JP6477763B2 - Intake passage structure of multi-cylinder engine - Google Patents

Intake passage structure of multi-cylinder engine Download PDF

Info

Publication number
JP6477763B2
JP6477763B2 JP2017067677A JP2017067677A JP6477763B2 JP 6477763 B2 JP6477763 B2 JP 6477763B2 JP 2017067677 A JP2017067677 A JP 2017067677A JP 2017067677 A JP2017067677 A JP 2017067677A JP 6477763 B2 JP6477763 B2 JP 6477763B2
Authority
JP
Japan
Prior art keywords
passage
cylinder
intake
surge tank
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067677A
Other languages
Japanese (ja)
Other versions
JP2018168781A (en
Inventor
平田 敏彦
敏彦 平田
英策 胡子
英策 胡子
良太郎 西田
良太郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017067677A priority Critical patent/JP6477763B2/en
Publication of JP2018168781A publication Critical patent/JP2018168781A/en
Application granted granted Critical
Publication of JP6477763B2 publication Critical patent/JP6477763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

ここに開示する技術は、多気筒エンジンの吸気通路構造に関する。   The technology disclosed herein relates to an intake passage structure of a multi-cylinder engine.

特許文献1には、多気筒エンジンの吸気通路構造の一例として、直列4気筒エンジンのための吸気装置が開示されている。この吸気装置は、4つの気筒のそれぞれに接続された独立通路(下流分岐管部の内部通路)と、エンジン本体の外面に沿わせるように配置された、各独立通路に共通のサージタンク(下流分岐管部の集合部)とを備えて構成されている。特許文献1に係るサージタンクは、吸気ポートに対して近接するように、吸気ポートの反気筒側端部(入口)に対して各独立通路を挟んで向かい合うよう配置されている。このような配置とすることで、サージタンクから吸気ポートにかけての流路長(ランナー長)を短くすることが出来る。   Patent Document 1 discloses an intake device for an in-line four-cylinder engine as an example of an intake passage structure of a multi-cylinder engine. This intake device includes an independent passage connected to each of the four cylinders (inner passage of the downstream branch pipe section) and a surge tank (downstream) common to each independent passage arranged along the outer surface of the engine body. A collecting portion of the branch pipe portion). The surge tank according to Patent Literature 1 is disposed so as to face the opposite end portion (inlet) of the intake port on the opposite side of the intake port so as to be close to the intake port. With such an arrangement, the flow path length (runner length) from the surge tank to the intake port can be shortened.

また、特許文献1には、サージタンクへガスを導入するための上流側通路(中間吸気管部の内部通路)を、サージタンクの気筒列方向中央部に接続することも開示されている。   Patent Document 1 also discloses that an upstream-side passage (internal passage of the intermediate intake pipe portion) for introducing gas into the surge tank is connected to the central portion in the cylinder row direction of the surge tank.

特開2013−147953号公報Japanese Unexamined Patent Publication No. 2013-147953

ところで、幾何学的圧縮比を高めたエンジンでは、ポンプ損失の増大が懸念されるため、特定の運転領域(例えば、燃費性能が優先される運転領域)では、吸気バルブを圧縮行程中に閉弁することが考えられる。このような遅閉じを行うと、いわゆる遅閉じ方式のミラーサイクルを実現することができるため、スロットリングを省略又は抑制し、ひいてはポンプ損失を低減することが可能になる。   By the way, in an engine with a high geometric compression ratio, there is a concern about an increase in pump loss. Therefore, in a specific operation region (for example, an operation region where fuel efficiency is prioritized), the intake valve is closed during the compression stroke. It is possible to do. When such late closing is performed, a so-called delayed closing type mirror cycle can be realized, so that throttling can be omitted or suppressed, and pump loss can be reduced.

しかし、遅閉じを行った場合、吸気行程から圧縮行程へ移行した直後、吸気バルブは開弁したままとなるから、ピストンの上昇に伴って、気筒内に充填されたガスが吸気側へ吹き戻るようになる。   However, when the valve is closed late, the intake valve remains open immediately after the transition from the intake stroke to the compression stroke, so that the gas charged in the cylinder blows back to the intake side as the piston rises. It becomes like this.

ここで、前記特許文献1のようにランナー長を短く構成してしまうと、吸気側へ吹き戻されたガスが、吸気ポートを介してサージタンクへ逆流する可能性がある。   Here, if the runner length is shortened as in Patent Document 1, the gas blown back to the intake side may flow back to the surge tank via the intake port.

その一方で、例えば4気筒エンジンにおいては、所定の気筒(以下、「先発気筒」ともいう)が圧縮行程にあるとき、その気筒の次に圧縮行程を迎える気筒(以下、「後発気筒」ともいう)は吸気行程の最中となる。   On the other hand, for example, in a four-cylinder engine, when a predetermined cylinder (hereinafter also referred to as “starting cylinder”) is in the compression stroke, the cylinder that will enter the compression stroke next to that cylinder (hereinafter also referred to as “following cylinder”). ) Is during the intake stroke.

よって、圧縮行程にある先発気筒からガスが吹き戻されるとき、後発気筒の内部は負圧となるから、先発気筒と後発気筒とが気筒列方向において隣接していた場合、先発気筒からサージタンクへ逆流したガスが、後発気筒に吸入されてしまう可能性のあることに本願発明者等は気付いた。   Therefore, when the gas is blown back from the preceding cylinder in the compression stroke, the inside of the succeeding cylinder becomes negative pressure. Therefore, if the starting cylinder and the succeeding cylinder are adjacent in the cylinder row direction, the starting cylinder is transferred to the surge tank. The inventors of the present application have noticed that the backflowed gas may be sucked into the later cylinder.

本願発明者等は、さらに検討を重ねた結果、上流側通路とサージタンクとの接続箇所次第では、先発気筒から吹き戻されたガスの後発気筒への吸入が促進されてしまい、その結果、プレイグニッション(以下、「プレイグ」ともいう)を生じる虞があることを見出した。   As a result of further investigation, the inventors of the present application have accelerated the suction of the gas blown back from the preceding cylinder into the succeeding cylinder depending on the connection location between the upstream passage and the surge tank. It has been found that there is a possibility of causing an ignition (hereinafter, also referred to as “plague”).

例えば、上流側通路及びサージタンクの接続部と、先発気筒に通じる独立通路の上流端部と、後発気筒に通じる独立通路の上流端部とが、気筒列方向においてこの順で並んでいた場合、上流側通路からサージタンクへ流入したガスは、サージタンクの内部において、先発気筒に対応する上流端部付近のスペースと、後発気筒に対応する上流端部付近のスペースとを、この順で通過するような流動を形成する。そうすると、上流側通路からサージタンクへ流入したガスが“追い風”となり、先発気筒から吹き戻されたガスを、後発気筒側へ押し流してしまうことになる。   For example, when the upstream side passage and the connection portion of the surge tank, the upstream end portion of the independent passage leading to the preceding cylinder, and the upstream end portion of the independent passage leading to the subsequent cylinder are arranged in this order in the cylinder row direction, The gas flowing into the surge tank from the upstream passage passes through the space near the upstream end corresponding to the preceding cylinder and the space near the upstream end corresponding to the succeeding cylinder in this order inside the surge tank. A flow like this is formed. As a result, the gas flowing into the surge tank from the upstream passage becomes “following wind”, and the gas blown back from the preceding cylinder is pushed away to the succeeding cylinder.

本願発明者等は、先発気筒から吹き戻されたガスが、上流側通路から流入したガスによって押し流された結果、後発気筒に必要以上のガスが導入されてしまい、その結果、プレイグに至る虞があることに気付いた。   As a result of the gas blown back from the starting cylinder being pushed away by the gas flowing in from the upstream passage, the inventors of the present application introduce more gas than necessary to the succeeding cylinder, and as a result, there is a risk of reaching the pre-ignition. I realized that there was.

プレイグを抑制するためには、上流側通路から流入したガスが“向い風”となるように、上流側通路及びサージタンクの接続部と、後発気筒に通じる独立通路の上流端部と、先発気筒に通じる独立通路の上流端部とを、気筒列方向においてこの順で並べることが考えられる。しかし、このように構成してしまうと、吹き戻されたガスの吸入こそ抑制されるものの、上流側通路から後発気筒に至る流路長に対して、上流側通路から先発気筒に至る流路長が長くなるため、先発気筒において応答性の悪化を招き得る。また、流路長が気筒間で異なると、充填効率などの状態量において、気筒間差が拡大する虞もあるため好ましくない。   In order to suppress the plague, the upstream flow passage and the surge tank connecting portion, the upstream end portion of the independent passage leading to the succeeding cylinder, and the starting cylinder so that the gas flowing in from the upstream flow passage becomes a “head wind”. It is conceivable to arrange the upstream end portion of the independent passage leading to this in the order in the cylinder row direction. However, with this configuration, although the suction of the blown back gas is suppressed, the flow path length from the upstream passage to the preceding cylinder is different from the flow path length from the upstream passage to the subsequent cylinder. Therefore, the responsiveness may be deteriorated in the starting cylinder. Also, if the flow path length differs between cylinders, there is a possibility that the difference between cylinders may increase in the state quantity such as the charging efficiency.

プレイグを抑制するための別の方策としては、例えばサージタンクの容量を大きくすることが考えられるものの、この場合、サージタンクの容量を大きくした分だけ、吸気通路全体の容積が増大するため、特に過給機と組み合わせて構成したときに、過給レスポンスの低下を招く虞があるという点で好ましくない。また、このように構成してしまうと、吸気装置の周辺部品のレイアウトにも支障を来たし得るため不都合である。   As another measure for suppressing the plague, for example, it is conceivable to increase the capacity of the surge tank, but in this case, since the volume of the entire intake passage is increased by the increase in the capacity of the surge tank, When configured in combination with a supercharger, it is not preferable in that there is a risk of a decrease in supercharging response. In addition, such a configuration is disadvantageous because it may interfere with the layout of peripheral components of the intake device.

ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、多気筒エンジンの吸気構造において、ガスの吹き戻しに起因したプレイグの発生を抑制することにある。   The technology disclosed herein has been made in view of such a point, and an object of the technology is to suppress the occurrence of pre-age caused by gas blowback in an intake structure of a multi-cylinder engine.

ここに開示する技術は、列状に配置された複数の気筒を有し、該複数の気筒のそれぞれにおいて、所定の燃焼順に従って燃焼を行うよう構成されたエンジン本体と、前記エンジン本体に設けられ、各々前記複数の気筒の各々に連通する複数の吸気ポートと、各々前記吸気ポートの各々を開閉する複数の吸気バルブと、前記複数の吸気バルブの開閉タイミングを変更する可変動弁機構と、を備え、前記可変動弁機構は、前記エンジン本体の運転状態が所定の運転領域にあるときに、前記複数の吸気バルブの閉時期を圧縮行程中に設定するよう構成されている多気筒エンジンの吸気通路構造に係る。   The technology disclosed herein includes a plurality of cylinders arranged in a row, an engine body configured to perform combustion in a predetermined combustion order in each of the plurality of cylinders, and the engine body. A plurality of intake ports that communicate with each of the plurality of cylinders, a plurality of intake valves that open and close each of the intake ports, and a variable valve mechanism that changes opening and closing timings of the plurality of intake valves. And the variable valve mechanism is configured to set the closing timing of the plurality of intake valves during the compression stroke when the operating state of the engine body is in a predetermined operating range. It relates to the passage structure.

この吸気通路構造は、前記複数の吸気ポートの各々に接続された吸気通路を備え、前記吸気通路は、各々前記複数の吸気ポートの各々に接続された複数の独立通路と、前記複数の吸気ポートの反気筒側端部に対して前記複数の独立通路を挟んで反対側に対向して配置されていると共に、前記複数の独立通路それぞれの上流端部が、対応する気筒の並ぶ順に従って列状に並んで接続されたサージタンクと、下流端部が前記サージタンクに接続され、該サージタンクに対してガスを導入する上流側通路と、を有する。   The intake passage structure includes an intake passage connected to each of the plurality of intake ports, and the intake passage includes a plurality of independent passages connected to each of the plurality of intake ports, and the plurality of intake ports. The upstream end of each of the plurality of independent passages is arranged in a row according to the order in which the corresponding cylinders are arranged. And a upstream end passage connected to the surge tank and introducing gas into the surge tank.

そして、前記複数の気筒のうち、燃焼順が前後し且つ気筒列方向に隣接した2つの気筒を、燃焼が発生する順に先発気筒及び後発気筒と呼称すると、前記上流側通路の下流端部と前記サージタンクとの接続箇所は、気筒列方向において、前記複数の独立通路のうち前記先発気筒に対応する独立通路の上流端部から、前記後発気筒に対応する独立通路の上流端部にかけての区間内に対向して設定されており、前記上流側通路は、該上流側通路を流れるガスを、前記先発気筒と前記後発気筒とのうち、該後発気筒寄りに指向させるように形成されている。   Of the plurality of cylinders, when two combustion cylinders whose combustion order is adjacent and adjacent in the cylinder row direction are referred to as a first cylinder and a second cylinder in the order in which combustion occurs, the downstream end portion of the upstream passage and the cylinder The connection location with the surge tank is in the section from the upstream end of the independent passage corresponding to the preceding cylinder to the upstream end of the independent passage corresponding to the succeeding cylinder in the cylinder row direction. The upstream passage is formed to direct the gas flowing through the upstream passage toward the succeeding cylinder of the preceding cylinder and the succeeding cylinder.

この構成によると、多気筒エンジンは、所定の運転領域において、吸気バルブを圧縮行程中に閉弁することができる。そのような遅閉じを行うと、圧縮行程においてピストンが上昇したときに、気筒内に充填されたガス側が吸気側へ吹き戻るようになる。   According to this configuration, the multi-cylinder engine can close the intake valve during the compression stroke in a predetermined operation region. When such slow closing is performed, when the piston rises in the compression stroke, the gas side charged in the cylinder blows back to the intake side.

また、前記の構成によると、サージタンクは、各独立通路を挟んで吸気ポートに対向するように配置されている。このような配置とすることで、サージタンクを吸気ポートに対して近接させることが可能となり、そのことで、サージタンクから吸気ポートにかけての流路長(ランナー長)を短くすることが出来る。ランナー長を短くすることで、エンジン全体をコンパクトにレイアウトしたり、吸気通路の容積を削減し、ひいては吸気に係る応答性を高めたりすることができる。   Moreover, according to the said structure, the surge tank is arrange | positioned so as to oppose the intake port across each independent passage. With such an arrangement, the surge tank can be brought close to the intake port, and the flow path length (runner length) from the surge tank to the intake port can be shortened. By shortening the runner length, the entire engine can be laid out compactly, the volume of the intake passage can be reduced, and as a result, the response to intake can be improved.

ところで、ランナー長を短く構成したエンジンにおいて、前述のような遅閉じを実行すると、吸気側へ吹き戻されたガスが、吸気ポートを介してサージタンクへ逆流する可能性がある。   By the way, in an engine with a short runner length, if the above-described slow closing is executed, the gas blown back to the intake side may flow back to the surge tank via the intake port.

特に4気筒エンジンにおいては、圧縮行程中の先発気筒からガスが吹き戻されるとき、吸気行程中の後発気筒の内部は負圧となるから、先発気筒と後発気筒とが気筒列方向において隣接していることを考慮すると、先発気筒からサージタンクへ逆流したガスが、後発機能に吸入されてしまう可能性がある。   In particular, in a four-cylinder engine, when the gas is blown back from the preceding cylinder during the compression stroke, the inside of the succeeding cylinder during the intake stroke becomes negative pressure, so the starting cylinder and the succeeding cylinder are adjacent in the cylinder row direction. In view of this, the gas that has flowed back from the preceding cylinder to the surge tank may be sucked into the subsequent function.

特に、上流側通路とサージタンクとの接続箇所次第では、先発気筒から吹き戻されたガスが、上流側通路から流入したガスによって押し流されてしまい、その結果、後発気筒に必要以上のガスが導入されて、プレイグニッション(以下、「プレイグ」ともいう)を生じる虞がある。   In particular, depending on the connection point between the upstream passage and the surge tank, the gas blown back from the starting cylinder is swept away by the gas flowing in from the upstream passage, and as a result, more gas than necessary is introduced into the succeeding cylinder. This may cause pre-ignition (hereinafter, also referred to as “play”).

それに対し、前記の構成によれば、上流側通路と前記サージタンクとの接続箇所は、気筒列方向において、先発気筒に通じる独立通路の上流端部から、後発気筒に通じる独立通路の上流端部にかけての区間内に設定されている。このように設定すると、後発気筒が吸気行程にあるとき(つまり、後発気筒に対応する上流端部付近が負圧となるとき)、上流側通路からサージタンク内へ流入したガスは、該ガスを後発気筒寄りに指向させたことと相俟って、先発気筒から吹き戻されたガスと合流しないまま、後発気筒側へ向かう流れを形成するようになる。   On the other hand, according to the above configuration, the upstream passage and the surge tank are connected at the upstream end of the independent passage leading to the succeeding cylinder from the upstream end of the independent passage leading to the preceding cylinder in the cylinder row direction. It is set within the interval between. With this setting, when the succeeding cylinder is in the intake stroke (that is, when the vicinity of the upstream end corresponding to the succeeding cylinder has a negative pressure), the gas flowing from the upstream passage into the surge tank Coupled with the direction toward the later cylinder, a flow toward the later cylinder is formed without joining the gas blown back from the earlier cylinder.

よって、例えば、上流側通路とサージタンクとの接続箇所と、先発気筒に通じる独立通路の上流端部と、後発気筒に通じる独立通路の上流端部とを気筒列方向においてこの順で並べた構成と比較すると、先発気筒から吹き戻されたガスにとって、上流側通路から流入したガスが“追い風”となり難くなる。その結果、先発気筒から吹き戻されたガスの後発気筒への吸入を抑制し、ひいてはプレイグの発生を抑制することが可能になる。   Thus, for example, a configuration in which the connection portion between the upstream passage and the surge tank, the upstream end portion of the independent passage leading to the preceding cylinder, and the upstream end portion of the independent passage leading to the succeeding cylinder are arranged in this order in the cylinder row direction. As compared with, for the gas blown back from the starting cylinder, the gas flowing in from the upstream passage is less likely to become “tailing wind”. As a result, it is possible to suppress the intake of the gas blown back from the preceding cylinder into the subsequent cylinder, thereby suppressing the occurrence of pre-ignition.

しかも、上流側通路とサージタンクとの接続箇所を、前記の如く設定すれば、例えば、先発気筒に対応する独立通路の上流端部と、後発気筒に対応する独立通路の上流端部と、上流側通路とサージタンクとの接続箇所とを、気筒列方向においてこの順で並べた構成と比較して、充填効率などの気筒間差を縮小したり、先発気筒と後発気筒とで同程度の応答性を確保することが可能になる。   Moreover, if the connection location between the upstream passage and the surge tank is set as described above, for example, the upstream end portion of the independent passage corresponding to the starting cylinder, the upstream end portion of the independent passage corresponding to the succeeding cylinder, and the upstream Compared with the configuration in which the side passage and the surge tank are connected in this order in the cylinder row direction, the difference between cylinders such as charging efficiency is reduced, and the response is comparable between the starting cylinder and the succeeding cylinder It becomes possible to ensure the sex.

このように、前記の構成によれば、各気筒の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   As described above, according to the above-described configuration, it is possible to suppress the occurrence of plague due to gas blowback while ensuring the responsiveness of each cylinder.

