylinder 1A and the fourth cylinder 1D are set to be equal to each other, and the lengths of the intake passages 5a and 5d of the first cylinder 1A and the fourth cylinder 1D are set to be equal to each other.
The intake passages 5b and 5c are also set to have the same length l2 . Then, the passage length between adjacent cylinders in which the intake stroke in the ignition order of 1-3-4-2 is continuous, that is, the passage length between each cylinder and the earliest intake after the opening of the intake port 9 (opening of the intake valve 15) of the cylinder The length L of the intake passage through the communication passage 11 between the other cylinders in which the port 9 is opened is set to be the same, and the length L of the intake passage through the communication passage 11 is
When the path length of is lc, L=lc+l 1 +l 2 ,
It is set to a value determined by the above equation () so as to obtain an exhaust interference effect between the adjacent cylinders in an engine operating range where the exhaust pressure Pex is greater than the intake pressure Pin. Specifically, it is preferable to obtain the exhaust interference effect in a high rotation range where the exhaust pressure Pex is 200 mmHg or more higher than the intake pressure Pin, for example, 5000 to 7000 rpm, so the engine rotation speed N = 5000.
~7000rpm, and Z=4, sound speed a=376m/
s (at 80℃), and θ 0 = 30, then from equation (), L
= 1.61~2.26m.

次に、上記第1実施例の作用について第5図に
より説明するに、第4図に示すように排気ポート
13に作用する排気圧力Pexが過給機17(ブロ
ア17b)下流の吸気圧力Pin(過給圧)よりも
大きくなるエンジン運転域、例えば5000〜
7000rpmのエンジン高回転運転領域には、上記
Pex>Pinの関係から、一つの気筒例えば第1気
筒1Aの吸気ポート9開口時に該吸気ポート9近
傍に発生した開口時圧縮波は、1−3−4−2の
点火順序における隣接気筒間の通路長さLを上記
()式により求められる値に設定したことによ
り、第1吸気通路5a→連通路11→第3吸気通
路5cを経て、他の気筒である第3気筒1Cの吸
気ポート9の開口直後に有効に伝播される。その
結果、この開口時圧縮波により、吸気が吸気行程
初期にある第3気筒1Cの吸気ポート9より燃焼
室2内へ押し込まれて過給が行われることになる
(排気干渉効果)。また、同様に、この排気干渉効
果は、第3気筒1C→第4気筒1D、第4気筒1
D→第2気筒1B、第2気筒1B→第1気筒1A
へと順次作用して行き、各気筒の吸気行程初期の
吸気ポート9に対し開口時圧縮波が伝播して過給
が行われる。
Next, the operation of the first embodiment will be explained with reference to FIG. 5. As shown in FIG. 4, the exhaust pressure Pex acting on the exhaust port 13 is changed to the intake pressure Pin ( engine operating range that is larger than the boost pressure (boost pressure), e.g. 5000 ~
In the engine high speed operation region of 7000 rpm, the above
From the relationship of Pex>Pin, when the intake port 9 of one cylinder, for example, the first cylinder 1A, is opened, the compression wave generated near the intake port 9 is generated between adjacent cylinders in the ignition order of 1-3-4-2. By setting the passage length L to a value determined by the above formula (), the intake port 9 of the third cylinder 1C, which is another cylinder, passes through the first intake passage 5a → the communication passage 11 → the third intake passage 5c. is effectively propagated immediately after opening. As a result, this opening compression wave forces intake air into the combustion chamber 2 from the intake port 9 of the third cylinder 1C at the beginning of the intake stroke, thereby performing supercharging (exhaust interference effect). Similarly, this exhaust interference effect changes from 3rd cylinder 1C to 4th cylinder 1D, and 4th cylinder 1D.
D → 2nd cylinder 1B, 2nd cylinder 1B → 1st cylinder 1A
The opening compression wave propagates to the intake port 9 of each cylinder at the beginning of the intake stroke, and supercharging is performed.

