JPS6026185Y2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPS6026185Y2
JPS6026185Y2 JP7794680U JP7794680U JPS6026185Y2 JP S6026185 Y2 JPS6026185 Y2 JP S6026185Y2 JP 7794680 U JP7794680 U JP 7794680U JP 7794680 U JP7794680 U JP 7794680U JP S6026185 Y2 JPS6026185 Y2 JP S6026185Y2
Authority
JP
Japan
Prior art keywords
valve
intake passage
main intake
intake
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7794680U
Other languages
Japanese (ja)
Other versions
JPS572215U (en
Inventor
英隆 野平
英昭 松井
昌之 古谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP7794680U priority Critical patent/JPS6026185Y2/en
Publication of JPS572215U publication Critical patent/JPS572215U/ja
Application granted granted Critical
Publication of JPS6026185Y2 publication Critical patent/JPS6026185Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は内燃機関の吸気装置に関する。[Detailed explanation of the idea] Industrial applications The present invention relates to an intake system for an internal combustion engine.

従来の技術 吸気弁の開弁時期を遅くして閉弁時期を速めると機関低
負荷運転時に・は高い充填効率を確保できるので出力を
向上することができると共に弁重合期間が短かくなるた
めに残留ガス割合が減少し、それによって安定した燃焼
を得ることができる。
Conventional technology If the opening timing of the intake valve is delayed and the valve closing timing is accelerated, high charging efficiency can be ensured during low load engine operation, which can improve output and shorten the valve polymerization period. The residual gas proportion is reduced, thereby making it possible to obtain stable combustion.

しかしながら機関高速高負荷運転時には充填効率が悪く
なるために出力が低下してしまう。
However, when the engine is operated at high speed and high load, the charging efficiency deteriorates and the output decreases.

これとは反対に吸気弁の開弁時期を速めて閉弁時期を遅
くすると機関高速高負荷運転時には高い充填効率を確保
できるので高出力を得ることができるが機関低負荷運転
時には充填効率が悪くなるので出力が低下し、更に弁重
合期間が長くなるために残留ガス割合が増大し、それに
よって安定した燃焼を得るのが困難となる。
On the contrary, if the opening timing of the intake valve is accelerated and the valve closing timing is delayed, high charging efficiency can be ensured when the engine is operating at high speed and high load, resulting in high output, but charging efficiency is poor when the engine is operating at low load. As a result, the output decreases, and since the valve polymerization period becomes longer, the proportion of residual gas increases, making it difficult to obtain stable combustion.

従って従来、機関の全運転領域に亘ってできるだけ高い
充填効率を確保できると共に安定した燃焼を得られるよ
うに吸気弁の開弁時期並びに閉弁時期か設定されている
Therefore, conventionally, the opening timing and closing timing of the intake valve have been set so as to ensure as high a charging efficiency as possible over the entire operating range of the engine and to obtain stable combustion.

考案が解決しようとする問題点 しかしながら今日では燃料消費率を更に向上すると共に
更に高出力が要求されており、従ってより一層低回転で
運転しても安定した燃焼が得られ、しかも十分高い出力
が得られることが必要となっできている。
Problems that the invention aims to solveHowever, today there is a need to further improve the fuel consumption rate as well as higher output, so it is possible to obtain stable combustion even when operating at lower rotation speeds, and to achieve sufficiently high output. It has become necessary to be able to obtain it.

このような必要性からの吸気弁の開弁時期並びに閉弁時
期を機関負荷の変化に応じて自動的に変える可変バルブ
タイミング機構等の研究がなされているがこのような可
変バルブタイミング機構は信頼性に今一つ乏しいところ
があるために実用化するには至っていない。
In response to this need, research has been conducted into variable valve timing mechanisms that automatically change the intake valve opening and closing timings in response to changes in engine load, but such variable valve timing mechanisms are not reliable. However, it has not yet been put into practical use due to its poor performance.

本考案はこのような事実に鑑みて従来よりも一層低い回
転数でもって安定した燃焼を確保できると共に十分高い
出力を得ることのできる内燃機関を提供することにある
In view of these facts, it is an object of the present invention to provide an internal combustion engine that is capable of ensuring stable combustion at a lower rotational speed than conventional engines, and is also capable of obtaining a sufficiently high output.

問題点を解決するための手段 本考案に係る内燃機関の吸気装置は、主吸気弁と、この
主吸気弁より開口面積の小さな副吸気弁とを具備し、機
関負荷を制御する第1スロツトル弁後流の吸気通路を主
吸気通路と、この主吸気通路よりも断面積が小さな副吸
気通路とに2分割して主吸気通路を上記主吸気弁を介し
て燃焼室内に連結すると共に副吸気通路を副吸気弁を介
して燃焼室内に連結するものである。
Means for Solving the Problems An intake system for an internal combustion engine according to the present invention includes a main intake valve and a sub-intake valve whose opening area is smaller than that of the main intake valve, and includes a first throttle valve for controlling engine load. The downstream intake passage is divided into a main intake passage and a sub-intake passage whose cross-sectional area is smaller than that of the main intake passage, and the main intake passage is connected to the combustion chamber via the main intake valve, and the sub-intake passage is connected to the combustion chamber through the main intake valve. is connected into the combustion chamber via an auxiliary intake valve.