また、前記吸気通路は、前記上流側通路とは別に、下流端部が前記サージタンクに接続され、該サージタンクに対してガスを導入する第2の上流側通路を有し、前記第2の上流側通路の下流端部と前記サージタンクとの接続箇所は、前記上流側通路の下流端部と前記サージタンクとの前記接続箇所に対して、気筒列方向にオフセットしている、としてもよい。   In addition to the upstream passage, the intake passage is connected to the surge tank at a downstream end, and has a second upstream passage for introducing gas into the surge tank. The connection location between the downstream end of the upstream passage and the surge tank may be offset in the cylinder row direction with respect to the connection location between the downstream end of the upstream passage and the surge tank. .

例えば、過給機を備えたエンジンの場合、過給機を通過してサージタンクに至る通路と、過給機を迂回してサージタンクに至る通路とのように、サージタンクに対して複数の通路を接続し、各通路からガスが流入するように構成する可能性がある。   For example, in the case of an engine equipped with a supercharger, a plurality of passages to the surge tank such as a passage that passes through the supercharger and reaches the surge tank and a passage that bypasses the turbocharger and reaches the surge tank. There is a possibility that the passages are connected so that gas flows from each passage.

前記の構成によると、第2の上流側通路とサージタンクとの接続箇所が、上流側通路とサージタンクとの接続箇所に対し、気筒列方向にオフセットしているから、上流側通路からサージタンクへ流入するガスの流れと、第2の上流側通路からサージタンクへ流入するガスの流れとを相互に衝突させることなく、双方をスムースに流入させることができる。   According to the above configuration, the connection point between the second upstream passage and the surge tank is offset in the cylinder row direction from the connection point between the upstream passage and the surge tank. Both the gas flow flowing into the gas tank and the gas flow flowing into the surge tank from the second upstream passage can be made to flow smoothly without colliding with each other.

また、前記第2の上流側通路は、ガスの流れ方向に沿って上流側から順に、過給機とインタークーラとが配設された過給通路として構成されている一方、前記上流側通路は、前記第2の上流側通路において前記過給機よりも上流側から分岐し、且つ、該過給機及び前記インタークーラを迂回して前記サージタンクに接続されたバイパス通路として構成されている、としてもよい。   Further, the second upstream passage is configured as a supercharging passage in which a supercharger and an intercooler are arranged in order from the upstream side along the gas flow direction, while the upstream passage is The second upstream passage is configured as a bypass passage that branches from the upstream side of the supercharger and that bypasses the supercharger and the intercooler and is connected to the surge tank. It is good.

過給機を備えたエンジンでは、自然吸気のエンジンと比較して、ガスの吹き戻しに起因したプレイグの発生が懸念される。そのため、仮に、複数の通路からガスが流入するように構成した場合、前述の如く、サージタンクへガスをスムースに流入させつつ、プレイグの発生を抑制するような構成は、特に過給機を備えたエンジンにおいて有効となる。   In an engine equipped with a supercharger, there is a concern about the occurrence of plague due to gas blowback compared to a naturally aspirated engine. Therefore, if it is configured so that the gas flows in from a plurality of passages, the configuration that suppresses the occurrence of the plague while smoothly flowing the gas into the surge tank, as described above, particularly includes a supercharger. It becomes effective in the engine.

また、前記エンジン本体は、少なくとも、1組目の先発気筒および該先発気筒に対して気筒列方向に隣接し且つ燃焼順が後続する1組目の後続気筒と、2組目の先発気筒および該先発気筒に対して気筒列方向に隣接し且つ燃焼順が後続する2組目の後続気筒と、を有し、前記上流側通路は、気筒列方向の一側から他側へ向かう方向に沿って延びた後、第1分岐通路と第2分岐通路とに分岐し、前記第1分岐通路は、気筒列方向の一側から他側へ向かう方向に沿って延びた後、前記サージタンクにおいて、1組目の前記先発気筒に対応する独立通路の上流端部から、1組目の前記後発気筒に対応する独立通路の上流端部にかけての区間内に対向して接続され、前記第2分岐通路は、気筒列方向の他側から一側へ向かう方向に沿って延びた後、前記サージタンクにおいて、2組目の前記先発気筒に対応する独立通路の上流端部から、2組目の前記後続気筒に対応する独立通路の上流端部にかけての区間内に対向して接続され、前記第2分岐通路と前記サージタンクとの接続箇所は、前記第1分岐通路と前記サージタンクとの接続箇所と比較して、気筒列方向において前記後発気筒寄りに設定されている、としてもよい。   In addition, the engine body includes at least a first set of first cylinders, a first set of subsequent cylinders adjacent to the first cylinder in the cylinder row direction and having a subsequent combustion order, a second set of first cylinders, and the A second set of succeeding cylinders that are adjacent to the starting cylinder in the cylinder row direction and follow the combustion order, and the upstream passage is along a direction from one side to the other side in the cylinder row direction After extending, the first branch passage branches into a first branch passage and a second branch passage. The first branch passage extends along a direction from one side to the other side in the cylinder row direction, and then in the surge tank, 1 The second branch passage is connected to face the section from the upstream end of the independent passage corresponding to the first cylinder of the set to the upstream end of the independent passage corresponding to the first cylinder of the first set. , After extending along the direction from the other side of the cylinder row direction to one side, In the surge tank, connected in opposition to a section from the upstream end of the independent passage corresponding to the second set of the preceding cylinders to the upstream end of the independent passage corresponding to the second set of the subsequent cylinders, The connection location between the second branch passage and the surge tank may be set closer to the succeeding cylinder in the cylinder row direction than the connection location between the first branch passage and the surge tank.

前記の構成によると、上流側通路は、気筒列方向の一側から他側へ延びた後に、第1分岐通路と第2分岐通路とに分岐する。   According to the above configuration, the upstream side passage extends from one side to the other side in the cylinder row direction, and then branches into the first branch passage and the second branch passage.

ここで、第1分岐通路は、分岐前と同様に、気筒列方向の一側から他側へ向かう方向に延びた後にサージタンクに接続されるのに対し、第2分岐通路は、分岐前とは反対側へ向かって延びた後にサージタンクに接続されるようになっている。そうした“折り返し”が存在する分、第2分岐通路からサージタンクに流入するガスの流速は、第1分岐通路からサージタンクに流入するガスと比較して低くなる。   Here, the first branch passage is connected to the surge tank after extending in the direction from one side of the cylinder row direction to the other side in the same manner as before branching, whereas the second branch passage is connected to the surge tank before branching. Is extended to the opposite side and then connected to the surge tank. Because of such “turnback”, the flow velocity of the gas flowing into the surge tank from the second branch passage becomes lower than the gas flowing into the surge tank from the first branch passage.

一方、サージタンクと、第1及び第2分岐通路との接続箇所次第では、“追い風”にはならなくとも、先発気筒からサージタンクに逆流したガスが、第1及び第2分岐通路から流入するガスよりも優先的に(先に)後発気筒に吸入される可能性がある。   On the other hand, depending on the connection point between the surge tank and the first and second branch passages, the gas flowing back from the first cylinder to the surge tank flows from the first and second branch passages, even if “tailing wind” does not occur. There is a possibility that the gas will be sucked into the succeeding cylinder in preference to the gas (first).

特に、2組目の後発気筒に関しては、第2分岐通路から流入するガスの流速が低い分、1組目の後発気筒と比較して、逆流したガスよりも相対的に流入し易くなる。   In particular, the second set of succeeding cylinders is relatively easier to flow than the backflowed gas compared to the first set of succeeding cylinders because the flow velocity of the gas flowing in from the second branch passage is low.

そこで、前記の構成によると、第2分岐通路とサージタンクとの接続箇所は、第1分岐通路と前記サージタンクとの接続箇所と比較して、気筒列方向において後発気筒寄りに設定する。このように設定すると、第2分岐通路から流入するガスが、2組目の後発気筒に流入し易くなる。これにより、流速の低下分を補うことができる。   Therefore, according to the above configuration, the connection location between the second branch passage and the surge tank is set closer to the subsequent cylinder in the cylinder row direction than the connection location between the first branch passage and the surge tank. If it sets in this way, the gas which flows in from a 2nd branch passage will become easy to flow in into the 2nd set of succeeding cylinders. Thereby, the fall of the flow rate can be compensated.

また、前記複数の吸気ポートは、前記複数の気筒のそれぞれにおいて、気筒列方向に沿って列状に並んだ第1ポート及び第2ポートを有し、前記複数の独立通路は、前記複数の気筒のそれぞれにおいて、前記第1ポートに接続される第1の独立通路と、前記第2ポートに接続される第2の独立通路とを有し、前記上流側通路と前記サージタンクとの接続箇所は、前記先発気筒に対応する前記第1及び第2の独立通路のうち、気筒列方向において前記後発気筒側に配設される一方の上流端部から、前記後発気筒に対応する前記第1及び第2の独立通路のうち、気筒列方向において前記先発気筒側に配設される一方の上流端部にかけての区間内に対向して設定されている、としてもよい。   Further, each of the plurality of intake ports includes a first port and a second port arranged in a line along a cylinder row direction in each of the plurality of cylinders, and the plurality of independent passages includes the plurality of cylinders. Each of the first and second independent passages connected to the first port and the second independent passage connected to the second port, and the connection point between the upstream passage and the surge tank is Of the first and second independent passages corresponding to the starting cylinder, the first and second corresponding to the succeeding cylinder from one upstream end disposed on the succeeding cylinder side in the cylinder row direction. The two independent passages may be set so as to face each other in a section extending to one upstream end disposed on the side of the starting cylinder in the cylinder row direction.

この構成によれば、気筒毎に吸気ポートが2つずつ配設されたエンジンにおいて、各気筒の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   According to this configuration, in an engine in which two intake ports are provided for each cylinder, it is possible to suppress the occurrence of plague due to gas blowback while ensuring the responsiveness of each cylinder.

以上説明したように、前記の多気筒エンジンの吸気通路構造によると、各気筒の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   As described above, according to the intake passage structure of the above-described multi-cylinder engine, it is possible to suppress the occurrence of plague due to gas blowback while ensuring the responsiveness of each cylinder.

図1は、多気筒エンジンの構成を例示する概略図である。FIG. 1 is a schematic view illustrating the configuration of a multi-cylinder engine. 図2は、多気筒エンジンの構成を一部省略して示す斜視図である。FIG. 2 is a perspective view showing the multi-cylinder engine with a part thereof omitted. 図3は、4つのシリンダ周辺の構成を概略的に示す平面図である。FIG. 3 is a plan view schematically showing a configuration around four cylinders. 図4は、吸気装置の全体構成を前側から見て示す斜視図である。FIG. 4 is a perspective view showing the overall configuration of the intake device as viewed from the front side. 図5は、吸気装置の全体構成を後側から見て示す斜視図である。FIG. 5 is a perspective view showing the overall configuration of the intake device as seen from the rear side. 図6は、過給機側の通路構造を示す横断面図である。FIG. 6 is a cross-sectional view showing a passage structure on the supercharger side. 図7は、過給機側の通路構造を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a passage structure on the supercharger side. 図8は、サージタンク周辺の縦断面を示す斜視図である。FIG. 8 is a perspective view showing a longitudinal section around the surge tank. 図9は、図8とは別の縦断面を示す斜視図である。FIG. 9 is a perspective view showing a vertical section different from FIG. 図10は、バイパス通路に係る通路構造を前側から見て示す図である。FIG. 10 is a view showing a passage structure related to the bypass passage as seen from the front side. 図11は、バイパス通路に係る通路構造を後側から見て示す図である。FIG. 11 is a view showing the passage structure according to the bypass passage as seen from the rear side. 図12は、バイパス通路に係る通路構造を上側から見て示す図である。FIG. 12 is a view showing a passage structure related to the bypass passage as viewed from above. 図13は、バイパス通路の管路を示す斜視図である。FIG. 13 is a perspective view showing a pipeline of the bypass passage. 図14は、サージタンク周辺の流路を示す図である。FIG. 14 is a diagram showing a flow path around the surge tank. 図15は、サージタンクとバイパス通路との接続構造を示す縦断面図である。FIG. 15 is a longitudinal sectional view showing a connection structure between the surge tank and the bypass passage. 図16は、サージタンクとバイパス通路との接続構造を示す横断面図である。FIG. 16 is a cross-sectional view showing a connection structure between the surge tank and the bypass passage.

以下、多気筒エンジンの吸気通路構造の実施形態を図面に基づいて詳細に説明する。尚、以下の説明は例示である。図1は、ここに開示する多気筒エンジンの吸気通路構造が適用されたエンジン1を例示する図である。また、図2は、その構成を一部省略して示す斜視図であり、図3は、4つのシリンダ11周辺の構成を概略的に示す平面図である。   Hereinafter, an embodiment of an intake passage structure of a multi-cylinder engine will be described in detail with reference to the drawings. In addition, the following description is an illustration. FIG. 1 is a diagram illustrating an engine 1 to which an intake passage structure of a multi-cylinder engine disclosed herein is applied. FIG. 2 is a perspective view in which the configuration is partially omitted, and FIG. 3 is a plan view schematically showing the configuration around the four cylinders 11.

エンジン1は、FF方式の車両に搭載されるガソリンエンジン(特に、4ストローク式の内燃機関)であり、図1に示すように、機械駆動式の過給機(所謂スーパーチャージャ)34を備えた構成としている。   The engine 1 is a gasoline engine (particularly a 4-stroke internal combustion engine) mounted on an FF vehicle, and includes a mechanically driven supercharger (so-called supercharger) 34 as shown in FIG. It is configured.

また、本実施形態に係るエンジン1は、図3に示すように、列状に配置された4つのシリンダ(気筒)11を備えており、4つのシリンダ11が車幅方向に沿って並ぶような姿勢で搭載される、いわゆる直列4気筒の横置きエンジンとして構成されている。これにより、本実施形態では、4つのシリンダ11の配列方向(気筒列方向)であるエンジン前後方向が車幅方向と略一致していると共に、エンジン幅方向が車両前後方向と略一致している。   Further, as shown in FIG. 3, the engine 1 according to the present embodiment includes four cylinders (cylinders) 11 arranged in a row, and the four cylinders 11 are arranged along the vehicle width direction. It is configured as a so-called in-line 4-cylinder horizontal engine mounted in a posture. Thus, in the present embodiment, the engine longitudinal direction, which is the arrangement direction (cylinder row direction) of the four cylinders 11, substantially matches the vehicle width direction, and the engine width direction substantially matches the vehicle longitudinal direction. .

以下、特に断らない限り、前側とはエンジン幅方向の一方側(車両前後方向の前側)を、後側とはエンジン幅方向の他方側(車両前後方向の後側)を、左側とはエンジン前後方向(気筒列方向)の一方側(車幅方向の左側であり且つ、エンジンフロント側)を、右側とはエンジン前後方向(気筒列方向)の他方側(車幅方向の右側であり且つ、エンジンリア側)を指す。   Hereinafter, unless otherwise specified, the front side is one side in the engine width direction (the front side in the vehicle front-rear direction), the rear side is the other side in the engine width direction (the rear side in the vehicle front-rear direction), and the left side is the engine front-rear direction Direction (cylinder row direction) on one side (left side in the vehicle width direction and engine front side), and the right side is the other side in the engine longitudinal direction (cylinder row direction) (right side in the vehicle width direction and engine) Points to the rear).

また、以下の記載において、上側とは、エンジン1を車両に搭載した状態(以下、「車両搭載状態」ともいう)における上側を指し、下側とは、車両搭載状態における下側を指す。   In the following description, the upper side refers to the upper side in a state where the engine 1 is mounted on the vehicle (hereinafter also referred to as “vehicle mounted state”), and the lower side refers to the lower side in the vehicle mounted state.

(エンジンの概略構成)
エンジン1は、前方吸気後方排気式に構成されている。すなわち、エンジン1は、図3に示すように、4つのシリンダ11(図1では1つのシリンダのみを図示)を有するエンジン本体10と、エンジン本体10の前側に配置され、吸気ポート17、18を介して各シリンダ11に連通する吸気通路30と、エンジン本体10の後側に配置され、排気ポート19を介して各シリンダ11に連通する排気通路50とを備えている。
(Schematic configuration of the engine)
The engine 1 is configured as a front intake rear exhaust type. That is, the engine 1 is arranged on the front side of the engine body 10 having four cylinders 11 (only one cylinder is shown in FIG. 1) and the intake ports 17 and 18 as shown in FIG. And an exhaust passage 50 disposed on the rear side of the engine body 10 and communicating with each cylinder 11 via the exhaust port 19.

本実施形態に係る吸気通路30は、ガスを導く複数の通路と、過給機34やインタークーラ36等の装置と、これらの装置を迂回するバイパス通路40とが組み合わされてユニット化された“吸気装置”として構成されている。   The intake passage 30 according to the present embodiment is unitized by combining a plurality of passages for guiding gas, devices such as a supercharger 34 and an intercooler 36, and a bypass passage 40 that bypasses these devices. It is configured as an “intake device”.

エンジン本体10は、吸気通路30から供給されたガスと燃料との混合気を、各シリンダ11内で、所定の燃焼順に従って燃焼させるように構成されている。具体的に、エンジン本体10は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを有している。   The engine main body 10 is configured to burn the mixture of gas and fuel supplied from the intake passage 30 in each cylinder 11 according to a predetermined combustion order. Specifically, the engine main body 10 includes a cylinder block 12 and a cylinder head 13 placed thereon.

シリンダブロック12の内部には、4つのシリンダ11が形成されている。4つシリンダ11は、クランクシャフト15の中心軸方向(つまり気筒列方向)に沿って列を成すように並んでいる。4つのシリンダ11は、それぞれ円筒状に形成されており、各シリンダ11の中心軸(以下、「気筒軸」という)は、互いに平行に且つ、気筒列方向に対して垂直に延びている。以下、図3に示す4つのシリンダ11を、気筒列方向に沿って右側から順に、1番気筒11A、2番気筒11B、3番気筒11C、及び4番気筒11Dと称する場合がある。   Four cylinders 11 are formed inside the cylinder block 12. The four cylinders 11 are arranged in a row along the central axis direction of the crankshaft 15 (that is, the cylinder row direction). The four cylinders 11 are each formed in a cylindrical shape, and the central axes (hereinafter referred to as “cylinder axes”) of the cylinders 11 extend parallel to each other and perpendicular to the cylinder row direction. Hereinafter, the four cylinders 11 shown in FIG. 3 may be referred to as the first cylinder 11A, the second cylinder 11B, the third cylinder 11C, and the fourth cylinder 11D in order from the right side along the cylinder row direction.

各シリンダ11内には、ピストン14が摺動自在に挿入されている。ピストン14は、コネクティングロッド141を介してクランクシャフト15に連結されている。ピストン14は、シリンダ11及びシリンダヘッド13と共に燃焼室16を区画する。   A piston 14 is slidably inserted into each cylinder 11. The piston 14 is connected to the crankshaft 15 via a connecting rod 141. The piston 14 divides the combustion chamber 16 together with the cylinder 11 and the cylinder head 13.

燃焼室16の天井面は、いわゆるペントルーフ形状であり、シリンダヘッド13の下面によって構成されている。このエンジン1は、幾何学的圧縮比を高めるべく、従来よりも燃焼室16の天井面が低く構成されている。天井面のペントルーフ形状は、フラット形状に近い。   The ceiling surface of the combustion chamber 16 has a so-called pent roof shape and is constituted by the lower surface of the cylinder head 13. This engine 1 is configured such that the ceiling surface of the combustion chamber 16 is lower than before in order to increase the geometric compression ratio. The pent roof shape of the ceiling surface is close to a flat shape.