したがつて、このように吸気行程が連続する隣
接気筒相互間での排気干渉効果による過給効果に
より、各気筒の吸気ポート9開口直後つまり吸、
排気のオーバラツプ時での吸気圧力は排気圧力
Pexと等しい圧力の開口時圧縮波の伝播により、
排気圧力Pexとの差圧がほとんどなくなることに
より、排気ガスの燃焼室2への持ち込み量および
吸気通路5a〜5dへの吹き返し量が低減される
ことになる。この結果、高温排気ガスの多量の持
ち込みや吹き返しによるプリイグニツシヨンやノ
ツキングなどのエンジンの異常燃焼の発生を有効
に防止することができる。
Therefore, due to the supercharging effect due to the exhaust interference effect between adjacent cylinders whose intake strokes are continuous, the intake stroke immediately after the opening of the intake port 9 of each cylinder, that is, the
When the exhaust overlaps, the intake pressure is the exhaust pressure
Due to the propagation of a compression wave at the opening with a pressure equal to Pex,
Since the pressure difference with the exhaust pressure Pex is almost eliminated, the amount of exhaust gas carried into the combustion chamber 2 and the amount blown back into the intake passages 5a to 5d are reduced. As a result, it is possible to effectively prevent the occurrence of abnormal engine combustion such as pre-ignition or knocking due to a large amount of high-temperature exhaust gas brought in or blown back.

また、その場合、排気干渉効果を得るための圧
力波伝播径路である第1〜第4吸気通路5a〜5
dおよび連通路11(主吸気通路5の分岐部)は
スロツトル弁8下流に位置するので、該スロツト
ル弁8によつて圧力波(圧縮波)が減衰されるこ
とがなく、しかも上記連通路11の通路面積Ac
が各吸気通路5a〜5dの最小通路面積A以上で
あることにより、圧力波の伝播の抵抗が小さく、
よつて上記排気干渉効果を有効に発揮できる。
In that case, the first to fourth intake passages 5a to 5, which are pressure wave propagation paths for obtaining an exhaust interference effect.
d and the communication passage 11 (branching part of the main intake passage 5) are located downstream of the throttle valve 8, so the pressure waves (compression waves) are not attenuated by the throttle valve 8, and the communication passage 11 is located downstream of the throttle valve 8. Passage area Ac
is greater than or equal to the minimum passage area A of each intake passage 5a to 5d, so that the resistance to the propagation of pressure waves is small;
Therefore, the above-mentioned exhaust interference effect can be effectively exerted.

さらに、燃料供給装置としての燃料噴射ノズル
10は、連通路11下流の各吸気通路5a〜5d
に設けれているので、吸気通路長さが長くなるこ
とによる燃料の応答性の悪化を防止して、良好な
燃料応答性を確保できる。
Furthermore, the fuel injection nozzle 10 as a fuel supply device includes each intake passage 5a to 5d downstream of the communication passage 11.
Therefore, it is possible to prevent deterioration of fuel responsiveness due to an increase in the length of the intake passage and ensure good fuel responsiveness.

また、上記排気干渉効果による過給効果は、各
気筒1A〜1D間の通路長さLを上述の如く設定
することによつて得られるので、既存の吸気系の
僅かな設計変更で済み、構造が極めて簡単なもの
であり、よつて容易にかつ安価に実施することが
できる。
In addition, the supercharging effect due to the exhaust interference effect can be obtained by setting the passage length L between each cylinder 1A to 1D as described above, so a slight design change of the existing intake system is required, and the structure is extremely simple and therefore can be implemented easily and at low cost.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記第1実施例では4気筒4サイク
ルエンジンに適用した例を示したが、本発明はそ
の他各種多気筒エンジンに対しても適用できるも
のである。例えば、上記第1実施例と異なり、4
気筒4サイクルエンジンにおける各気筒1A〜1
Dに各々吸気ポート9を介して連通する第1〜第
4吸気通路5a〜5dを全て等長に設定してもよ
い。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, although the first embodiment described above shows an example in which the present invention is applied to a four-cylinder four-stroke engine, the present invention can also be applied to various other multi-cylinder engines. For example, unlike the first embodiment, 4
Each cylinder 1A to 1 in a 4-cylinder engine
The first to fourth intake passages 5a to 5d, which communicate with D via the intake ports 9, may all be set to have the same length.