シリンダヘッド13には、シリンダ11毎に、2つの吸気ポート17、18が形成されている。2つの吸気ポート17、18は、それぞれ燃焼室16に連通しており、シリンダ11毎に、第1ポート17と、該第1ポート17に対して気筒列方向に隣接した第2ポート18とを有している。1番気筒11A〜4番気筒11Dのいずれにおいても、第1ポート17と第2ポート19が同じ順番で並んでいる。具体的には、図3に示すように、各シリンダ11において、気筒列方向に沿って右側から順に、第2ポート18と第1ポート17とが並んでいる。   Two intake ports 17 and 18 are formed in the cylinder head 13 for each cylinder 11. The two intake ports 17, 18 communicate with the combustion chamber 16, and each cylinder 11 has a first port 17 and a second port 18 adjacent to the first port 17 in the cylinder row direction. Have. In any of the first cylinder 11A to the fourth cylinder 11D, the first port 17 and the second port 19 are arranged in the same order. Specifically, as shown in FIG. 3, in each cylinder 11, the second port 18 and the first port 17 are arranged in order from the right side along the cylinder row direction.

各ポート17、18の上流端は、それぞれ、エンジン本体10の外面(取付面)10aに開口しており、吸気通路30の下流端が接続されている。対して、各ポート17、18の下流端は、それぞれ、燃焼室16の天井面に開口している。   The upstream ends of the ports 17 and 18 are respectively open to the outer surface (mounting surface) 10a of the engine body 10, and the downstream end of the intake passage 30 is connected thereto. On the other hand, the downstream ends of the ports 17 and 18 are respectively open to the ceiling surface of the combustion chamber 16.

以下、1番気筒11Aに通じる第1ポートに対し、符号“17”ではなく“17A”を付すと共に、当該気筒11Aに通じる第2ポートに対し、符号“18”ではなく“18A”を付す場合がある。2番気筒11B〜4番気筒11Dについても同様である。例えば、3番気筒11Cに通じる第2ポートに対し、符号“18”ではなく“18C”を付す場合がある。   Hereinafter, “17A” instead of “17” is attached to the first port leading to the first cylinder 11A, and “18A” is attached instead of “18” to the second port leading to the cylinder 11A. There is. The same applies to the second cylinder 11B to the fourth cylinder 11D. For example, “18C” may be attached to the second port leading to the third cylinder 11C instead of “18”.

また、2つの吸気ポート17、18は、各シリンダ11につき、通過するガスの流量が、スワールコントロールバルブ(Swarl Control Valve:SCV)80を介して絞られるように構成されたSCVポートを含む。本実施形態では、前述の第2ポート18がSCVポートとして構成されている。   Further, the two intake ports 17 and 18 include SCV ports configured so that the flow rate of the gas passing through each cylinder 11 is throttled through a swirl control valve (SCV) 80. In the present embodiment, the aforementioned second port 18 is configured as an SCV port.

2つの吸気ポート17、18には、それぞれ吸気バルブ21が配設されている。吸気バルブ21は、燃焼室16と吸気ポート17、18のそれぞれとの間を開閉する。吸気バルブ21は、吸気動弁機構によって所定のタイミングで開閉する。   An intake valve 21 is disposed in each of the two intake ports 17 and 18. The intake valve 21 opens and closes between the combustion chamber 16 and each of the intake ports 17 and 18. The intake valve 21 is opened and closed at a predetermined timing by an intake valve mechanism.

吸気動弁機構は、この構成例では、図1に示すように、可変動弁機構である吸気電動VVT(Variable Valve Timing)23を有している。吸気電動VVT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気バルブ21の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。   In this configuration example, the intake valve mechanism has an intake electric VVT (Variable Valve Timing) 23 which is a variable valve mechanism as shown in FIG. The intake electric VVT 23 is configured to continuously change the rotation phase of the intake camshaft within a predetermined angle range. Thereby, the valve opening timing and the valve closing timing of the intake valve 21 change continuously. The intake valve mechanism may have a hydraulic VVT instead of the electric VVT.

シリンダヘッド13にはまた、シリンダ11毎に、2つの排気ポート19、19が形成されている。2つの排気ポート19、19は、それぞれ燃焼室16に連通している。   The cylinder head 13 is also formed with two exhaust ports 19, 19 for each cylinder 11. The two exhaust ports 19, 19 communicate with the combustion chamber 16.

2つの排気ポート19、19には、それぞれ排気バルブ22が配設されている。排気バルブ22は、燃焼室16と排気ポート19、19のそれぞれとの間を開閉する。排気バルブ22は、排気動弁機構によって所定のタイミングで開閉する。   Exhaust valves 22 are disposed in the two exhaust ports 19, 19, respectively. The exhaust valve 22 opens and closes between the combustion chamber 16 and the exhaust ports 19 and 19. The exhaust valve 22 is opened and closed at a predetermined timing by an exhaust valve mechanism.

排気動弁機構は、この構成例では、図1に示すように、可変動弁機構である排気電動VVT(Variable Valve Timing)24を有している。排気電動VVT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気バルブ22の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。   In this configuration example, the exhaust valve mechanism has an exhaust electric VVT (Variable Valve Timing) 24 that is a variable valve mechanism as shown in FIG. The exhaust electric VVT 24 is configured to continuously change the rotation phase of the exhaust camshaft within a predetermined angle range. Thereby, the valve opening timing and the valve closing timing of the exhaust valve 22 continuously change. The exhaust valve mechanism may have a hydraulic VVT instead of the electric VVT.

詳細は省略するが、このエンジン1は、吸気電動VVT23及び排気電動VVT24によって、吸気バルブ21の開弁時期と排気バルブ22の閉弁時期とに係るオーバーラップ期間の長さを調整する。これによって、燃焼室16の中の残留ガスを掃気したり、燃焼室16の中に熱い既燃ガスを閉じ込めたり(つまり、内部EGR(Exhaust Gas Recirculation)ガスを燃焼室16の中に導入したり)する。この構成例においては、吸気電動VVT23及び排気電動VVT24が内部EGRシステムを構成している。尚、内部EGRシステムは、VVTによって構成されるとは限らない。   Although details are omitted, the engine 1 adjusts the length of the overlap period related to the opening timing of the intake valve 21 and the closing timing of the exhaust valve 22 by the intake electric VVT 23 and the exhaust electric VVT 24. As a result, residual gas in the combustion chamber 16 is scavenged, hot burned gas is confined in the combustion chamber 16 (that is, internal EGR (Exhaust Gas Recirculation) gas is introduced into the combustion chamber 16). ) In this configuration example, the intake electric VVT 23 and the exhaust electric VVT 24 constitute an internal EGR system. Note that the internal EGR system is not necessarily configured by VVT.

シリンダヘッド13には、シリンダ11毎にインジェクタ6が取り付けられている。インジェクタ6は、この構成例においては多噴口型の燃料噴射弁であり、燃焼室16の中に燃料を直接噴射するよう構成されている。   An injector 6 is attached to the cylinder head 13 for each cylinder 11. In this configuration example, the injector 6 is a multi-injection type fuel injection valve, and is configured to inject fuel directly into the combustion chamber 16.

インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。燃料ポンプ65は、コモンレール64に燃料を圧送する。燃料ポンプ65は、この構成例においては、クランクシャフト15によって駆動されるプランジャー式のポンプである。コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室16の中に噴射される。   A fuel supply system 61 is connected to the injector 6. The fuel supply system 61 includes a fuel tank 63 configured to store fuel, and a fuel supply path 62 that connects the fuel tank 63 and the injector 6 to each other. A fuel pump 65 and a common rail 64 are interposed in the fuel supply path 62. The fuel pump 65 pumps fuel to the common rail 64. In this configuration example, the fuel pump 65 is a plunger-type pump driven by the crankshaft 15. The common rail 64 is configured to store the fuel pumped from the fuel pump 65 at a high fuel pressure. When the injector 6 is opened, the fuel stored in the common rail 64 is injected into the combustion chamber 16 from the injection port of the injector 6.

シリンダヘッド13には、シリンダ11毎に、点火プラグ25が取り付けられている。点火プラグ25は、その先端が燃焼室16の中に臨むような姿勢で取り付けられており、燃焼室16の中の混合気を強制的に点火する。   A spark plug 25 is attached to the cylinder head 13 for each cylinder 11. The spark plug 25 is attached in such a posture that its tip faces the combustion chamber 16 and forcibly ignites the air-fuel mixture in the combustion chamber 16.

吸気通路30は、図2に示すように、エンジン本体10における前側の側面(以下、「取付面」という)10aに接続されており、各シリンダ11の吸気ポート17、18に連通している。吸気通路30は、燃焼室16に導入するガスが流れる通路である。吸気通路30の上流端部には、新気を濾過するエアクリーナ31が配設されている。吸気通路30の下流端近傍には、サージタンク38が配設されている。サージタンク38よりも下流の吸気通路30は、図3に示すように、シリンダ11毎に2本ずつ分岐する独立通路39を構成している。詳細は後述するが、2本の独立通路39のうちの一方が第1ポート17に接続され、他方が第2ポート18に接続される。以下、前者の独立通路39に対して符号“391”を付す一方、後者に対して符号“392”を付す場合がある。このように、独立通路39の下流端が、各シリンダ11の吸気ポート17、18に接続されている。   As shown in FIG. 2, the intake passage 30 is connected to a front side surface (hereinafter referred to as “mounting surface”) 10 a in the engine body 10 and communicates with the intake ports 17 and 18 of each cylinder 11. The intake passage 30 is a passage through which gas introduced into the combustion chamber 16 flows. An air cleaner 31 that filters fresh air is disposed at the upstream end of the intake passage 30. A surge tank 38 is disposed near the downstream end of the intake passage 30. As shown in FIG. 3, the intake passage 30 downstream of the surge tank 38 constitutes an independent passage 39 that branches into two for each cylinder 11. Although details will be described later, one of the two independent passages 39 is connected to the first port 17 and the other is connected to the second port 18. Hereinafter, the former independent passage 39 may be denoted by reference numeral “391” while the latter may be denoted by reference numeral “392”. In this way, the downstream end of the independent passage 39 is connected to the intake ports 17 and 18 of each cylinder 11.

吸気通路30におけるエアクリーナ31とサージタンク38との間には、スロットルバルブ32が配設されている。スロットルバルブ32は、その開度を調整することによって、燃焼室16に導入する新気の量を調整するよう構成されている。   A throttle valve 32 is disposed between the air cleaner 31 and the surge tank 38 in the intake passage 30. The throttle valve 32 is configured to adjust the amount of fresh air introduced into the combustion chamber 16 by adjusting the opening thereof.

吸気通路30にはまた、スロットルバルブ32の下流に、過給機34が配設されている。過給機34は、燃焼室16に導入するガスを過給するよう構成されている。この構成例において、過給機34は、エンジン1によって駆動される機械式の過給機である。本実施形態に係る過給機34は、ルーツ式のスーパーチャージャとして構成されているものの、この構成はどのようなものであってもよい。例えば、リショルム式や遠心式であってもよい。   A supercharger 34 is also disposed in the intake passage 30 downstream of the throttle valve 32. The supercharger 34 is configured to supercharge the gas introduced into the combustion chamber 16. In this configuration example, the supercharger 34 is a mechanical supercharger driven by the engine 1. Although the supercharger 34 according to the present embodiment is configured as a roots-type supercharger, this configuration may be anything. For example, a re-sholm type or a centrifugal type may be used.

過給機34とエンジン1との間には、電磁クラッチ34aが介設している。電磁クラッチ34aは、過給機34とエンジン1との間で駆動力を伝達させたり、駆動力の伝達を遮断したりする。ECU(Engine Control Unit)など、不図示の制御手段が電磁クラッチ34aの遮断及び接続を切り替えることによって、過給機34のオンとオフとが切り替わる。つまり、このエンジン1は、過給機34のオンとオフとを切り替えることにより、燃焼室16に導入するガスを過給する運転と、燃焼室16に導入するガスを過給しない運転とを切り替えることができるよう構成されている。   An electromagnetic clutch 34 a is interposed between the supercharger 34 and the engine 1. The electromagnetic clutch 34a transmits driving force between the supercharger 34 and the engine 1 or interrupts transmission of driving force. An unillustrated control means such as an ECU (Engine Control Unit) switches between disconnection and connection of the electromagnetic clutch 34a, whereby the supercharger 34 is switched on and off. That is, the engine 1 switches between an operation of supercharging the gas introduced into the combustion chamber 16 and an operation of not supercharging the gas introduced into the combustion chamber 16 by switching the supercharger 34 on and off. It is configured to be able to.

吸気通路30における過給機34の下流には、インタークーラ36が配設されている。インタークーラ36は、過給機34において圧縮されたガスを冷却するよう構成されている。この構成例におけるインタークーラ36は、水冷式に構成されている。   An intercooler 36 is disposed downstream of the supercharger 34 in the intake passage 30. The intercooler 36 is configured to cool the gas compressed in the supercharger 34. The intercooler 36 in this configuration example is configured as a water-cooled type.

また、吸気通路30に組み込まれた各種の装置を結ぶ通路として、吸気通路30は、エアクリーナ31よりも下流側に配設され、エアクリーナ31によって浄化された吸気を過給機34へ導く第1通路33と、過給機34によって圧縮された吸気をインタークーラ36へ導く第2通路35と、インタークーラ36によって冷却されたガスをサージタンク38へ導く第3通路37とを有している。尚、サージタンク38から吸気ポート17、18にかけての流路長(ランナー長)を短くするべく、サージタンク38は、吸気ポート17、18の入口(上流端部)近傍に配設されている。第2通路35及び第3通路37は、過給機34やインタークーラ36と共に、「過給通路」を構成している。   Further, as a passage connecting various devices incorporated in the intake passage 30, the intake passage 30 is disposed downstream of the air cleaner 31, and a first passage that guides the intake air purified by the air cleaner 31 to the supercharger 34. 33, a second passage 35 that guides the intake air compressed by the supercharger 34 to the intercooler 36, and a third passage 37 that guides the gas cooled by the intercooler 36 to the surge tank 38. The surge tank 38 is disposed in the vicinity of the inlet (upstream end) of the intake ports 17 and 18 in order to shorten the flow path length (runner length) from the surge tank 38 to the intake ports 17 and 18. The second passage 35 and the third passage 37 together with the supercharger 34 and the intercooler 36 constitute a “supercharging passage”.

また、吸気通路30には、過給機34及びインタークーラ36を迂回するバイパス通路40が設けられている。バイパス通路40は、吸気通路30のうちスロットルバルブ32の下流部から過給機34の上流部にかけての部分と、サージタンク38とを互いに接続する。バイパス通路40には、該バイパス通路40を流れるガスの流量を調整するように構成されたバイパスバルブ41が配設されている。尚、バイパス通路40は、「上流側通路」の例示である。   The intake passage 30 is provided with a bypass passage 40 that bypasses the supercharger 34 and the intercooler 36. The bypass passage 40 connects the portion of the intake passage 30 from the downstream portion of the throttle valve 32 to the upstream portion of the supercharger 34 and the surge tank 38. The bypass passage 40 is provided with a bypass valve 41 configured to adjust the flow rate of the gas flowing through the bypass passage 40. The bypass passage 40 is an example of an “upstream side passage”.

過給機34をオフにしたとき(つまり、電磁クラッチ34aを遮断したとき)には、バイパスバルブ41を全開にする。これにより、吸気通路30を流れるガスは、過給機34をバイパスしてサージタンク38に流入し、独立通路39を介して燃焼室16に導入される。エンジン1は、非過給、つまり自然吸気の状態で運転する。   When the supercharger 34 is turned off (that is, when the electromagnetic clutch 34a is disconnected), the bypass valve 41 is fully opened. As a result, the gas flowing through the intake passage 30 bypasses the supercharger 34 and flows into the surge tank 38 and is introduced into the combustion chamber 16 via the independent passage 39. The engine 1 is operated in a non-supercharged state, that is, in a natural intake state.

過給機34をオンにしたとき(つまり、電磁クラッチ34aを接続したとき)には、バイパスバルブ41の開度を適宜調整する。これにより、吸気通路30において過給機34を通過したガスの一部は、バイパス通路40を通って過給機34の上流に逆流する。バイパスバルブ41の開度を調整することによって、逆流量を調整することができるから、燃焼室16に導入するガスの過給圧を調整することができる。この構成例においては、過給機34とバイパス通路40とバイパスバルブ41とによって、過給システムが構成されている。   When the supercharger 34 is turned on (that is, when the electromagnetic clutch 34a is connected), the opening degree of the bypass valve 41 is appropriately adjusted. As a result, part of the gas that has passed through the supercharger 34 in the intake passage 30 flows back upstream of the supercharger 34 through the bypass passage 40. Since the reverse flow rate can be adjusted by adjusting the opening degree of the bypass valve 41, the supercharging pressure of the gas introduced into the combustion chamber 16 can be adjusted. In this configuration example, the supercharger 34, the bypass passage 40, and the bypass valve 41 constitute a supercharging system.

排気通路50は、エンジン本体10における後側の側面に接続されており、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室16から排出された排気ガスが流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。排気通路50には、1つ以上の触媒コンバータ51を有する排気ガス浄化システムが配設されている。触媒コンバータ51は、三元触媒を含んで構成されている。尚、排気ガス浄化システムは、三元触媒のみを含むものに限らない。   The exhaust passage 50 is connected to the rear side surface of the engine body 10 and communicates with the exhaust port 19 of each cylinder 11. The exhaust passage 50 is a passage through which exhaust gas discharged from the combustion chamber 16 flows. Although the detailed illustration is omitted, the upstream portion of the exhaust passage 50 constitutes an independent passage branched for each cylinder 11. The upstream end of the independent passage is connected to the exhaust port 19 of each cylinder 11. An exhaust gas purification system having one or more catalytic converters 51 is disposed in the exhaust passage 50. The catalytic converter 51 includes a three-way catalyst. Note that the exhaust gas purification system is not limited to one including only a three-way catalyst.

吸気通路30と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路30に還流させるための通路である。EGR通路52の上流端は、排気通路50における触媒コンバータ51の下流に接続されている。EGR通路52の下流端は、吸気通路30における過給機34の上流且つ、バイパス通路40の上流端よりも上流に接続されている。   An EGR passage 52 constituting an external EGR system is connected between the intake passage 30 and the exhaust passage 50. The EGR passage 52 is a passage for returning a part of the burned gas to the intake passage 30. The upstream end of the EGR passage 52 is connected downstream of the catalytic converter 51 in the exhaust passage 50. The downstream end of the EGR passage 52 is connected upstream of the supercharger 34 in the intake passage 30 and upstream of the upstream end of the bypass passage 40.

EGR通路52には、水冷式のEGRクーラ53が配設されている。EGRクーラ53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGRバルブ54が配設されている。EGRバルブ54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGRバルブ54の開度を調整することによって、冷却した既燃ガス、つまり外部EGRガスの還流量を調整することができる。   A water-cooled EGR cooler 53 is disposed in the EGR passage 52. The EGR cooler 53 is configured to cool the burned gas. An EGR valve 54 is also disposed in the EGR passage 52. The EGR valve 54 is configured to adjust the flow rate of burned gas flowing through the EGR passage 52. By adjusting the opening degree of the EGR valve 54, the recirculation amount of the cooled burned gas, that is, the external EGR gas can be adjusted.

この構成例において、EGRシステム55は、EGR通路52及びEGRバルブ54を含んで構成されている外部EGRシステムと、前述した吸気電動VVT23及び排気電動VVT24を含んで構成されている内部EGRシステムとによって構成されている。   In this configuration example, the EGR system 55 includes an external EGR system that includes an EGR passage 52 and an EGR valve 54, and an internal EGR system that includes the above-described intake electric VVT 23 and exhaust electric VVT 24. It is configured.

(吸気通路の構成)
以下、吸気通路30の構成について詳細に説明する。
(Configuration of intake passage)
Hereinafter, the configuration of the intake passage 30 will be described in detail.

図4は、吸気装置としてユニット化された吸気通路30の全体構成を前側から見て示す斜視図であり、図5は、吸気通路30の全体構成を後側から見て示す斜視図である。また、図6は、吸気通路30のうち過給機側の通路構造を示す横断面図であり、図7は、その縦断面図である。また、図8は、サージタンク38周辺の縦断面を示す斜視図であり、図9は、それとは別の縦断面を示す斜視図である。   4 is a perspective view showing the entire configuration of the intake passage 30 unitized as an intake device as seen from the front side, and FIG. 5 is a perspective view showing the entire configuration of the intake passage 30 as seen from the rear side. FIG. 6 is a transverse sectional view showing a supercharger side passage structure in the intake passage 30, and FIG. 7 is a longitudinal sectional view thereof. FIG. 8 is a perspective view showing a vertical section around the surge tank 38, and FIG. 9 is a perspective view showing another vertical section.

吸気通路30を構成する各部は、いずれも、エンジン本体10の前側、具体的には、前述の取付面10aの前側に配置されている。なお、取付面10aは、図6〜図7に示すように、シリンダヘッド13及びシリンダブロック12における前側の外面によって構成されている。   Each part constituting the intake passage 30 is arranged on the front side of the engine body 10, specifically, on the front side of the mounting surface 10a. Note that the mounting surface 10a is configured by a front outer surface of the cylinder head 13 and the cylinder block 12, as shown in FIGS.

最初に、吸気通路30を構成する各部の概略的な配置について説明する。   First, a schematic arrangement of each part constituting the intake passage 30 will be described.

図2、及び図4〜図8に示すように、過給機34は、サージタンク38を挟んで4つのシリンダ11に対して反対側に対向して配置されている。過給機34の後面と取付面10aとの間には、サージタンク38の寸法に応じた隙間(間隔)が空いている。第1通路33は、過給機34の左側において気筒列方向に沿って延設されており、過給機34の左端に接続されている。また、インタークーラ36は、過給機34に対して下方に配置されており、過給機34と同様に、取付面10aに対して所定の間隔を空けて配置されている。過給機34とインタークーラ36とは、上下方向に隣接している。第2通路35は、過給機34の前部とインタークーラ36の前部とを接続するように上下に延設されている。サージタンク38は、過給機34と取付面10aとの間の隙間に配置されており、吸気ポート17、18の反気筒側端部(入口)に対して、複数の独立通路39を挟んで反対側に対向して配置されている。第3通路37は、インタークーラ36及び過給機34と、取付面10aとの間の隙間を縫うように延設されており、インタークーラ36がサージタンク38よりも下方に位置するように、インタークーラ36の後部とサージタンク38の底部とを接続している。バイパス通路40は、第1通路33の途中から上方に向かって延びた後、エンジン本体10の内方(右方)へ向かって延びるように形成されており、サージタンク38の上部に接続されている。   As shown in FIG. 2 and FIGS. 4 to 8, the supercharger 34 is disposed opposite to the four cylinders 11 across the surge tank 38. A gap (interval) corresponding to the dimension of the surge tank 38 is provided between the rear surface of the supercharger 34 and the mounting surface 10a. The first passage 33 extends along the cylinder row direction on the left side of the supercharger 34 and is connected to the left end of the supercharger 34. Further, the intercooler 36 is disposed below the supercharger 34, and is disposed at a predetermined interval with respect to the mounting surface 10 a, similarly to the supercharger 34. The supercharger 34 and the intercooler 36 are adjacent to each other in the vertical direction. The second passage 35 extends vertically so as to connect the front part of the supercharger 34 and the front part of the intercooler 36. The surge tank 38 is disposed in a gap between the supercharger 34 and the mounting surface 10a, and sandwiches a plurality of independent passages 39 with respect to the end portions (inlet) of the intake ports 17 and 18 on the non-cylinder side. Opposed to the opposite side. The third passage 37 is extended so as to sew a gap between the intercooler 36 and the supercharger 34 and the mounting surface 10a, so that the intercooler 36 is positioned below the surge tank 38. The rear part of the intercooler 36 and the bottom part of the surge tank 38 are connected. The bypass passage 40 is formed so as to extend upward from the middle of the first passage 33 and then extend inward (rightward) of the engine body 10 and is connected to the upper portion of the surge tank 38. Yes.

次に、吸気通路30を構成する各部の構造について説明する。   Next, the structure of each part constituting the intake passage 30 will be described.

第1通路33は、実質的に気筒列方向(左右方向)に延びる管状に形成されており、その上流側(左側)部分は、スロットルバルブ32が内蔵されたスロットルボディ33aによって構成されている。スロットルボディ33aは、金属製の短筒状に形成されており、図4〜図6に示すように、両端の開口を左右に向けた姿勢で、取付面10aに対して左方且つ前方に位置するように配置されている。スロットルボディ33aの上流端(左端)には、不図示の通路を介してエアクリーナ31が接続されている一方、スロットルボディ33aの下流端(右端)には、第1通路33の下流側(右側)部分である第1通路本体33bが接続されている。   The first passage 33 is formed in a tubular shape extending substantially in the cylinder row direction (left-right direction), and an upstream side (left side) portion thereof is constituted by a throttle body 33a in which the throttle valve 32 is built. The throttle body 33a is formed in a metal short cylinder shape, and as shown in FIGS. 4 to 6, the throttle body 33a is positioned leftward and forward with respect to the mounting surface 10a in a posture in which the openings at both ends are directed left and right. Are arranged to be. An air cleaner 31 is connected to the upstream end (left end) of the throttle body 33a via a passage (not shown), while the downstream end (right end) of the throttle body 33a is connected to the downstream side (right side) of the first passage 33. The first passage body 33b, which is a part, is connected.

第1通路本体33bは、図6に示すように、スロットルボディ33aを過給機34に接続するように構成されている。詳しくは、第1通路本体33bは、両端の開口を左右に向けた長筒状に構成されている。第1通路本体33bは、取付面10aの前方において、スロットルボディ33aと同軸になるように配置されている。さらに詳しくは、第1通路本体33bは、気筒列方向の外側から内側(左側から右側)に向かうにつれて、次第に拡径するように形成されている。第1通路本体33bの上流端(左端)には、前述のようにスロットルボディ33aの下流端が接続されている一方、その下流端(右端)には、過給機34の吸入口が接続されている。   As shown in FIG. 6, the first passage body 33 b is configured to connect the throttle body 33 a to the supercharger 34. Specifically, the first passage body 33b is formed in a long cylindrical shape with openings at both ends directed to the left and right. The first passage body 33b is disposed in front of the mounting surface 10a so as to be coaxial with the throttle body 33a. More specifically, the first passage body 33b is formed so as to gradually increase in diameter from the outside in the cylinder row direction toward the inside (from the left side to the right side). As described above, the downstream end of the throttle body 33a is connected to the upstream end (left end) of the first passage body 33b, while the suction port of the supercharger 34 is connected to the downstream end (right end) thereof. ing.

また、第1通路本体33bには、EGR通路52が合流する合流部33cが開口している。図6に示すように、合流部33cは、第1通路本体33bの上流側部分の後面に形成されており、EGR通路52の下流端が接続されている。合流部33cは、少なくともスロットルバルブ32よりも下流側に形成されるようになっている。   Further, the first passage body 33b has a junction 33c where the EGR passage 52 joins. As shown in FIG. 6, the merging portion 33 c is formed on the rear surface of the upstream portion of the first passage body 33 b, and the downstream end of the EGR passage 52 is connected thereto. The junction 33c is formed at least downstream of the throttle valve 32.

また、第1通路本体33bには、バイパス通路40へ分岐する分岐部33dも開口している。分岐部33dは、第1通路本体33bにおいて、合流部33c近傍(ガスの流れ方向に関しては実質的に同じ位置)の上面に形成されており、バイパス通路40の上流端に接続されている(図10も参照)。この分岐部33dは、図10等に示すように、過給機34、インタークーラ36、4組の吸気ポート17、18、及び各吸気ポート17、18に対して独立通路39を介して接続されたサージタンク38よりも気筒列方向の外側(左側)に位置している。   In addition, a branch portion 33d that branches to the bypass passage 40 is also opened in the first passage body 33b. The branch portion 33d is formed on the upper surface of the first passage body 33b in the vicinity of the junction portion 33c (substantially the same position with respect to the gas flow direction) and is connected to the upstream end of the bypass passage 40 (see FIG. 10). As shown in FIG. 10 and the like, the branch portion 33d is connected to the supercharger 34, the intercooler 36, the four sets of intake ports 17 and 18, and the intake ports 17 and 18 through an independent passage 39. It is located on the outer side (left side) in the cylinder row direction than the surge tank 38.

よって、エアクリーナ31で浄化されて第1通路33へ流入した新気は、スロットルバルブ32を通過した後、合流部33cから流入した外部EGRガスと合流する。そして、新気と外部EGRガスとが合流したガスは、自然吸気時には、分岐部33dを介してバイパス通路40へ流入する一方、過給時には、バイパス通路40を逆流したガスと合流しつつ、第1通路本体33bの下流端から過給機34に吸い込まれるようになっている(図6の矢印A1を参照)。   Therefore, the fresh air purified by the air cleaner 31 and flowing into the first passage 33 passes through the throttle valve 32 and then merges with the external EGR gas flowing in from the merging portion 33c. Then, the gas in which the fresh air and the external EGR gas are merged flows into the bypass passage 40 via the branch portion 33d during natural intake, while it is merged with the gas that has flowed back in the bypass passage 40 during supercharging. The supercharger 34 is sucked from the downstream end of the one passage body 33b (see arrow A1 in FIG. 6).

以下、過給機34側の通路構造と、バイパス通路40側の通路構造を順番に説明する。   Hereinafter, the passage structure on the supercharger 34 side and the passage structure on the bypass passage 40 side will be described in order.

−過給機側の通路構造−
まず、過給機34に吸入される側の通路構造について詳細に説明する。
-Passage structure on the turbocharger side-
First, the passage structure on the side sucked into the supercharger 34 will be described in detail.

前述の如く、本実施形態に係る過給機34は、ルーツ式のスーパーチャージャとして構成されている。詳しくは、過給機34は、気筒列方向に沿って延びる回転軸が設けられた一対のロータ(不図示)と、ロータを収容しているケーシング34bと、ロータを回転駆動する駆動プーリ34dと、駆動プーリ34dに巻き掛けられた駆動ベルト(不図示)を介してクランクシャフト15に連結されている。駆動プーリ34dと、ロータとの間には、前述の電磁クラッチ34aが介設されており、電磁クラッチ34aの遮断及び接続を切り替えることによって、クランクシャフト15を介して過給機34へ駆動力を伝達したり、駆動力の伝達を遮断したりする。   As described above, the supercharger 34 according to this embodiment is configured as a roots-type supercharger. Specifically, the supercharger 34 includes a pair of rotors (not shown) provided with a rotation shaft extending along the cylinder row direction, a casing 34b that houses the rotor, and a drive pulley 34d that rotationally drives the rotor. The drive shaft 34d is connected to the crankshaft 15 via a drive belt (not shown) wound around the drive pulley 34d. The above-described electromagnetic clutch 34a is interposed between the drive pulley 34d and the rotor, and the driving force is supplied to the supercharger 34 via the crankshaft 15 by switching the cutoff and connection of the electromagnetic clutch 34a. Transmits or interrupts transmission of driving force.

ケーシング34bは、気筒列方向に延びる筒状に形成されており、ロータの収容空間と、過給機34を通過するガスの流路とを区画している。詳しくは、ケーシング34bは、気筒方向に左端と前面とが開口した金属製の円筒状に形成されており、図6等に示すように、取付面10aの気筒列方向略中央の部分に対して、所定の間隔を空けるように且つ、第1通路33と同軸になるように配置されている。   The casing 34b is formed in a cylindrical shape extending in the cylinder row direction, and divides the housing space of the rotor and the gas flow path passing through the supercharger 34. Specifically, the casing 34b is formed in a metal cylindrical shape having an opening at the left end and the front surface in the cylinder direction. As shown in FIG. 6 and the like, the casing 34b is substantially at the center of the mounting surface 10a in the cylinder row direction. The first passage 33 and the first passage 33 are arranged so as to leave a predetermined interval.

ケーシング34bの長手方向左端部には、ロータによって圧縮するガスを吸い込む吸入口が開口しており、第1通路33の下流端(右端)が接続されている。その一方で、ケーシング34bの前部(エンジン本体10とは反対側の側部)には、図6〜図7に示すように、ロータによって圧縮されたガスを吐き出す吐出口34cが開口しており、第2通路35の上流端(上端)が接続されている。   A suction port for sucking gas compressed by the rotor is opened at the left end of the casing 34b in the longitudinal direction, and the downstream end (right end) of the first passage 33 is connected. On the other hand, as shown in FIGS. 6 to 7, a discharge port 34c for discharging the gas compressed by the rotor is opened at the front portion (side portion opposite to the engine body 10) of the casing 34b. The upstream end (upper end) of the second passage 35 is connected.

駆動プーリ34dは、ケーシング34bに収容されたロータを回転駆動するように構成されている。詳しくは、駆動プーリ34dは、ケーシング34bの右端から突出し且つ、第1通路33及びケーシング34bの双方に対して略同軸に延びる軸状に形成されている。駆動プーリ34dの先端には駆動ベルト(不図示)が巻き掛けられており、前述の如く、電磁クラッチ34aの切替状態に応じて、クランクシャフト15を過給機34に対して駆動連結するように構成されている。   The drive pulley 34d is configured to rotationally drive the rotor accommodated in the casing 34b. Specifically, the drive pulley 34d is formed in a shaft shape that protrudes from the right end of the casing 34b and extends substantially coaxially with respect to both the first passage 33 and the casing 34b. A drive belt (not shown) is wound around the tip of the drive pulley 34d, and as described above, the crankshaft 15 is connected to the supercharger 34 in accordance with the switching state of the electromagnetic clutch 34a. It is configured.

第2通路35は、図4、及び図6〜図7等に示すように、過給機34をインタークーラ36に接続するように構成されている。過給機34とインタークーラ36とを上下に隣接させるべく、本実施形態に係る第2通路35は、エンジン1の上下方向に沿って延びるように形成されている。また、第2通路35は、図7に示すように、上下の両端が、それぞれ後方(エンジン本体10側)に向かって開口している。ここで、上側の開口部35aは、ケーシング34bの前部(具体的には吐出口34c)に接続されており、下側の開口部35bは、インタークーラ36の前部(クーラハウジング36cの前面)に接続されている。   The second passage 35 is configured to connect the supercharger 34 to the intercooler 36, as shown in FIG. 4 and FIGS. The second passage 35 according to this embodiment is formed so as to extend along the vertical direction of the engine 1 so that the supercharger 34 and the intercooler 36 are vertically adjacent. Further, as shown in FIG. 7, the upper and lower ends of the second passage 35 are each open toward the rear (the engine body 10 side). Here, the upper opening 35a is connected to the front part of the casing 34b (specifically, the discharge port 34c), and the lower opening 35b is the front part of the intercooler 36 (the front surface of the cooler housing 36c). )It is connected to the.

詳しくは、第2通路35は、上下方向に延びかつ、左右方向に扁平な樹脂製の角筒部として形成されており、上下の両端部がそれぞれ後方に向けて曲折されている。すなわち、図7に示すように、第2通路35は、気筒列方向視したとき(特に、右方向から見たとき)に、略コの字状の流路を形成するように構成されている。   Specifically, the second passage 35 is formed as a square tube portion made of a resin that extends in the vertical direction and is flat in the horizontal direction, and both upper and lower end portions are bent toward the rear. That is, as shown in FIG. 7, the second passage 35 is configured to form a substantially U-shaped flow path when viewed in the cylinder row direction (particularly when viewed from the right direction). .

前述の如く、本実施形態に係るインタークーラ36は、水冷式に構成されており、図4〜図7に示すように、ガスの冷却機能を有するコア36aと、コア36aの側部に取り付けられるコア接続部36bと、コア36aを収容するクーラハウジング36cとを備えている。詳細は省略するが、コア接続部36bには、コア36aへ冷却水を供給する給水管と、コア36aから冷却水を排出する排水管とが接続されている。尚、図4などに示すように、インタークーラ36の幅方向(左右方向)の寸法は、過給機34の幅方向の寸法よりも短くなっており、また、同方向における第2通路35の寸法と略同じになっている。   As described above, the intercooler 36 according to the present embodiment is configured to be water-cooled, and is attached to the core 36a having a gas cooling function and the side portion of the core 36a as shown in FIGS. A core connecting portion 36b and a cooler housing 36c that accommodates the core 36a are provided. Although details are omitted, a water supply pipe for supplying cooling water to the core 36a and a drain pipe for discharging cooling water from the core 36a are connected to the core connecting portion 36b. As shown in FIG. 4 and the like, the dimension in the width direction (left-right direction) of the intercooler 36 is shorter than the dimension in the width direction of the supercharger 34, and the second passage 35 in the same direction It is almost the same as the dimensions.

コア36aは、直方状に形成されており、その一側面(後面)と取付面10aとが向い合うような姿勢で支持されている。コア36aの前面がガスの流入面を構成している一方、コア36aの後面がガスの流出面を構成しており、それぞれ、コア36aにおいて最も広い面となっている。図示は省略するが、コア36aには、薄板材を扁平筒形にしたウォータチューブが複数配列されており、各ウォータチューブの外壁面には、波状のコルゲートフィンがロウ付け等により接続されている。このように構成することで、給水管から供給された冷却水は、各ウォータチューブに導入されて、高温のガスを冷却することになる。ガスを冷却したことで暖められた冷却水は、各ウォータチューブから排水管を介して排出される。また、コルゲートフィンを設けたことで、各ウォータチューブの表面積が増加して放熱効果が向上するようになっている。   The core 36a is formed in a rectangular shape, and is supported in such a posture that one side surface (rear surface) thereof faces the mounting surface 10a. The front surface of the core 36a constitutes a gas inflow surface, while the rear surface of the core 36a constitutes a gas outflow surface, each being the widest surface of the core 36a. Although not shown, the core 36a has a plurality of water tubes in which a thin plate material is formed into a flat cylindrical shape, and a corrugated fin corrugated fin is connected to the outer wall surface of each water tube by brazing or the like. . By comprising in this way, the cooling water supplied from the water supply pipe is introduce | transduced into each water tube, and cools high temperature gas. The cooling water warmed by cooling the gas is discharged from each water tube through the drain pipe. Further, by providing the corrugated fins, the surface area of each water tube is increased and the heat dissipation effect is improved.

コア接続部36bは、図4に示すように、矩形薄板状の部材であって、コア36aの右側面に取り付けられている。コア接続部36bを介して、給水管及び排水管と、ウォータチューブとが相互に接続されている。コア接続部36bは、インタークーラ36の右側壁部を構成しており、クーラハウジング36cと共に、コア36aの収容空間を区画している。   As shown in FIG. 4, the core connecting portion 36b is a rectangular thin plate-like member, and is attached to the right side surface of the core 36a. The water supply pipe, the drain pipe, and the water tube are connected to each other through the core connection portion 36b. The core connecting part 36b constitutes the right side wall part of the intercooler 36, and partitions the accommodation space for the core 36a together with the cooler housing 36c.

クーラハウジング36cは、ケーシング34bの下方に配置されており、コア36aの収容空間を区画していると共に、吸気通路30のうち第2通路35と第3通路37との間に介設された流路を構成している。   The cooler housing 36 c is disposed below the casing 34 b, defines a housing space for the core 36 a, and flows between the second passage 35 and the third passage 37 in the intake passage 30. Constitutes the road.