また、第3図は変形例の一例として直列6気筒
4サイクルエンジンに適用した第2実施例を示す
(尚、上記第1実施例と同一の部分については同
一の符号を付してその説明を省略する)。本例の
場合、各気筒1A〜1Fの吸気通路5a〜5f
は、主吸気通路5のスロツトル弁8下流で分岐し
かつ連通路11′で連通されており、それぞれ等
長に設定されている(尚、図では2次元的に等長
にしたが、要は3次元的に等長であればよい)。
また、1−5−3−6−2−4の点火順序におけ
る吸気行程が連続する隣接気筒間通路長さLは上
記()式で求められた値に等しく設定されてい
る。具体的にはZ=6とし、その他は4気筒の場
合と同じ条件とした場合、L=1.07〜1.50mとな
る。したがつて、第6図に示すように、排気干渉
効果は、第1気筒→第5気筒、第5気筒→第3気
筒、第3気筒→第6気筒、第6気筒→第2気筒、
第2気筒→第4気筒、第4気筒→第1気筒へと順
次作用して行き、各気筒における吸気行程初期の
吸気ポート9に過給が行われてエンジンの異常燃
焼が防止される。
Further, FIG. 3 shows a second embodiment applied to an in-line six-cylinder four-stroke engine as an example of a modification (the same parts as in the first embodiment are given the same reference numerals and their explanations will be explained below). (omitted). In this example, intake passages 5a to 5f of each cylinder 1A to 1F
are branched downstream of the throttle valve 8 in the main intake passage 5 and communicated with each other through a communication passage 11', and are set to have equal lengths (note that they are two-dimensionally equal lengths in the figure, but the point is It suffices if the length is the same in three dimensions).
Further, the length L of the passage between adjacent cylinders in which the intake strokes in the ignition order of 1-5-3-6-2-4 are continuous is set equal to the value determined by the above equation (). Specifically, when Z=6 and other conditions are the same as in the case of 4 cylinders, L=1.07 to 1.50 m. Therefore, as shown in FIG. 6, the exhaust interference effect is as follows: 1st cylinder → 5th cylinder, 5th cylinder → 3rd cylinder, 3rd cylinder → 6th cylinder, 6th cylinder → 2nd cylinder,
It acts sequentially from the second cylinder to the fourth cylinder, and from the fourth cylinder to the first cylinder, supercharging the intake port 9 of each cylinder at the beginning of the intake stroke, thereby preventing abnormal combustion in the engine.

また、以上の説明ではレシプロエンジンについ
て述べたが、本発明は過給機付多気筒ロータリピ
ストンエンジンにも適用できるのは勿論であり、
特に2気筒ロータリピストンエンジンの場合には
気筒間の位相差が180゜で気筒間の吸気通路長さL
が短く済むので製作設計上有利である。
Further, although the above explanation has been made regarding a reciprocating engine, the present invention can of course be applied to a multi-cylinder rotary piston engine with a supercharger.
Especially in the case of a two-cylinder rotary piston engine, the phase difference between the cylinders is 180° and the length of the intake passage between the cylinders is L.
This is advantageous in terms of manufacturing design because the length can be shortened.

さらに、上記各実施例では、各気筒に対し吸気
ポートを介して単一の吸気通路を連通させたが、
低負荷用と高負荷用との2つの吸気通路を各々独
立して連通させるようにしたものにも適用でき、
この場合、低負荷用吸気系統又は高負荷用吸気系
統の何れか一方で排気干渉効果を得るように気筒
間の通路長さを設定すればよく、好ましくは高負
荷用吸気通路は低負荷用吸気通路よりも通路面積
が大きく圧力波の減衰を小さく抑えることができ
るので、高負荷用吸気系統での気筒間設定が有利
である。
Furthermore, in each of the above embodiments, a single intake passage communicates with each cylinder via the intake port.
It can also be applied to systems where two intake passages, one for low load and one for high load, are communicated independently.
In this case, the length of the passage between the cylinders may be set so as to obtain an exhaust interference effect in either the low-load intake system or the high-load intake system. Preferably, the high-load intake passage is used for the low-load intake system. Since the area of the passage is larger than that of the passage and the attenuation of pressure waves can be kept small, it is advantageous to set it between cylinders in a high-load intake system.