具体的に、クーラハウジング36cは、前面と後面とが開口した矩形薄箱状に形成されており、ケーシング34bの下方位置において、その後面と取付面10aとが向い合うような姿勢で支持されている。この後面は、ケーシング34bと同様に、エンジン本体10の取付面10aに対して所定の間隔(図7を参照)を空けて配置されている。   Specifically, the cooler housing 36c is formed in a rectangular thin box shape in which a front surface and a rear surface are opened, and is supported in a posture where the rear surface and the mounting surface 10a face each other at a position below the casing 34b. Yes. Similar to the casing 34b, the rear surface is disposed at a predetermined interval (see FIG. 7) with respect to the mounting surface 10a of the engine body 10.

そして、クーラハウジング36cにおける前面側の開口部36dには、第2通路35の下流端が接続されている一方、後面側の開口部36eには、第3通路37の上流端が接続されている。また、クーラハウジング36cは、右側面も開口している。その開口部は、コア36aをクーラハウジング36cの内部に収容するときの挿入口として構成されており、コア接続部36bによって閉塞されるようになっている。   The downstream end of the second passage 35 is connected to the opening 36d on the front side of the cooler housing 36c, while the upstream end of the third passage 37 is connected to the opening 36e on the rear side. . The cooler housing 36c also has an opening on the right side. The opening is configured as an insertion port when the core 36a is accommodated in the cooler housing 36c, and is closed by the core connecting portion 36b.

第3通路37は、サージタンク38及び独立通路39と一体的に成形された樹脂製の部材であって、図7及び図8に示すように、インタークーラ36をサージタンク38に接続するように構成されている。詳しくは、第3通路37は、上流側から順に、クーラハウジング36cに締結され、インタークーラ36を通過したガスが集合する集合部37aと、集合部37aに集合したガスをサージタンク38へ導く導入部37bとを有している。第3通路37は、少なくとも車両搭載状態において、サージタンク38に対して下方に配設されている。   The third passage 37 is a resin member formed integrally with the surge tank 38 and the independent passage 39, and connects the intercooler 36 to the surge tank 38 as shown in FIGS. It is configured. Specifically, the third passage 37 is fastened to the cooler housing 36c in order from the upstream side, and a collecting portion 37a where the gas that has passed through the intercooler 36 gathers, and an introduction that guides the gas gathered in the collecting portion 37a to the surge tank 38. Part 37b. The third passage 37 is disposed below the surge tank 38 at least in a vehicle-mounted state.

集合部37aは、前面側つまり、クーラハウジング36c側が開放された、前後の奥行の浅い箱状に形成されており、その開放部は、図7に示すように、クーラハウジング36c後面側の開口部36eに接続されている。集合部37aは、クーラハウジング36cの後面と、エンジン本体10の取付面10aとの隙間に位置するようになっている。また、集合部37aの後面にはさらに、導入部37bの上流端が接続されている。   The collective portion 37a is formed in a shallow box shape with front and rear depths opened on the front side, that is, the cooler housing 36c side, and the open portion is an opening on the rear side of the cooler housing 36c as shown in FIG. 36e. The collective portion 37a is positioned in the gap between the rear surface of the cooler housing 36c and the mounting surface 10a of the engine body 10. Moreover, the upstream end of the introduction part 37b is further connected to the rear surface of the gathering part 37a.

導入部37bは、略上下方向に延びる曲管部として形成されており、その上流端は集合部37aの後面に接続されている一方、その下流端はサージタンク底面の中央部(図8〜図9を参照)に接続されている。この導入部37bは、図7等に示すように、集合部37aの後面から過給機34のケーシング34bの後面にかけての領域と、エンジン本体10の取付面10aとの間の隙間を縫うように延設されている。   The introduction portion 37b is formed as a curved pipe portion extending substantially in the vertical direction, and its upstream end is connected to the rear surface of the collecting portion 37a, while its downstream end is the central portion of the bottom surface of the surge tank (FIGS. 8 to 8). 9). As shown in FIG. 7 and the like, the introducing portion 37b sews a gap between the region from the rear surface of the collecting portion 37a to the rear surface of the casing 34b of the supercharger 34 and the mounting surface 10a of the engine body 10. It is extended.

さらに詳しくは、図8に示すように、導入部37bの上流側部分は、集合部37aとの接続部から右斜め上方へ向かって延びる一方、それよりも下流側部分は、サージタンク38との接続部に向かって直上方へ延びるように形成されている。このように形成した結果、導入部37bの下流端部は、気筒列方向の一側から見たときに、独立通路39におけるガスの流れ方向に対して略直交する方向に延びるようになる(図7を参照)。   More specifically, as shown in FIG. 8, the upstream portion of the introduction portion 37b extends obliquely upward to the right from the connecting portion with the collecting portion 37a, while the downstream portion thereof is connected to the surge tank 38. It is formed to extend directly upward toward the connecting portion. As a result of this formation, the downstream end portion of the introduction portion 37b extends in a direction substantially orthogonal to the gas flow direction in the independent passage 39 when viewed from one side in the cylinder row direction (FIG. 7).

サージタンク38は、気筒列方向において、1番気筒11Aに対応する吸気ポート17、18(具体的には、第2ポート18A)の配設位置から、4番気筒11Dに対応する吸気ポート17、18(具体的には、第1ポート17D)の配設位置にかけて延び且つ、同方向の両端が閉塞された略筒状に形成されている。   The surge tank 38 has an intake port 17 corresponding to the fourth cylinder 11D from the position of the intake ports 17 and 18 (specifically, the second port 18A) corresponding to the first cylinder 11A in the cylinder row direction. 18 (specifically, the first port 17D) is formed in a substantially cylindrical shape that extends to the position where it is disposed and is closed at both ends in the same direction.

前述のように、サージタンク38は、吸気ポート17、18の反気筒側端部に対し、複数の独立通路39を挟んで反対側に対向して配置されている(図7を参照)。後述のように、複数の独立通路39をそれぞれ短筒状に形成すると、このような配置と相俟って、サージタンク38は、吸気ポート17、18の入口(上流端部)近傍に位置することになる。このことは、サージタンク38から吸気ポート17、18にかけての流路長(ランナー長)を短くする上で有効である。   As described above, the surge tank 38 is disposed opposite the opposite ends of the intake ports 17 and 18 on the opposite cylinder side with the plurality of independent passages 39 interposed therebetween (see FIG. 7). As will be described later, when each of the plurality of independent passages 39 is formed in a short cylindrical shape, the surge tank 38 is positioned near the inlets (upstream end portions) of the intake ports 17 and 18 in combination with such an arrangement. It will be. This is effective in shortening the flow path length (runner length) from the surge tank 38 to the intake ports 17 and 18.

また、図9に示すように、サージタンク38の底部には、第3通路37(導入部37b)の下流端が接続されている。サージタンク38の内底面38aの中央部(具体的には、気筒列方向の中央部)には、略円形状の断面を有する導入口38bが開口しており、導入部37bの下流端部は、この導入口38bを介してサージタンク38に接続されている。   Further, as shown in FIG. 9, the downstream end of the third passage 37 (introduction portion 37 b) is connected to the bottom of the surge tank 38. An introduction port 38b having a substantially circular cross section is opened at the center portion of the inner bottom surface 38a of the surge tank 38 (specifically, the center portion in the cylinder row direction), and the downstream end portion of the introduction portion 37b is And, it is connected to the surge tank 38 through the introduction port 38b.

なお、導入口38bは、吸気ポート17、18よりも大径に形成されている。   The introduction port 38b is formed to have a larger diameter than the intake ports 17 and 18.

また、サージタンク38において、導入口38bから気筒列方向の一端(一番気筒11A側の端)までの寸法と、その他端(4番気筒11D側の端)までの寸法とが実質的に等しくなっている。このような構成とすることで、吸気の分配性能を確保することが可能になり、ひいては充填効率の気筒間差を低減する上で有利になる。   In the surge tank 38, the dimension from the introduction port 38b to one end (the end on the first cylinder 11A side) in the cylinder row direction is substantially equal to the dimension from the other end (the end on the fourth cylinder 11D side). It has become. By adopting such a configuration, it becomes possible to ensure the distribution performance of intake air, which is advantageous in reducing the difference in charging efficiency between cylinders.

また、図9に示すように、サージタンク38には、複数の独立通路39それぞれの上流端部が、対応する吸気ポート17、18の並ぶ順に従って列状に並んで接続されている。   Further, as shown in FIG. 9, the upstream end of each of the plurality of independent passages 39 is connected to the surge tank 38 in a line in the order in which the corresponding intake ports 17 and 18 are arranged.

具体的に、サージタンク38におけるエンジン本体10側の側面(後面)には、2本で1組を成す独立通路39が気筒列方向に沿って並んだ状態で4組(つまり、計8本)形成されている。8本の独立通路39は、それぞれ、車両搭載状態において、後方に向かって略ストレートに延びる短筒状の通路として形成されており、その一端側(上流側)はサージタンク38内の空間に連通している一方、他端側(下流側)はエンジン本体10側(後側)に開口している。   Specifically, on the side surface (rear surface) of the surge tank 38 on the engine body 10 side, four sets (that is, a total of eight) with two independent passages 39 forming one set along the cylinder row direction are arranged. Is formed. Each of the eight independent passages 39 is formed as a short cylindrical passage extending substantially straight rearward in the vehicle mounted state, and one end side (upstream side) thereof communicates with the space in the surge tank 38. On the other hand, the other end side (downstream side) is open to the engine body 10 side (rear side).

4組の独立通路39は、それぞれ、4組の吸気ポート17、18の各々に対応するように配設されており、一体的に形成された第3通路37、サージタンク38及び独立通路39をエンジン本体10に組み付けたときに、各独立通路39と、それに対応する吸気ポート17、18とが、一本の通路を構成するようになっている。   The four sets of independent passages 39 are arranged so as to correspond to the four sets of intake ports 17, 18, respectively, and include the integrally formed third passage 37, surge tank 38, and independent passage 39. When assembled to the engine body 10, each independent passage 39 and the corresponding intake ports 17 and 18 constitute a single passage.

前述のように、独立通路39は、1組につき、第1ポート17に対応する独立通路391と、第2ポート18に対応する独立通路392とから構成されている。第3通路37、サージタンク38、及び独立通路39をシリンダブロック12に組み付けたときに、第1ポート17と、それに対応する独立通路391とが独立した1本の通路を構成する一方、第2ポート18と、それに対応する独立通路392とが、独立した1本の通路を構成する。このようにして、8本の独立した通路が構成されるようになっている。尚、第1ポート17に対応する独立通路391は、「第1の独立通路」の例示であり、第2ポート18に対応する独立通路392は、「第2の独立通路」の例示である。   As described above, the independent passage 39 is composed of the independent passage 391 corresponding to the first port 17 and the independent passage 392 corresponding to the second port 18 for each set. When the third passage 37, the surge tank 38, and the independent passage 39 are assembled to the cylinder block 12, the first port 17 and the corresponding independent passage 391 constitute one independent passage, The port 18 and the independent passage 392 corresponding to the port 18 constitute an independent passage. In this way, eight independent passages are configured. The independent passage 391 corresponding to the first port 17 is an example of “first independent passage”, and the independent passage 392 corresponding to the second port 18 is an example of “second independent passage”.

そして、第2ポート18に接続される独立通路392には、前述のSCV80が配設されている(図7及び図11等を参照)。SCV80の開度を絞ることで、この第2ポート18を通過するガスの流量が低減するため、他方の第1ポート17を通過する流量を相対的に増やすことができる。   The SCV 80 is disposed in the independent passage 392 connected to the second port 18 (see FIG. 7 and FIG. 11). Since the flow rate of the gas passing through the second port 18 is reduced by reducing the opening of the SCV 80, the flow rate passing through the other first port 17 can be relatively increased.

ところで、後述の如く、バイパス通路40の下流側部分は2股に分岐しており、分岐した各通路(以下、「分岐通路」44b、44cという」の下流端部は、両方とも、サージタンク38の上面に接続されている。   Incidentally, as will be described later, the downstream portion of the bypass passage 40 is bifurcated, and the downstream ends of the branched passages (hereinafter referred to as “branch passages” 44b and 44c) are both surge tanks 38. It is connected to the top surface.

そのような構造を実現するべく、サージタンク38の上面には、気筒列方向に間隔を空けて配置され且つ、サージタンク38の内外を連通させるように構成された2つの第1及び第2導入部38c、38dが設けられている。   In order to realize such a structure, two first and second introductions are arranged on the upper surface of the surge tank 38 at intervals in the cylinder row direction and configured to communicate the inside and outside of the surge tank 38. Portions 38c and 38d are provided.

2つの第1及び第2導入部38c、38dは、双方ともサージタンク38の導入口38bに対して気筒列方向にオフセットした位置に設定されている。そして、2つの第1及び第2導入部38c、38dのうち、気筒列方向の一側(右側)に位置する第1導入部38cには、一方の分岐通路(以下、「第1分岐通路」ともいう)44bの下流端部が接続されている一方、他側(左側)に位置する第2導入部38dには、他方の分岐通路(以下、「第2分岐通路」ともいう)44cの下流端部が接続されている(図12も参照)。   The two first and second introduction portions 38c and 38d are both set at positions offset in the cylinder row direction with respect to the introduction port 38b of the surge tank 38. Of the two first and second introduction portions 38c and 38d, the first introduction portion 38c located on one side (right side) in the cylinder row direction has one branch passage (hereinafter referred to as "first branch passage"). The downstream end of 44b is connected to the second introduction portion 38d located on the other side (left side), and downstream of the other branch passage (hereinafter also referred to as “second branch passage”) 44c. The ends are connected (see also FIG. 12).

具体的に、第1及び第2導入部38c、38dは、双方とも、短筒状に形成されており、図8に示すように、サージタンク38の上面から気筒列方向に対して垂直に且つ、斜め上前方に向かって延びている。   Specifically, the first and second introduction portions 38c and 38d are both formed in a short cylinder shape, and as shown in FIG. 8, are perpendicular to the cylinder row direction from the upper surface of the surge tank 38 and , Extending obliquely upward and forward.

第1導入部38cは、図8に示すように、気筒列方向において、1番気筒11Aの第2ポート18Aに対応する独立通路392の上流端部から、2番気筒11Bの第1ポート17Bに対応する独立通路391の上流端部にかけての区間内、詳しくは、1番気筒11Aの第1ポート17Aに対応する独立通路391の上流端部から、2番気筒11Bの第2ポート18Bに対応する独立通路392の上流端部にかけての区間内、さらに詳しくは、2番気筒11Bの第2ポート18Bに対応する独立通路392の上流端部寄りの部位に対して対向するように配設されている(図14も参照)。   As shown in FIG. 8, the first introduction portion 38c extends from the upstream end of the independent passage 392 corresponding to the second port 18A of the first cylinder 11A to the first port 17B of the second cylinder 11B in the cylinder row direction. Corresponding to the second port 18B of the second cylinder 11B from the upstream end of the independent passage 391 corresponding to the first port 17A of the first cylinder 11A, specifically in the section from the corresponding upstream end of the independent passage 391. In the section from the upstream end of the independent passage 392, more specifically, it is disposed so as to face a portion near the upstream end of the independent passage 392 corresponding to the second port 18B of the second cylinder 11B. (See also FIG. 14).

対して、第2導入部38dは、図8に示すように、気筒列方向において、3番気筒11Cの第2ポート18Cに係る独立通路392の上流端部から、4番気筒11Dの第1ポート17Dに係る独立通路391の上流端部にかけての区間内、詳しくは、3番気筒11Cの第1ポート17Cに係る独立通路391の上流端部から、4番気筒11Dの第2ポート18Dに係る独立通路392の上流端部にかけての区間内、さらに詳しくは、4番気筒11Dの第2ポート18Dに係る独立通路392の上流端部寄りの部位に対して対向するように配設されている(図14も参照)。   On the other hand, as shown in FIG. 8, the second introduction part 38d is connected to the first port of the fourth cylinder 11D from the upstream end of the independent passage 392 related to the second port 18C of the third cylinder 11C in the cylinder row direction. In the section from the upstream end of the independent passage 391 related to 17D, specifically, from the upstream end of the independent passage 391 related to the first port 17C of the third cylinder 11C to the second port 18D of the fourth cylinder 11D. In the section from the upstream end of the passage 392, more specifically, it is disposed so as to face a portion near the upstream end of the independent passage 392 related to the second port 18D of the fourth cylinder 11D (see FIG. 14).

すなわち、第2導入部38dは、気筒列方向において、第1導入部38cよりも左側つまり、1番気筒11Aから4番気筒11Dに向かう方向にオフセットしている。そのようにオフセットした結果、気筒列方向において、第2導入部38dと4番気筒11Dに対応する独立通路391、392とは、第1導入部38cと1番気筒11Aに対応する独立通路391、392と、よりも相対的に近接することになる。   That is, the second introduction portion 38d is offset in the cylinder row direction to the left of the first introduction portion 38c, that is, in the direction from the first cylinder 11A to the fourth cylinder 11D. As a result of such offset, in the cylinder row direction, the independent passages 391 and 392 corresponding to the second introduction portion 38d and the fourth cylinder 11D are independent passages 391 corresponding to the first introduction portion 38c and the first cylinder 11A, 392 and relatively closer.

また、図8〜図9に示すように、サージタンク38の内底面38aは、車両搭載状態において、8本の独立通路39それぞれの上流端の下面39aよりも低く形成されている。そして、各内底面38aは、導入口38bから気筒列方向において離間しているときには、接近しているときよりも相対的に上方に位置するように形成されている。   As shown in FIGS. 8 to 9, the inner bottom surface 38 a of the surge tank 38 is formed lower than the lower surface 39 a at the upstream end of each of the eight independent passages 39 in the vehicle-mounted state. Each inner bottom surface 38a is formed so as to be positioned relatively upward when it is away from the introduction port 38b in the cylinder row direction than when it is approaching.

すなわち、内底面38aの高さは、第3通路37の下流端部との接続部に対応する導入口38bから、気筒列方向において離間するにしたがって、各独立通路39の上流端の下面39aの高さに近接するように構成されている(図15も参照)。   That is, the height of the inner bottom surface 38a is such that the lower surface 39a at the upstream end of each independent passage 39 increases as the distance from the introduction port 38b corresponding to the connection portion with the downstream end of the third passage 37 increases in the cylinder row direction. It is configured to be close to the height (see also FIG. 15).

具体的に、サージタンク38の内底面38aは、導入口38bから離れるに従って、次第に高くなるように傾斜している。そのため、この内底面38aは、中央側の2番気筒11B及び3番気筒11C付近と比較して、両端側の1番気筒11A及び4番気筒11D付近の方が高くなっている。   Specifically, the inner bottom surface 38a of the surge tank 38 is inclined so as to gradually increase as the distance from the introduction port 38b increases. Therefore, the inner bottom surface 38a is higher in the vicinity of the first cylinder 11A and the fourth cylinder 11D on both ends than in the vicinity of the second cylinder 11B and the third cylinder 11C on the center side.

また、図8〜図9に示すように、導入口38bの両脇(気筒列方向の左右両側)には、左右一対の壁部71、72が立設されている。各壁部71、72は、第3通路37とサージタンク38との接続部として形成された導入口38bの両縁において、サージタンク38の内底面38aからガスの流れ方向に沿って立ち上がるように立設されている。壁部71、72の高さ方向の寸法は、互いに同じである。   As shown in FIGS. 8 to 9, a pair of left and right wall portions 71 and 72 are erected on both sides of the introduction port 38b (on the left and right sides in the cylinder row direction). Each of the wall portions 71 and 72 rises from the inner bottom surface 38a of the surge tank 38 along the gas flow direction at both edges of the introduction port 38b formed as a connection portion between the third passage 37 and the surge tank 38. It is erected. The dimensions of the walls 71 and 72 in the height direction are the same.

過給機34に吸い込まれたガスは、このように構成された“過給通路”を介して各シリンダ11へ至る。   The gas sucked into the supercharger 34 reaches each cylinder 11 through the “supercharge passage” thus configured.

つまり、過給時においては、エンジン1が運転している最中、クランクシャフト15からの出力が、駆動ベルト、及び駆動プーリ34dを介して伝達されて、ロータを回転させる。ロータが回転することにより、過給機34は、第1通路33から吸い込んだガスを、圧縮した上で吐出口34cから吐き出す。吐き出されたガスは、ケーシング34bの前方に配置された第2通路35に流入する。   That is, during supercharging, while the engine 1 is operating, the output from the crankshaft 15 is transmitted via the drive belt and the drive pulley 34d to rotate the rotor. As the rotor rotates, the supercharger 34 compresses the gas sucked from the first passage 33 and then discharges it from the discharge port 34c. The discharged gas flows into the second passage 35 disposed in front of the casing 34b.

図7の矢印A2に示すように、過給機34から吐出されて第2通路35に流入したガスは、過給機34の吐出口34cから前方に向かって流れた後、第2通路35に沿って下方へと流れる。下方へと流れたガスは、第2通路35の下部に至った後、インタークーラ36に向かって後方へ流れる。   As indicated by an arrow A2 in FIG. 7, the gas discharged from the supercharger 34 and flowing into the second passage 35 flows forward from the discharge port 34c of the supercharger 34 and then flows into the second passage 35. It flows down along. The gas flowing downward reaches the lower portion of the second passage 35 and then flows backward toward the intercooler 36.

続いて、図7の矢印A3に示すように、第2通路35を通過したガスは、前面側の開口部36dからクーラハウジング36cの内部に流入し、その前側から後方に向かって流れる。クーラハウジング36cの内部に流入したガスは、コア36aを通過する際に、ウォータチューブに供給された冷却水によって冷却される。冷却されたガスは、クーラハウジング36cにおける後面側の開口部36eから流出し、第3通路37に流入する。   Subsequently, as shown by an arrow A3 in FIG. 7, the gas that has passed through the second passage 35 flows into the inside of the cooler housing 36c from the opening 36d on the front surface side, and flows backward from the front side thereof. The gas flowing into the cooler housing 36c is cooled by the cooling water supplied to the water tube when passing through the core 36a. The cooled gas flows out from the opening 36e on the rear surface side in the cooler housing 36c and flows into the third passage 37.

そして、図7の矢印A4に示すように、インタークーラ36から第3通路37へ流入したガスは、集合部37aを通過した後、導入部37bの上流側部分に沿って右斜め上方へ流れ(図8の区間S1も参照)、その後、導入部37bの下流側部分に沿って直上方へ流れる(図8の区間S2も参照)。同図の矢印A5に示すように、導入部37bを通過したガスは、サージタンク38における、気筒列方向の略中央の空間に流入し、サージタンク38にて一時的に蓄えられた後、独立通路39を介して各シリンダ11へ供給される。   As shown by an arrow A4 in FIG. 7, the gas flowing into the third passage 37 from the intercooler 36 passes through the collecting portion 37a and then flows obliquely upward to the right along the upstream portion of the introducing portion 37b ( 8 (see also section S1 in FIG. 8), and then flows directly upward along the downstream portion of the introduction portion 37b (see also section S2 in FIG. 8). As shown by an arrow A5 in the figure, the gas that has passed through the introduction portion 37b flows into a substantially central space in the surge tank 38 in the cylinder row direction, and is temporarily stored in the surge tank 38, and then independently. It is supplied to each cylinder 11 through a passage 39.

−バイパス側の通路構造−
次に、バイパス通路40側の構成について詳細に説明する。
-Passage structure on the bypass side-
Next, the configuration on the bypass passage 40 side will be described in detail.

図10は、バイパス通路40に係る通路構造を前側から見て示す図であり、図11は、それを後側から見て示す図であり、図12は、それを上側から見て示す図である。また、図13は、バイパス通路40の管路を示す斜視図である。   10 is a view showing the passage structure according to the bypass passage 40 as seen from the front side, FIG. 11 is a view showing it from the rear side, and FIG. 12 is a view showing it from the upper side. is there. FIG. 13 is a perspective view showing a conduit of the bypass passage 40.

そして、図14は、サージタンク38周辺の流路を示す図であり、図15は、サージタンク38とバイパス通路40との接続構造を示す縦断面図であり、図16は、その横断面図である。これらの図のうち、図14は、サージタンク38周辺の部材を鋳造するときの中子の形状に相当する。   14 is a view showing a flow path around the surge tank 38, FIG. 15 is a longitudinal sectional view showing a connection structure between the surge tank 38 and the bypass passage 40, and FIG. 16 is a transverse sectional view thereof. It is. Of these figures, FIG. 14 corresponds to the shape of the core when the members around the surge tank 38 are cast.

バイパス通路40は、第1通路33の分岐部33dから上方に向かって延びた後に、右方に向かって略ストレートに延びる。バイパス通路40は、右方に向かって延びた部分がサージタンク38の中央付近(具体的には、気筒列方向における中央)に至ると、斜め下後方に向かうように向きを変えた後に、2股に分岐する。分岐した各々が、サージタンク38の上面に接続されるようになっている。   The bypass passage 40 extends upward from the branch portion 33d of the first passage 33 and then extends substantially straight toward the right. When the portion of the bypass passage 40 extending rightward reaches the vicinity of the center of the surge tank 38 (specifically, the center in the cylinder row direction), the direction of the bypass passage 40 is changed so as to be obliquely downward and rearward. Branch to the crotch. Each of the branched branches is connected to the upper surface of the surge tank 38.

具体的に、バイパス通路40は、流れ方向に沿って上流側から順に、バイパスバルブ41が内蔵されたバルブボディ41aと、バルブボディ41aを通過したガスの流れ方向を整える曲管部42と、曲管部42を通過したガスを右方に向かって導く直管部43と、直管部43を通過したガスを斜め下後方に向かって導いた後、2股に分岐してサージタンク38に接続される分岐管部44とから構成されている。   Specifically, the bypass passage 40 includes, in order from the upstream side in the flow direction, a valve body 41a in which a bypass valve 41 is incorporated, a bent pipe portion 42 that adjusts the flow direction of the gas that has passed through the valve body 41a, A straight pipe part 43 that guides the gas that has passed through the pipe part 42 to the right, and a gas that has passed through the straight pipe part 43 are directed obliquely downward and rearward, and then branched into two branches and connected to the surge tank 38. And a branch pipe portion 44 to be formed.

バルブボディ41aは、金属製の短筒状に形成されており、図10〜図11に示すように、第1通路33に対して上方且つ、過給機34に対して左方の位置において、両端の開口を上下に向けた姿勢で配置されている。また、バルブボディ41aは、第1通路33と同様に、取付面10aの左端付近の部分よりも前方に位置している。バルブボディ41aの上流端(下端)には、第1通路33の分岐部33dが接続されている一方、バルブボディ41aの下流端(上端)には、曲管部42の上流端が接続されている。   The valve body 41a is formed in a metal short cylinder shape, and as shown in FIGS. 10 to 11, at a position above the first passage 33 and on the left side with respect to the supercharger 34, It is arranged with the opening at both ends facing up and down. Further, like the first passage 33, the valve body 41a is located in front of the portion near the left end of the mounting surface 10a. The branch end 33d of the first passage 33 is connected to the upstream end (lower end) of the valve body 41a, while the upstream end of the curved pipe portion 42 is connected to the downstream end (upper end) of the valve body 41a. Yes.

曲管部42は、樹脂製でエルボ状の管継手として構成されており、第1通路33、ひいてはバルブボディ41aの上方位置において、下方と右方とに開口を向けた姿勢で配置されている。よって、曲管部42に流入したガスは、第1通路33におけるガスの主流に対して垂直な方向(直上方)に向かって流れた後、曲管部42の曲がり方向に従って流れの向きが変更される。その結果、曲管部42を流れるガスは、気筒軸方向視したとき(図12を参照)に、若干、後方へ流れつつ、気筒列方向の外側から内方(左側から右方)に向かって流れる。また、曲管部42は、第1通路33及びバルブボディ41aと同様に、取付面10aの左端付近の部分よりも前方に位置している。曲管部42の上流端(下端)には、既に述べたようにバルブボディ41aの下流端(上端)が接続されている一方、曲管部42の下流端(右端)には、直管部43の上流端が接続されている。   The bent pipe portion 42 is made of a resin and is configured as an elbow-shaped pipe joint, and is arranged in a posture in which the opening is directed downward and to the right in the upper position of the first passage 33 and eventually the valve body 41a. . Therefore, after the gas flowing into the curved pipe portion 42 flows in a direction (directly above) perpendicular to the main flow of gas in the first passage 33, the flow direction is changed according to the bending direction of the curved pipe portion 42. Is done. As a result, the gas flowing through the curved pipe portion 42 flows slightly rearward from the outside in the cylinder row direction (from the left side to the right side) when viewed in the cylinder axial direction (see FIG. 12). Flowing. Further, similarly to the first passage 33 and the valve body 41a, the curved pipe portion 42 is located in front of the portion near the left end of the mounting surface 10a. As described above, the downstream end (upper end) of the valve body 41a is connected to the upstream end (lower end) of the curved pipe part 42, while the straight pipe part is connected to the downstream end (right end) of the curved pipe part 42. The upstream end of 43 is connected.

直管部43は、樹脂製の長筒状(具体的には、気筒列方向の一側(左側)から他側(右側)へ向かう方向に延びる筒状)に形成されており、図4〜図5に戻ると見て取れるように、第1通路33ないし過給機34の上方位置において、両端の開口を左右に向けた姿勢で配置されている。直管部43の上流端(左端)には、既に述べたように曲管部42の下流端(右端)が接続されている一方、直管部43の下流端(右端)には、分岐管部44の上流端が接続されている。   The straight pipe portion 43 is formed in a resin long cylindrical shape (specifically, a cylindrical shape extending in a direction from one side (left side) to the other side (right side) in the cylinder row direction). As can be seen when returning to FIG. 5, the openings at both ends are arranged in the posture toward the left and right at the position above the first passage 33 or the supercharger 34. As described above, the downstream end (right end) of the curved pipe portion 42 is connected to the upstream end (left end) of the straight pipe portion 43, while the branch pipe is connected to the downstream end (right end) of the straight pipe portion 43. The upstream end of the portion 44 is connected.

分岐管部44は、エルボ状に曲折された曲折通路44aと、その曲折通路44aの下流端からトーナメント状に分岐した2本の分岐通路44b、44cとから構成されており、過給機34ないしサージタンク38の上方位置において、曲折通路44aの上流端を左方に向けて且つ、分岐した2本の分岐通路44b、44cを両方とも斜め下後方に向けた姿勢で配置されている。   The branch pipe portion 44 includes a bent passage 44a bent in an elbow shape, and two branch passages 44b and 44c branched in a tournament form from the downstream end of the bent passage 44a. At a position above the surge tank 38, the bent passage 44a is disposed in such a posture that the upstream end of the bent passage 44a is directed leftward, and the two branched passages 44b, 44c are both directed obliquely downward and rearward.

詳しくは、曲折通路44aは、左側から右方へ向かうにつれて、前方から斜め下後方へ向かうように、略直角に曲折されている。この曲折通路44aの後端部は、図12に示すように、気筒軸方向視したときに、略T字状に2本の分岐通路44b、44cに分岐している。   Specifically, the bent passage 44a is bent at a substantially right angle so as to go obliquely downward and rearward from the front as it goes from the left to the right. As shown in FIG. 12, the rear end portion of the bent passage 44a branches into two branch passages 44b and 44c in a substantially T shape when viewed in the cylinder axial direction.

2本の分岐通路44b、44cの流路長は、実質的に同じであり、分岐した一方の分岐通路である第1分岐通路44bは、分岐箇所から気筒列方向に沿って右方へ延びた後、斜め下後方に向かうように曲折されている。対して、分岐した他方の分岐通路である第2分岐通路44cは、分岐箇所から気筒列方向に沿って左方(へ延びた後、斜め下後方に向かうように曲折されている。2本の分岐通路44b、44cの下流端部は、前述の如く、サージタンク38の上面に形成された第1導入部38c及び第2導入部38dに接続されている。   The flow path lengths of the two branch passages 44b and 44c are substantially the same, and the first branch passage 44b, which is one of the branched branch passages, extends rightward from the branch location along the cylinder row direction. After that, it is bent so as to go diagonally downward and rearward. On the other hand, the second branch passage 44c, which is the other branch passage branched, is bent so as to extend to the left (in the direction of the cylinder row from the branch point, and then obliquely downward and rearward. As described above, the downstream end portions of the branch passages 44b and 44c are connected to the first introduction portion 38c and the second introduction portion 38d formed on the upper surface of the surge tank 38.

自然吸気時において、バイパス通路40に流入したガスは、該通路40を成す各部41〜44を通過して各シリンダ11へ至る。   During natural intake, the gas flowing into the bypass passage 40 passes through the respective parts 41 to 44 constituting the passage 40 and reaches the cylinders 11.

つまり、スロットルバルブ32を通過したガスは、バイパスバルブ41の開閉状況に応じて、第1通路33の途中からバイパスバルブ41のバルブボディ41aに流入する。   That is, the gas that has passed through the throttle valve 32 flows into the valve body 41 a of the bypass valve 41 from the middle of the first passage 33 according to the open / close state of the bypass valve 41.

図12の矢印A6に示すように、バルブボディ41aを通過して曲管部42に流入したガスは、直上方に向かって流れた後、若干後方へ向かいつつも、右方へ向かって流れる。   As shown by an arrow A6 in FIG. 12, the gas that has passed through the valve body 41a and has flowed into the curved pipe portion 42 flows rightward, and then flows to the right while slightly moving backward.

続いて、曲管部42を通過したガスは、図12の矢印A7に示すように直管部43に沿って右方へ流れた後、分岐管部44に流入する。そして、同図の矢印A8〜A10に示すように、分岐管部44に流入したガスは、曲折通路44aを通過した後、第1分岐通路44bと第2分岐通路44cとに分配されて、分配された各々がサージタンク38に流入する(図15〜図16の矢印A9〜A10も参照)。サージタンク38に流入したガスは、導入部37bを介して流入したガスと合流しつつ、独立通路39を介して各シリンダ11へ供給される。尚、分岐管部44に流入したガスのうち、第1分岐通路44bを通過するガスは、該第1分岐通路44bの延設方向に従って、気筒列方向において右側へ向かうように指向されるのに対して、第2分岐通路44cを通過するガスは、該第2分岐通路44cの延設方向に従って、気筒列方向において左側へ向かうように指向される。   Subsequently, the gas that has passed through the curved pipe portion 42 flows to the right along the straight pipe portion 43 as shown by an arrow A <b> 7 in FIG. 12, and then flows into the branch pipe portion 44. Then, as shown by arrows A8 to A10 in the figure, the gas flowing into the branch pipe portion 44 passes through the bending passage 44a and is then distributed to the first branch passage 44b and the second branch passage 44c. Each of these flows into the surge tank 38 (see also arrows A9 to A10 in FIGS. 15 to 16). The gas that has flowed into the surge tank 38 is supplied to each cylinder 11 via the independent passage 39 while merging with the gas that has flowed through the introduction portion 37b. Of the gas flowing into the branch pipe portion 44, the gas passing through the first branch passage 44b is directed toward the right side in the cylinder row direction according to the extending direction of the first branch passage 44b. On the other hand, the gas passing through the second branch passage 44c is directed toward the left side in the cylinder row direction in accordance with the extending direction of the second branch passage 44c.

対して、過給時においては、サージタンク38からバイパス通路40に逆流したガスは、バイパス通路40の各部41〜44を前述とは逆向きに通過して、第1通路33に流出する。   On the other hand, at the time of supercharging, the gas flowing backward from the surge tank 38 to the bypass passage 40 passes through the respective portions 41 to 44 of the bypass passage 40 in the opposite direction and flows out to the first passage 33.

(ガスの吹き戻しに関係する構成)
エンジン1は、該エンジン1を運転するためのECUを備えている。ECUは、各種のセンサより出力された検知信号に基づいて、エンジン1の運転状態を判断すると共に、種々のアクチュエータの制御量を計算する。そして、ECUは、計算した制御量に対応する制御信号を、インジェクタ6、点火プラグ25、吸気電動VVT23、排気電動VVT24、燃料供給システム61、スロットルバルブ32、EGRバルブ54、過給機34の電磁クラッチ34a、及び、バイパスバルブ41に出力し、エンジン1を運転する。
(Configuration related to gas blowback)
The engine 1 includes an ECU for operating the engine 1. The ECU determines the operating state of the engine 1 based on detection signals output from various sensors, and calculates control amounts of various actuators. Then, the ECU sends a control signal corresponding to the calculated control amount to the injector 6, spark plug 25, intake electric VVT 23, exhaust electric VVT 24, fuel supply system 61, throttle valve 32, EGR valve 54, and supercharger 34 electromagnetic. The power is output to the clutch 34a and the bypass valve 41, and the engine 1 is operated.

具体的に、エンジン1は、その運転に際して、1番気筒11A、3番気筒11C、4番気筒11D、2番気筒11Bの順で燃焼を行うようになっている。   Specifically, when the engine 1 is operated, it burns in the order of the first cylinder 11A, the third cylinder 11C, the fourth cylinder 11D, and the second cylinder 11B.

以下、燃焼順が前後し且つ、気筒列方向に隣接した2つのシリンダ11を、燃焼が発生する順に先発気筒及び後発気筒と称する場合がある。すなわち、このエンジン1の場合、2番気筒11Bを1組目の先発気筒とし且つ、1番気筒11Aを1組目の後発気筒とするペアと、3番気筒11Cを2組目の先発気筒とし且つ、4番気筒11Dを2組目の後発気筒とするペアとが構成されるようになっている。以下、特に断りが無い限り、1組目の先発気筒及び後発気筒について説明する。その場合、先発気筒に対しては、2番気筒11Bと同じ符号“11B”を付す一方、後発気筒に対しては、1番気筒11Aと同じ符号“11A”を付すことにする。   Hereinafter, the two cylinders 11 that are in the order of combustion and are adjacent to each other in the cylinder row direction may be referred to as a first cylinder and a second cylinder in the order in which combustion occurs. In other words, in the case of the engine 1, the second cylinder 11B is the first set of the first cylinder, the first cylinder 11A is the first set of the subsequent cylinder, and the third cylinder 11C is the second set of the first cylinder. In addition, a pair in which the fourth cylinder 11D is a second set of subsequent cylinders is configured. Hereinafter, unless otherwise specified, the first set of the first and second cylinders will be described. In this case, the same reference numeral “11B” as that of the second cylinder 11B is assigned to the first cylinder, while the same reference numeral “11A” as that of the first cylinder 11A is assigned to the subsequent cylinder.

エンジン1の運転領域は、例えばエンジン回転数と負荷とによって区分されるようになっており、ECUは、各領域に適した運転状態を実現するように、各アクチュエータを制御する。   The operation region of the engine 1 is divided by, for example, the engine speed and the load, and the ECU controls each actuator so as to realize an operation state suitable for each region.

例えば、所定負荷よりも低負荷側の運転領域(以下、「燃費領域」という)では、自然吸気によってエンジン1を運転する一方、その所定負荷よりも高負荷側の運転領域(以下、「過給域」という)では、過給機34を駆動することにより、各シリンダ11に導入されるガスを過給するようになっている。   For example, in an operation region on the lower load side than a predetermined load (hereinafter referred to as “fuel consumption region”), the engine 1 is operated by natural intake, while an operation region on the higher load side than the predetermined load (hereinafter referred to as “supercharging”). In the “zone”), the supercharger 34 is driven to supercharge the gas introduced into each cylinder 11.