さらにまた、上記各実施例では過給機として排
気ターボ過給機17を採用したが、その他過給ポ
ンプ等公知の各種過給機が採用可能である。
Furthermore, in each of the above embodiments, the exhaust turbo supercharger 17 is used as the supercharger, but other various known superchargers such as a supercharging pump can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図および第
2図は第1実施例を示す全体構成説明図および同
要部概略図、第3図は第2実施例を示す第1図相
当図、第4図はエンジン回転数に対する吸気圧力
および排気圧力の特性を示す図、第5図および第
6図はそれぞれ第1実施例および第2実施例にお
ける排気干渉効果の作用態様を示す説明図であ
る。 1A〜1F…気筒、5…主吸気通路、5a〜5
f…吸気通路、8…スロツトル弁、9…吸気ポー
ト、10…燃料噴射ノズル、12…主排気通路、
12a〜12f…排気通路、13…排気ポート、
17…排気ターボ過給機、19…ウエイストゲー
ト弁。
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are an explanatory diagram of the overall configuration and a schematic diagram of the main parts of the first embodiment, and FIG. 3 is a diagram equivalent to FIG. 1 showing the second embodiment. , FIG. 4 is a diagram showing the characteristics of intake pressure and exhaust pressure with respect to engine speed, and FIGS. 5 and 6 are explanatory diagrams showing the mode of action of the exhaust interference effect in the first embodiment and the second embodiment, respectively. be. 1A to 1F...Cylinder, 5...Main intake passage, 5a to 5
f...Intake passage, 8...Throttle valve, 9...Intake port, 10...Fuel injection nozzle, 12...Main exhaust passage,
12a to 12f...exhaust passage, 13...exhaust port,
17...Exhaust turbo supercharger, 19...Waste gate valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気ポートを介して各気筒に連通する吸気通
路と、排気ポートを介して各気筒に連通する排気
通路と、上記吸気通路に設けられた過給機とを備
えた多気筒エンジンにおいて、上記過給機下流の
吸気通路において各気筒間の吸気通路長さを、吸
気行程が連続する気筒間で同一にし、かつ排気ポ
ートに作用する排気圧力が過給機下流の吸気圧力
よりも大きくなるエンジン運転域で、各気筒の吸
気ポート開口時に該吸気ポートに発生する圧縮波
が該気筒の吸気ポート開口後最も早く吸気ポート
を開く他の気筒の吸気ポートの開口直後に伝播し
て過給を行うように設定したことを特徴とする多
気筒エンジンの吸気装置。
1. In a multi-cylinder engine equipped with an intake passage communicating with each cylinder via an intake port, an exhaust passage communicating with each cylinder via an exhaust port, and a supercharger provided in the intake passage, Engine operation in which the length of the intake passage between each cylinder downstream of the charger is made the same between cylinders with consecutive intake strokes, and the exhaust pressure acting on the exhaust port is greater than the intake pressure downstream of the supercharger. In the area, when the intake port of each cylinder opens, the compression wave generated in the intake port of that cylinder propagates immediately after the intake port of the other cylinder opens the earliest after the intake port of that cylinder opens, and supercharging is performed. An intake system for a multi-cylinder engine, which is characterized by being set to.
JP58091280A 1983-05-23 1983-05-23 Intake apparatus of multicylinder engine Granted JPS59215918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091280A JPS59215918A (en) 1983-05-23 1983-05-23 Intake apparatus of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091280A JPS59215918A (en) 1983-05-23 1983-05-23 Intake apparatus of multicylinder engine

Publications (2)

Publication Number Publication Date
JPS59215918A JPS59215918A (en) 1984-12-05
JPS6323370B2 true JPS6323370B2 (en) 1988-05-16

Family

ID=14022045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091280A Granted JPS59215918A (en) 1983-05-23 1983-05-23 Intake apparatus of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS59215918A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477763B2 (en) * 2017-03-30 2019-03-06 マツダ株式会社 Intake passage structure of multi-cylinder engine

Also Published As

Publication number Publication date
JPS59215918A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
JPS6211169B2 (en)
JPH0128209B2 (en)
JPS6323370B2 (en)
JPH0452377B2 (en)
JPH0128208B2 (en)
JPH0337009B2 (en)
JPH0559249B2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JPS6326261B2 (en)
JPH0337012B2 (en)
JPS60222523A (en) Suction device of engine
JPS6340251B2 (en)
JPS5979044A (en) Intake apparatus for rotary piston engine
JPH0452372B2 (en)
JPH0517378B2 (en)
JPS60222524A (en) Suction device of engine
JPH0452375B2 (en)
JPS59141726A (en) Intake apparatus for rotary piston engine
JPH0192520A (en) Engine intake-air device
JPS63248917A (en) Intake device for engine with supercharger
JPH01182525A (en) Valve timing control device for engine
JPH0536610B2 (en)
JPH0517377B2 (en)
JPH0452373B2 (en)
JPS60249624A (en) Intake-air device in rotary piston engine