ところで、この構成例のように幾何学的圧縮比を高めたエンジン1では、ポンプ損失の増大が懸念されるため、前述の燃費領域においては、燃費性能を優先するべく、内部EGRシステムを介してネガティブオーバーラップ期間(NVO)を設けることが考えられる。   By the way, in the engine 1 in which the geometric compression ratio is increased as in this configuration example, there is a concern about an increase in pump loss. Therefore, in the above-described fuel consumption region, in order to give priority to fuel consumption performance, an internal EGR system is used. It is conceivable to provide a negative overlap period (NVO).

具体的に、排気電動VVT24は、燃費領域においては、ECUから受けた制御信号にしたがって、排気バルブ22の閉時期(以下、「EVC」という)を排気上死点前の所定のクランク角に保持する。EVCの調整は、排気電動VVT24によって行われるようになっているため、EVCを略一定に保つと、EVOもまた、略一定に保たれる。こうして、排気電動VVT24は、EVCを排気行程中に設定する。   Specifically, the exhaust electric VVT 24 maintains the closing timing of the exhaust valve 22 (hereinafter referred to as “EVC”) at a predetermined crank angle before the exhaust top dead center in accordance with a control signal received from the ECU in the fuel consumption range. To do. Since the EVC is adjusted by the exhaust electric VVT 24, when the EVC is kept substantially constant, the EVO is also kept substantially constant. In this way, the exhaust electric VVT 24 sets EVC during the exhaust stroke.

対して、吸気電動VVT23は、燃費領域においては、ECUから受けた制御信号にしたがって、吸気バルブ21の開時期(以下、「IVO」という)を排気上死点後の所定のクランク角に設定する。よって、この燃費領域においては、排気上死点を挟んで吸気バルブ21及び排気バルブ22が共に閉弁したネガティブオーバーラップ期間が設けられる。   In contrast, intake electric VVT 23 sets the opening timing of intake valve 21 (hereinafter referred to as “IVO”) to a predetermined crank angle after exhaust top dead center in accordance with a control signal received from the ECU in the fuel consumption range. . Therefore, in this fuel consumption region, a negative overlap period in which both the intake valve 21 and the exhaust valve 22 are closed across the exhaust top dead center is provided.

尚、このエンジン1においては、吸気電動VVT23は、IVCを圧縮行程の前期から中期までの間に設定する。すなわち、このエンジン1においては、いわゆる、吸気バルブ21の“遅閉じ”を行うことができる。遅閉じを行うことで、ガスの充填量を少なくすることができる。   In this engine 1, the intake electric VVT 23 sets the IVC between the first half and the middle half of the compression stroke. That is, in the engine 1, so-called “slow closing” of the intake valve 21 can be performed. By performing the slow closing, the gas filling amount can be reduced.

ネガティブオーバーラップ期間を設けることによって、燃焼室16の中に既燃ガスが閉じ込められる(いわば、内部EGRガスが導入される)。そのことで、燃焼室16の中の温度、特に着火前の温度が高まる。これにより、例えば、燃費性能を高めるべく、一般的な火花点火燃焼に代えて圧縮着火燃焼を行うときに、その燃焼を安定して行うことが可能になる。また、IVCを遅らせることになるため、ガスの充填量が低減する。燃費領域では充填量を少なくするが、ネガティブオーバーラップ期間を設けることに伴い、ミラーサイクルを実現することになるため、スロットリングを省略又は抑制することができる。そのことで、ポンプ損失が低減する。   By providing the negative overlap period, the burned gas is confined in the combustion chamber 16 (in other words, the internal EGR gas is introduced). As a result, the temperature in the combustion chamber 16, particularly the temperature before ignition, increases. Thereby, for example, when compression ignition combustion is performed instead of general spark ignition combustion in order to improve fuel efficiency, the combustion can be stably performed. Moreover, since IVC is delayed, the filling amount of gas is reduced. Although the filling amount is reduced in the fuel consumption region, the mirror cycle is realized with the provision of the negative overlap period, so that throttling can be omitted or suppressed. As a result, pump loss is reduced.

ところが、このような制御を実行した場合、吸気行程から圧縮行程へ移行した直後、吸気バルブ21は開弁したままとなるから、ピストン14の上昇に伴って、シリンダ11内に導入された内部EGRガスが吸気側へ吹き戻るようになる。   However, when such control is executed, the intake valve 21 remains open immediately after the transition from the intake stroke to the compression stroke, so that the internal EGR introduced into the cylinder 11 as the piston 14 moves up. Gas comes back to the intake side.

特に、前記実施形態のように、サージタンク38を吸気ポート17、18の入口近傍に配設した場合、吸気側へ吹き戻されたガスが、吸気ポート17、18及び独立通路391、392を介してサージタンク38まで逆流する可能性がある。   In particular, when the surge tank 38 is disposed in the vicinity of the inlets of the intake ports 17 and 18 as in the above embodiment, the gas blown back to the intake side passes through the intake ports 17 and 18 and the independent passages 391 and 392. Therefore, there is a possibility that the surge tank 38 flows backward.

その一方で、4気筒エンジンの場合、前述のように定義された先発気筒11Bが圧縮行程にあるとき、後発気筒11Aは、吸気行程の最中となる。よって、先発気筒11Bからガスが吹き戻されるとき、後続気筒11Aの内部は負圧となるから、先発気筒11Bと後発気筒11Aとが気筒列方向に隣接していることを考慮すると、ランナー長を短く構成したが故に、先発気筒11Bから吹き戻されたガスが、サージタンク38を介して吸気行程中の後発気筒11Aに吸入されてしまう可能性のあることに、本願発明者等は気付いた。   On the other hand, in the case of a four-cylinder engine, when the preceding cylinder 11B defined as described above is in the compression stroke, the subsequent cylinder 11A is in the middle of the intake stroke. Therefore, when the gas is blown back from the preceding cylinder 11B, the interior of the succeeding cylinder 11A becomes negative pressure. Therefore, considering that the leading cylinder 11B and the succeeding cylinder 11A are adjacent to each other in the cylinder row direction, the runner length is increased. The inventors of the present application have noticed that the gas blown back from the starting cylinder 11B may be sucked into the succeeding cylinder 11A during the intake stroke via the surge tank 38 because of the short configuration.

本願発明者等は、さらに検討を重ねた結果、上流側通路としてのバイパス通路40と、サージタンク38との接続箇所次第では、先発気筒11Bから吹き戻されたガスの、後発気筒11Aへの吸入が促進されてしまい、その結果、いわゆるプレイグニッション(以下、「プレイグ」ともいう)に至る虞があることを見出した。   As a result of further studies, the inventors of the present application have determined that the gas blown back from the preceding cylinder 11B is sucked into the succeeding cylinder 11A, depending on the connection location between the bypass passage 40 as the upstream passage and the surge tank 38. As a result, it has been found that there is a risk of reaching so-called pre-ignition (hereinafter, also referred to as “pre-ignition”).

例えば、前記特許文献1に記載された中間吸気管部のように、バイパス通路40をサージタンク38の気筒列方向中央部(この構成例の場合、2番気筒11Bと3番気筒11Cの間)に接続することが考えられる。   For example, as in the intermediate intake pipe portion described in Patent Document 1, the bypass passage 40 has a central portion in the cylinder row direction of the surge tank 38 (between the second cylinder 11B and the third cylinder 11C in this configuration example). It is possible to connect to.

この場合、バイパス通路40及びサージタンク38の接続部と、先発気筒11Bに通じる独立通路39の上流端部と、後発気筒11Aに通じる独立通路39の上流端部とが、気筒列方向において、この順で並ぶことになる。そうすると、バイパス通路40からサージタンク38へ流入したガスは、サージタンク38の内部において、先発気筒11Bに対応する独立通路39の上流端部付近のスペースと、後発気筒11Aに対応する独立通路39の上流端部付近のスペースとを、この順で通過するような流動を形成する。そうすると、バイパス通路40からサージタンク38へ流入したガスが“追い風”となり、先発気筒から吹き戻されたガスを後発気筒側へ押し流してしまうことになる。具体的に、そのような追い風が発生すると、先発気筒11Bから吹き戻されたガスが後発気筒11A側へ押し流されることになる。   In this case, the connection portion of the bypass passage 40 and the surge tank 38, the upstream end portion of the independent passage 39 that communicates with the starting cylinder 11B, and the upstream end portion of the independent passage 39 that communicates with the succeeding cylinder 11A are arranged in the cylinder row direction. They will be arranged in order. As a result, the gas flowing into the surge tank 38 from the bypass passage 40 is located inside the surge tank 38 in the space near the upstream end of the independent passage 39 corresponding to the preceding cylinder 11B and the independent passage 39 corresponding to the succeeding cylinder 11A. A flow is formed so as to pass through the space near the upstream end in this order. As a result, the gas flowing into the surge tank 38 from the bypass passage 40 becomes “trailing wind”, and the gas blown back from the preceding cylinder is pushed away to the succeeding cylinder. Specifically, when such a tailwind is generated, the gas blown back from the starting cylinder 11B is pushed away toward the succeeding cylinder 11A.

本願発明者等は、先発気筒11Bから吹き戻されたガスが、バイパス通路40から流入したガスによって押し流された結果、後発気筒11Aにおいてガスが過剰に吸入されてしまい、その結果、プレイグに至る虞があることに気付いた。   As a result of the gas blown back from the starting cylinder 11B being pushed away by the gas flowing in from the bypass passage 40, the inventors of the present application may inhale the gas excessively in the succeeding cylinder 11A, and as a result, there is a risk of reaching the pre-ignition. I noticed that there is.

プレイグを抑制するためには、バイパス通路40から流入したガスが“向い風”となるように、バイパス通路40をサージタンク38の気筒列方向における端部(この構成例の場合、1番気筒11Aよりも右側、又は、4番気筒11Dよりも左側)に接続することが考えられる。   In order to suppress the plague, the bypass passage 40 is connected to the end of the surge tank 38 in the cylinder row direction (in this configuration example, from the first cylinder 11A so that the gas flowing in from the bypass passage 40 becomes a “heading wind”. Can also be connected to the right side or the left side of the fourth cylinder 11D.

この場合、バイパス通路40及びサージタンク38の接続部と、後発気筒11Aに通じる独立通路39の上流端部と、先発気筒11Bに通じる独立通路39の上流端部とが、気筒列方向においてこの順で並ぶことになる。しかし、このように構成してしまうと、吹き戻されたガスの吸入こそ抑制されるものの、バイパス通路40から後発気筒11Aに至る流路長に対して、バイパス通路40から先発気筒11Bに至る流路長が長くなるため、先発気筒11Bにおいて応答性の悪化を招き得る。また、流路長が気筒間で異なると、充填効率などの状態量において、気筒間差が拡大する虞もあるため好ましくない。   In this case, the connecting portion of the bypass passage 40 and the surge tank 38, the upstream end portion of the independent passage 39 communicating with the succeeding cylinder 11A, and the upstream end portion of the independent passage 39 communicating with the starting cylinder 11B are arranged in this order in the cylinder row direction. Will be lined up. However, with such a configuration, although the suction of the blown-back gas is suppressed, the flow from the bypass passage 40 to the preceding cylinder 11B with respect to the passage length from the bypass passage 40 to the succeeding cylinder 11A. Since the road length becomes long, the responsiveness may be deteriorated in the starting cylinder 11B. Also, if the flow path length differs between cylinders, there is a possibility that the difference between cylinders may increase in the state quantity such as the charging efficiency.

プレイグを抑制するための別の方策としては、例えばサージタンク38の容量を大きくすることが考えられるものの、この場合、サージタンク38の容量を大きくした分だけ、吸気通路30全体の容積が増大するため、特に過給機34と組み合わせて構成したときに、過給レスポンスの低下を招く虞があるという点で好ましくない。また、このように構成してしまうと、吸気通路30の周辺部品のレイアウトにも支障を来たし得るため不都合である。   As another measure for suppressing the plague, for example, it is conceivable to increase the capacity of the surge tank 38. In this case, however, the volume of the entire intake passage 30 is increased by the increase in the capacity of the surge tank 38. For this reason, it is not preferable in that it may cause a decrease in the supercharging response particularly when configured in combination with the supercharger 34. In addition, such a configuration is inconvenient because the layout of peripheral parts of the intake passage 30 may be hindered.

しかし、この構成例においては、前述のように、サージタンク38とバイパス通路40とが接続される第1導入部38cは、図14に示すように、2番気筒11Bの第2ポート18Bに対応する独立通路392付近の箇所に配設されている。その結果、バイパス通路40とサージタンク38との接続箇所は、気筒列方向において、複数の独立通路39のうち先発気筒11Bに対応する独立通路392の上流端部から、後発気筒11Aに対応する独立通路391の上流端部にかけての区間内に対向して設定されるようになっている。   However, in this configuration example, as described above, the first introduction portion 38c to which the surge tank 38 and the bypass passage 40 are connected corresponds to the second port 18B of the second cylinder 11B as shown in FIG. It is disposed at a location near the independent passage 392. As a result, the connection location between the bypass passage 40 and the surge tank 38 is independent from the upstream end of the independent passage 392 corresponding to the starting cylinder 11B among the plurality of independent passages 39 in the cylinder row direction. It is set so as to face the section extending to the upstream end of the passage 391.

しかも、この第1導入部38cに接続される第1分岐通路44bを通過するガスは、該第1分岐通路44bの延設方向に従って、気筒列方向において右側へ向かうように指向される。先発気筒としての2番気筒11Bに対して、後発気筒としての1番気筒11Aが右側に隣接していることを考慮すると、この第1分岐通路44bは、該第1分岐通路44bを流れるガスを、先発気筒11Bと後発気筒11Aとのうち、後発気筒11A寄りに指向させるように形成されているに等しい。   Moreover, the gas passing through the first branch passage 44b connected to the first introduction portion 38c is directed to the right in the cylinder row direction in accordance with the extending direction of the first branch passage 44b. Considering that the first cylinder 11A as the next cylinder is adjacent to the right side with respect to the second cylinder 11B as the first cylinder, the first branch passage 44b allows the gas flowing through the first branch passage 44b to flow. It is equivalent to being formed so as to be directed toward the succeeding cylinder 11A out of the starting cylinder 11B and the succeeding cylinder 11A.

このように構成すると、後発気筒11Aが吸気行程にあるとき(つまり、サージタンク38の内部において、後発気筒11Aに対応する上流端部付近が負圧となるとき)、バイパス通路40からサージタンク38内へ流入したガスは、該ガスを後発気筒11A寄りに指向させたことと相俟って、先発気筒11Bから吹き戻されたガス(図14の矢印A11を参照)と合流しないまま、後発気筒11A側へ向かう流れ(図14の矢印A9を参照)を形成するようになる。   With this configuration, when the succeeding cylinder 11A is in the intake stroke (that is, when the vicinity of the upstream end corresponding to the succeeding cylinder 11A is negative in the surge tank 38), the surge tank 38 is connected to the bypass passage 40. The gas flowing into the cylinder is coupled with the gas blown back from the preceding cylinder 11B (see arrow A11 in FIG. 14) in combination with the fact that the gas is directed toward the succeeding cylinder 11A. A flow toward the 11A side (see arrow A9 in FIG. 14) is formed.

よって、先発気筒11Bから吹き戻されたガスにとって、バイパス通路40から流入したガスが“追い風”となり難くなる。その結果、先発気筒11Bから吹き戻されたガスの後発気筒11Aへの吸入を抑制し、ひいては、プレイグの発生を抑制することが可能になる。   Therefore, for the gas blown back from the starting cylinder 11B, the gas flowing in from the bypass passage 40 is less likely to become “trailing wind”. As a result, it is possible to suppress the suction of the gas blown back from the preceding cylinder 11B into the succeeding cylinder 11A, and thus suppress the occurrence of pre-ignition.

しかも、バイパス通路40をサージタンク38の右端に接続した構成と比較して、充填効率などの気筒間差を縮小したり、先発気筒11Bと後発気筒11Aとで同程度の応答性を確保することが可能になる。   Moreover, as compared with the configuration in which the bypass passage 40 is connected to the right end of the surge tank 38, the difference between the cylinders such as the charging efficiency is reduced, and the same level of responsiveness is secured in the starting cylinder 11B and the starting cylinder 11A. Is possible.

このように、前記の構成によれば、1番気筒11A及び2番気筒11Bにおいて、各シリンダ11の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   As described above, according to the above configuration, in the first cylinder 11A and the second cylinder 11B, it is possible to suppress the occurrence of pre-age caused by the gas blowback while ensuring the responsiveness of each cylinder 11.

このことは、2組目の先発気筒(3番気筒11C)及び後発気筒(4番気筒11D)に関しても同様である。この場合、バイパス通路40とサージタンク38との接続箇所は、気筒列方向において、複数の独立通路39のうち先発気筒(3番気筒)11Cに対応する独立通路39の上流端部から、後発気筒(4番気筒)11Dに対応する独立通路39の上流端部にかけての区間内に対向して設定されるようになっている。また、第2導入部38dに接続される第2分岐通路44cは、該第2分岐通路44cを流れるガスを、先発気筒11Cと後発気筒11Dとのうち、後発気筒11D寄りに指向させる(つまり、左側に指向させる)ように形成されているに等しい。   The same applies to the second set of the first cylinder (third cylinder 11C) and the second cylinder (fourth cylinder 11D). In this case, the bypass passage 40 and the surge tank 38 are connected to the succeeding cylinder from the upstream end of the independent passage 39 corresponding to the starting cylinder (third cylinder) 11C among the plurality of independent passages 39 in the cylinder row direction. (4th cylinder) It is set to oppose in the section to the upstream end part of independent passage 39 corresponding to 11D. In addition, the second branch passage 44c connected to the second introduction portion 38d directs the gas flowing through the second branch passage 44c toward the succeeding cylinder 11D out of the preceding cylinder 11C and the succeeding cylinder 11D (that is, Equal to the left side).

このように構成することで、3番気筒11C及び4番気筒11Dにおいても、各シリンダ11の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   By configuring in this way, also in the third cylinder 11C and the fourth cylinder 11D, it is possible to suppress the occurrence of pre-age due to gas blowback while ensuring the responsiveness of each cylinder 11.

また、バイパス通路44は、気筒列方向の左側から右側へ延びた後に、第1分岐通路44bと第2分岐通路44cとに分岐する。   The bypass passage 44 extends from the left side to the right side in the cylinder row direction, and then branches into the first branch passage 44b and the second branch passage 44c.

ここで、第1分岐通路44bは、分岐前と同様に、気筒列方向の左側から右側へ向かう方向に延びた後にサージタンク38に接続されるのに対し、第2分岐通路44cは、分岐前とは反対側へ向かって延びた後にサージタンク38に接続されるようになっている。そうした“折り返し”が存在する分、第2分岐通路44cからサージタンク38に流入するガスの流速は、第1分岐通路44bからサージタンク38に流入するガスと比較して低くなる。   Here, the first branch passage 44b is connected to the surge tank 38 after extending in the direction from the left side to the right side in the cylinder row direction in the same manner as before branching, while the second branch passage 44c is connected to the surge tank 38 before branching. After extending toward the opposite side, the surge tank 38 is connected. The amount of gas flowing into the surge tank 38 from the second branch passage 44c is lower than the gas flowing into the surge tank 38 from the first branch passage 44b by the amount of such “turnback”.

一方、サージタンク38と、バイパス通路40との接続箇所次第では、“追い風”にはならなくとも、先発気筒からサージタンク38に逆流したガスが、第1及び第2分岐通路44b、44cから流入するガスよりも優先的に(先に)後発気筒に吸入される可能性がある。   On the other hand, depending on the location where the surge tank 38 and the bypass passage 40 are connected, the gas that has flowed back to the surge tank 38 from the first cylinder flows in from the first and second branch passages 44b and 44c, even if “following wind” does not occur. There is a possibility that the gas will be sucked into the succeeding cylinder in preference to the gas to be performed (first).

そこで、図15に示すように、第2分岐通路44cとサージタンク38との接続箇所を、第1分岐通路44bとサージタンク38との接続箇所と比較して、気筒列方向において後発気筒寄り(外寄り)に設定する。このように設定すると、第2分岐通路44cから流入するガスが、2組目の後発気筒11Dに流入し易くなる。これにより、流速の低下分を補うことができる。   Therefore, as shown in FIG. 15, the connection location between the second branch passage 44 c and the surge tank 38 is compared with the connection location between the first branch passage 44 b and the surge tank 38, and is closer to the succeeding cylinder ( Set to (Outward). With this setting, the gas flowing in from the second branch passage 44c is likely to flow into the second set of subsequent cylinders 11D. Thereby, the fall of the flow rate can be compensated.

また、図14に示すように、複数の独立通路39は、各シリンダ11において、第1ポート17に接続される独立通路391と、第2ポート18に接続される独立通路392とを有する。ここで、独立通路391と、独立通路392とは、気筒列方向に沿って列状に並ぶように配設されている。   As shown in FIG. 14, the plurality of independent passages 39 have an independent passage 391 connected to the first port 17 and an independent passage 392 connected to the second port 18 in each cylinder 11. Here, the independent passage 391 and the independent passage 392 are arranged in a row along the cylinder row direction.

そして、バイパス通路40とサージタンク38との接続箇所は、気筒列方向において、先発気筒11Bに対応する独立通路391、392のうち、気筒列方向において後発気筒11A側に配設された独立通路392の上流端部から、後発気筒11Aに対応する独立通路391、392のうち、先発気筒11B側に配設された独立通路391の上流端部にかけての区間内に対向して設定されている。   The bypass passage 40 and the surge tank 38 are connected to an independent passage 392 disposed on the side of the succeeding cylinder 11A in the cylinder row direction among the independent passages 391 and 392 corresponding to the starting cylinder 11B in the cylinder row direction. Of the independent passages 391 and 392 corresponding to the succeeding cylinder 11A to the upstream end of the independent passage 391 provided on the preceding cylinder 11B side.

このように構成すれば、シリンダ11毎に吸気ポート17、18が2つずつ配設されたエンジン1において、各シリンダ11の応答性を確保しつつ、ガスの吹き戻しに起因したプレイグの発生を抑制することができる。   With this configuration, in the engine 1 in which two intake ports 17 and 18 are provided for each cylinder 11, the occurrence of pre-age due to gas blowback is ensured while ensuring the responsiveness of each cylinder 11. Can be suppressed.

《他の実施形態》
前記実施形態では、直列4気筒エンジンについて例示したが、この構成には限られない。例えば、直列3気筒エンジンや直列6気筒エンジンなど、複数の気筒を有するエンジンであればよい。また、気筒数に応じて、上流側通路としてバイパス通路40から分岐する通路の本数を変更してもよい。
<< Other embodiments >>
In the said embodiment, although the inline 4 cylinder engine was illustrated, it is not restricted to this structure. For example, an engine having a plurality of cylinders such as an in-line 3-cylinder engine or an in-line 6-cylinder engine may be used. Further, the number of passages branched from the bypass passage 40 as the upstream passage may be changed according to the number of cylinders.

前記実施形態では、過給時には、第3通路37からガスが流入する一方、バイパス通路40からはガスが逆流する構成について例示したが、この構成には限られない。例えば、エンジン全体のレイアウト等を変更することにより、過給時であっても、第3通路37(より正確には、エンジン全体の構成を変更したときに、第3通路37に対応する通路を指す。説明を簡略にすべく、他の要素についても、前記実施形態と同じ呼称と符号を用いる)と、バイパス通路40との双方から、ガスが流入するように構成してもよい。このような構成とした場合、過給機34、第2通路35、インタークーラ36、及び第3通路37が、「第2の上流側通路」を例示することになる。すなわち、第2の上流側通路は、前述の過給通路として構成されることになる。   In the above-described embodiment, the configuration in which the gas flows from the third passage 37 and the gas flows backward from the bypass passage 40 at the time of supercharging is illustrated, but the configuration is not limited thereto. For example, by changing the layout of the entire engine, the third passage 37 (more precisely, the passage corresponding to the third passage 37 is changed when the configuration of the entire engine is changed, even during supercharging. In order to simplify the description, the other elements may be configured so that gas flows in from both the bypass passage 40 and the same name and reference numerals as in the above embodiment. In such a configuration, the supercharger 34, the second passage 35, the intercooler 36, and the third passage 37 exemplify the “second upstream side passage”. That is, the second upstream passage is configured as the above-described supercharging passage.

この場合、図15に示すように、第3通路37とサージタンク38との接続箇所を、バイパス通路40とサージタンク38との接続箇所に対して、気筒列方向の左側にオフセットすることで、バイパス通路40からサージタンク38へ流入するガスの流れと、第3通路37からサージタンク38へ流入するガスの流れとを相互に衝突させることなく、双方をスムースに流入させることができる。   In this case, as shown in FIG. 15, the connection portion between the third passage 37 and the surge tank 38 is offset to the left side in the cylinder row direction with respect to the connection portion between the bypass passage 40 and the surge tank 38. Both of the gas flow flowing into the surge tank 38 from the bypass passage 40 and the gas flow flowing into the surge tank 38 from the third passage 37 can smoothly flow into each other without colliding with each other.

また、過給機34を備えたエンジン1では、自然吸気のエンジンと比較して、ガスの吹き戻しに起因したプレイグの発生が懸念される。そのため、仮に、第3通路37とバイパス通路40との双方からガスが流入するように構成した場合、前述の如く、サージタンク38へガスをスムースに流入させつつ、プレイグの発生を抑制するような構成は、特に過給機34を備えたエンジン1において有効となる。   Further, in the engine 1 provided with the supercharger 34, there is a concern about the occurrence of pre-age due to gas blowback compared to a naturally aspirated engine. Therefore, if the gas is configured to flow from both the third passage 37 and the bypass passage 40, as described above, the gas is smoothly flowed into the surge tank 38 and the occurrence of pre-ignition is suppressed. The configuration is particularly effective in the engine 1 including the supercharger 34.

1 エンジン
10 エンジン本体
11 シリンダ(気筒)
11A 1番気筒(1組目の後発気筒)
11B 2番気筒(1組目の先発気筒)
11C 3番気筒(2組目の先発気筒)
11D 4番気筒(2組目の後発気筒)
17 第1ポート(吸気ポート)
18 第2ポート(吸気ポート)
21 吸気バルブ
23 吸気電動VVT(可変動弁機構)
30 吸気通路
32 スロットルバルブ
34 過給機(過給通路、第2の上流側通路)
35 第2通路(過給通路、第2の上流側通路)
36 インタークーラ(過給通路、第2の上流側通路)
37 第3通路(過給通路、第2の上流側通路)
38 サージタンク
39 独立通路
391 独立通路(第1の独立通路)
392 独立通路(第2の独立通路)
40 バイパス通路(上流側通路)
41 バイパスバルブ
44b 第1分岐通路
44c 第2分岐通路
1 Engine 10 Engine body 11 Cylinder
11A No. 1 cylinder (the first set of subsequent cylinders)
11B No. 2 cylinder (first cylinder of the first set)
11C 3rd cylinder (2nd set starting cylinder)
11D 4th cylinder (2nd set of succeeding cylinders)
17 First port (intake port)
18 Second port (intake port)
21 Intake Valve 23 Intake Electric VVT (Variable Valve Mechanism)
30 Intake passage 32 Throttle valve 34 Supercharger (supercharging passage, second upstream passage)
35 Second passage (supercharging passage, second upstream passage)
36 Intercooler (supercharged passage, second upstream passage)
37 third passage (supercharging passage, second upstream passage)
38 Surge tank 39 Independent passage 391 Independent passage (first independent passage)
392 Independent passage (second independent passage)
40 Bypass passage (upstream passage)
41 Bypass valve 44b First branch passage 44c Second branch passage

Claims (5)

列状に配置された複数の気筒を有し、該複数の気筒のそれぞれにおいて、所定の燃焼順に従って燃焼を行うよう構成されたエンジン本体と、
前記エンジン本体に設けられ、各々前記複数の気筒の各々に連通する複数の吸気ポートと、
各々前記吸気ポートの各々を開閉する複数の吸気バルブと、
前記複数の吸気バルブの開閉タイミングを変更する可変動弁機構と、を備え、
前記可変動弁機構は、前記エンジン本体の運転状態が所定の運転領域にあるときに、前記複数の吸気バルブの閉時期を圧縮行程中に設定するよう構成されている多気筒エンジンの吸気通路構造であって、
前記複数の吸気ポートの各々に接続された吸気通路を備え、
前記吸気通路は、
各々前記複数の吸気ポートの各々に接続された複数の独立通路と、
前記複数の吸気ポートの反気筒側端部に対して前記複数の独立通路を挟んで反対側に対向して配置されていると共に、前記複数の独立通路それぞれの上流端部が、対応する気筒の並ぶ順に従って列状に並んで接続されたサージタンクと、
下流端部が前記サージタンクに接続され、該サージタンクに対してガスを導入する上流側通路と、を有し、
前記複数の気筒のうち、燃焼順が前後し且つ気筒列方向に隣接した2つの気筒を、燃焼が発生する順に先発気筒及び後発気筒と呼称すると、前記上流側通路の下流端部と前記サージタンクとの接続箇所は、気筒列方向において、前記複数の独立通路のうち前記先発気筒に対応する独立通路の上流端部から、前記後発気筒に対応する独立通路の上流端部にかけての区間内に対向して設定されており、
前記上流側通路は、該上流側通路を流れるガスを、前記先発気筒と前記後発気筒とのうち、該後発気筒寄りに指向させるように形成されている
ことを特徴とする多気筒エンジンの吸気通路構造。
An engine body having a plurality of cylinders arranged in a row and configured to perform combustion in a predetermined combustion order in each of the plurality of cylinders;
A plurality of intake ports provided in the engine body, each communicating with each of the plurality of cylinders;
A plurality of intake valves each for opening and closing each of the intake ports;
A variable valve mechanism that changes the opening and closing timing of the plurality of intake valves,
The variable valve mechanism includes an intake passage structure for a multi-cylinder engine configured to set closing timings of the plurality of intake valves during a compression stroke when an operating state of the engine body is in a predetermined operating region. Because
An intake passage connected to each of the plurality of intake ports;
The intake passage is
A plurality of independent passages each connected to each of the plurality of intake ports;
The plurality of intake ports are disposed opposite to the opposite ends of the plurality of intake passages with the plurality of independent passages interposed therebetween, and the upstream ends of the plurality of independent passages are arranged on the corresponding cylinders. Surge tanks connected in line according to the order in which they are arranged,
A downstream end connected to the surge tank, and an upstream passage for introducing gas to the surge tank,
Of the plurality of cylinders, two cylinders whose combustion order is adjacent and adjacent in the cylinder row direction are referred to as a first cylinder and a second cylinder in the order in which combustion occurs. Is connected in the cylinder row direction in the section from the upstream end of the independent passage corresponding to the preceding cylinder to the upstream end of the independent passage corresponding to the succeeding cylinder in the plurality of independent passages. Is set as
The upstream-side passage is formed so as to direct the gas flowing through the upstream-side passage toward the succeeding cylinder of the preceding cylinder and the succeeding cylinder, and an intake passage for a multi-cylinder engine Construction.
請求項1に記載された多気筒エンジンの吸気通路構造において、
前記吸気通路は、前記上流側通路とは別に、下流端部が前記サージタンクに接続され、該サージタンクに対してガスを導入する第2の上流側通路を有し、
前記第2の上流側通路の下流端部と前記サージタンクとの接続箇所は、前記上流側通路の下流端部と前記サージタンクとの前記接続箇所に対して、気筒列方向にオフセットしている
ことを特徴とする多気筒エンジンの吸気通路構造。
In the multi-cylinder engine intake passage structure according to claim 1,
The intake passage, apart from the upstream passage, has a second upstream passage where a downstream end is connected to the surge tank and gas is introduced into the surge tank,
The connection location between the downstream end of the second upstream passage and the surge tank is offset in the cylinder row direction with respect to the connection location between the downstream end of the upstream passage and the surge tank. An intake passage structure for a multi-cylinder engine.
請求項2に記載された多気筒エンジンの吸気通路構造において、
前記第2の上流側通路は、ガスの流れ方向に沿って上流側から順に、過給機とインタークーラとが配設された過給通路として構成されている一方、
前記上流側通路は、前記第2の上流側通路において前記過給機よりも上流側から分岐し、且つ、該過給機及び前記インタークーラを迂回して前記サージタンクに接続されたバイパス通路として構成されている
ことを特徴とする多気筒エンジンの吸気通路構造。
In the multi-cylinder engine intake passage structure according to claim 2,
While the second upstream passage is configured as a supercharging passage in which a supercharger and an intercooler are arranged in order from the upstream side along the gas flow direction,
The upstream passage is a bypass passage that branches from the upstream side of the supercharger in the second upstream passage, and that bypasses the supercharger and the intercooler and is connected to the surge tank. An intake passage structure for a multi-cylinder engine, characterized by being configured.
請求項1〜3のいずれか1項に記載された多気筒エンジンの吸気通路構造において、
前記エンジン本体は、少なくとも、1組目の先発気筒および該先発気筒に対して気筒列方向に隣接し且つ燃焼順が後続する1組目の後続気筒と、2組目の先発気筒および該先発気筒に対して気筒列方向に隣接し且つ燃焼順が後続する2組目の後続気筒と、を有し、
前記上流側通路は、気筒列方向の一側から他側へ向かう方向に沿って延びた後、第1分岐通路と第2分岐通路とに分岐し、
前記第1分岐通路は、気筒列方向の一側から他側へ向かう方向に沿って延びた後、前記サージタンクにおいて、1組目の前記先発気筒に対応する独立通路の上流端部から、1組目の前記後発気筒に対応する独立通路の上流端部にかけての区間内に対向して接続され、
前記第2分岐通路は、気筒列方向の他側から一側へ向かう方向に沿って延びた後、前記サージタンクにおいて、2組目の前記先発気筒に対応する独立通路の上流端部から、2組目の前記後続気筒に対応する独立通路の上流端部にかけての区間内に対向して接続され、
前記第2分岐通路と前記サージタンクとの接続箇所は、前記第1分岐通路と前記サージタンクとの接続箇所と比較して、気筒列方向において前記後発気筒寄りに設定されている
ことを特徴とする多気筒エンジンの吸気通路構造。
The intake passage structure of the multi-cylinder engine according to any one of claims 1 to 3,
The engine body includes at least a first set of first cylinders, a first set of subsequent cylinders adjacent to the first cylinder in a cylinder row direction and having a subsequent combustion order, a second set of first cylinders, and the first cylinder A second set of subsequent cylinders adjacent to each other in the cylinder row direction and followed by the combustion order,
The upstream passage extends along a direction from one side to the other side in the cylinder row direction, and then branches into a first branch passage and a second branch passage,
The first branch passage extends along a direction from one side to the other side in the cylinder row direction, and then, from the upstream end portion of the independent passage corresponding to the first set of the first cylinders in the surge tank, 1 It is connected oppositely in the section to the upstream end of the independent passage corresponding to the subsequent cylinder of the set,
The second branch passage extends in a direction from the other side to the one side in the cylinder row direction, and then, in the surge tank, 2nd from the upstream end of the independent passage corresponding to the second set of the starting cylinders. Connected oppositely in the section to the upstream end of the independent passage corresponding to the subsequent cylinder of the set,
The connection location between the second branch passage and the surge tank is set closer to the succeeding cylinder in the cylinder row direction than the connection location between the first branch passage and the surge tank. Intake passage structure for a multi-cylinder engine.
請求項1〜4のいずれか1項に記載された多気筒エンジンの吸気通路構造において、
前記複数の吸気ポートは、前記複数の気筒のそれぞれにおいて、気筒列方向に沿って列状に並んだ第1ポート及び第2ポートを有し、
前記複数の独立通路は、前記複数の気筒のそれぞれにおいて、前記第1ポートに接続される第1の独立通路と、前記第2ポートに接続される第2の独立通路とを有し、
前記上流側通路と前記サージタンクとの接続箇所は、前記先発気筒に対応する前記第1及び第2の独立通路のうち、気筒列方向において前記後発気筒側に配設される一方の上流端部から、前記後発気筒に対応する前記第1及び第2の独立通路のうち、気筒列方向において前記先発気筒側に配設される一方の上流端部にかけての区間内に対向して設定されている
ことを特徴とする多気筒エンジンの吸気通路構造。
In the intake passage structure of the multi-cylinder engine according to any one of claims 1 to 4,
The plurality of intake ports each have a first port and a second port arranged in a row along the cylinder row direction in each of the plurality of cylinders;
The plurality of independent passages include a first independent passage connected to the first port and a second independent passage connected to the second port in each of the plurality of cylinders,
The upstream passage and the surge tank are connected at one upstream end of the first and second independent passages corresponding to the preceding cylinder, which is disposed on the subsequent cylinder side in the cylinder row direction. From among the first and second independent passages corresponding to the succeeding cylinder, they are set to face each other in a section extending from one upstream end disposed on the preceding cylinder side in the cylinder row direction. An intake passage structure for a multi-cylinder engine.
JP2017067677A 2017-03-30 2017-03-30 Intake passage structure of multi-cylinder engine Active JP6477763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067677A JP6477763B2 (en) 2017-03-30 2017-03-30 Intake passage structure of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067677A JP6477763B2 (en) 2017-03-30 2017-03-30 Intake passage structure of multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2018168781A JP2018168781A (en) 2018-11-01
JP6477763B2 true JP6477763B2 (en) 2019-03-06

Family

ID=64020112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067677A Active JP6477763B2 (en) 2017-03-30 2017-03-30 Intake passage structure of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP6477763B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283186B2 (en) * 2019-04-04 2023-05-30 マツダ株式会社 Engine combustion control device
JP7283187B2 (en) * 2019-04-04 2023-05-30 マツダ株式会社 Engine combustion control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215918A (en) * 1983-05-23 1984-12-05 Mazda Motor Corp Intake apparatus of multicylinder engine
JP3551435B2 (en) * 1992-09-29 2004-08-04 マツダ株式会社 Engine with turbocharger
JP3603499B2 (en) * 1996-09-30 2004-12-22 マツダ株式会社 Engine with mechanical supercharger
JP6295929B2 (en) * 2014-11-25 2018-03-20 アイシン精機株式会社 Intake device for internal combustion engine

Also Published As

Publication number Publication date
JP2018168781A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6597737B2 (en) Intake / exhaust device for vehicle engine
JP6428827B2 (en) Engine intake passage structure
JP5050917B2 (en) Supercharged engine system
JP2009097335A (en) Supercharging device of engine
JP6477763B2 (en) Intake passage structure of multi-cylinder engine
JP2009097404A (en) Supercharging device for engine
JP6544381B2 (en) Multi-cylinder engine intake system
JP5262863B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP6614221B2 (en) Control device for internal combustion engine
JP6477764B2 (en) Intake passage structure of multi-cylinder engine
WO2018180002A1 (en) Multi-cylinder engine air-intake device
JP5262862B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP2009103041A (en) Engine with supercharger
JP6551462B2 (en) Multi-cylinder engine intake structure
JP6551472B2 (en) Engine intake passage structure
JP6835231B2 (en) Engine intake system
JP6766774B2 (en) Engine side structure
JP6544379B2 (en) Multi-cylinder engine intake system
JP6544380B2 (en) Multi-cylinder engine intake system
JP6504201B2 (en) Intake temperature sensor mounting structure for a supercharged engine
JP6558390B2 (en) Intake device for turbocharged engine
JP6849093B2 (en) Engine with supercharger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150