そして更に上記主吸気通路内に、全閉時に一側縁部が副
吸気通路の入口部に近接し、かつ他側縁部が一側縁部よ
りも上記第1スロツトル弁側に位置する第2スロツトル
弁を設けると共に、機関の運転状態に応じてこの第2ス
ロツトル弁の開閉制御をする第2スロツトル弁制御装置
を具備しており上記第2スロツトル弁は吸入空気量が大
きなときに開弁するように制御される。
Further, a second throttle valve is disposed within the main intake passage, the edge of one side of which is close to the inlet of the sub-intake passage when fully closed, and the edge of the other side of which is located closer to the first throttle valve than the edge of the other side. The engine is equipped with a throttle valve and a second throttle valve control device that controls the opening and closing of the second throttle valve depending on the operating state of the engine, and the second throttle valve opens when the amount of intake air is large. controlled as follows.

実施例 以下、添付図面を参照して本考案を詳細に説明する。Example Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダヘッド、4は燃焼室、5は燃焼室内に設け
られた点火栓、6は排気弁、7は排気ポートを夫々示す
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder head, 4 is a combustion chamber, 5 is a spark plug provided in the combustion chamber, 6 is an exhaust valve, and 7 is an exhaust port.

なお、第1図においてA、 B、 C,Dは夫々1番気
筒、2番気筒、3番気筒、4番気筒を示す。
In FIG. 1, A, B, C, and D indicate the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder, respectively.

第1図に示されるように各気筒A、 B、 C,Dは夫
々大型の主吸気弁10と、この主吸気弁10を介して燃
焼室4内に連結された主吸気ポート11と、小型の副吸
気弁12と、この副吸気弁12を介して燃焼室4内に連
結されかつ主吸気ポート11よりも小さな断面積を有す
る副吸気ポート13とを具備する。
As shown in FIG. 1, each of the cylinders A, B, C, and D has a large main intake valve 10, a main intake port 11 connected to the combustion chamber 4 via the main intake valve 10, and a small main intake port 11 connected to the combustion chamber 4 through the main intake valve 10. , and a sub-intake port 13 connected to the combustion chamber 4 via the sub-intake valve 12 and having a smaller cross-sectional area than the main intake port 11.

なお、副吸気ポート13の断面積は主吸気ポート11の
断面積の30パーセントから60パーセントの範囲に設
定されている。
Note that the cross-sectional area of the sub-intake port 13 is set within a range of 30% to 60% of the cross-sectional area of the main intake port 11.

各主吸気ポート11並びに副吸気ポート13は対応する
枝管30を介してサージタンク31に連結され、一方サ
ージタンク31はアクセルペダルに連結された第1スロ
ツトル弁32並びにエアフローメータ33を介してエア
クリーナ(図示せず)に連結される。
Each main intake port 11 and auxiliary intake port 13 are connected to a surge tank 31 via a corresponding branch pipe 30, while the surge tank 31 is connected to an air cleaner via a first throttle valve 32 connected to an accelerator pedal and an air flow meter 33. (not shown).

第2図に示されるように各枝管30の上方部分には枝管
30内に燃料を噴射するための燃料噴射弁34が取付け
られ、この燃料噴射弁34からは吸入空気量に応じて燃
料が噴射される。
As shown in FIG. 2, a fuel injection valve 34 for injecting fuel into the branch pipe 30 is attached to the upper part of each branch pipe 30, and fuel is supplied from the fuel injection valve 34 according to the amount of intake air. is injected.

一方、各枝管30は入口部35と、この入口部35から
分岐された主吸気通路36並びに副吸気通路37からな
り、第1図に示されるように主吸気通路36と入口部3
5とほぼ一直線上に配置される。
On the other hand, each branch pipe 30 consists of an inlet part 35, a main intake passage 36 and a sub-intake passage 37 branched from this inlet part 35, and as shown in FIG.
It is placed almost in line with 5.

なお燃料噴射弁34は、第2図に示されるように噴射孔
が副吸気通路37の入口部側に向くように、傾斜して枝
管30に取付けられる。
The fuel injection valve 34 is attached to the branch pipe 30 at an angle so that the injection hole faces toward the inlet of the sub-intake passage 37, as shown in FIG.

各主吸気通路36の入口部には夫々第2スロツトル弁1
6が配置され、これら第2スロツトル弁16は第1図の
1香気筒Aにおいて符示したように全閉時においてその
一側縁部38が副吸気通路37の入口部内端縁39と整
列腰一方他側縁部40が一側縁部38よりも第1スロツ
トル弁32に近い側に位置するように配置される。
A second throttle valve 1 is provided at the inlet of each main intake passage 36, respectively.
6 are arranged, and these second throttle valves 16 have one side edge 38 aligned with the inner edge 39 of the inlet part of the auxiliary intake passage 37 when fully closed, as shown in the first aroma cylinder A in FIG. On the other hand, the other side edge 40 is located closer to the first throttle valve 32 than the one side edge 38 .

各第2スロツトル弁16は気筒の配列方向に対して垂直
に延びるスロットル軸17を有し、このスロットル軸1
7の下端部にはアーム18が固着される。
Each second throttle valve 16 has a throttle shaft 17 extending perpendicularly to the direction in which the cylinders are arranged.
An arm 18 is fixed to the lower end of 7.

1香気筒Aのスロットル軸17に固着されたアーム41
の一端部はロッド42を介して2番気筒Bのスロットル
軸17に固着されたアーム18に連結され、アーム41
の他端部はロッド19に連結される。
1 An arm 41 fixed to the throttle shaft 17 of the incense cylinder A
One end is connected to the arm 18 fixed to the throttle shaft 17 of the second cylinder B via the rod 42, and the arm 41
The other end is connected to the rod 19.

一方、3香気筒Cのスロットル軸17に固着されたアー
ム43の一端部はロッド44を介して4 香気MDのス
ロットル軸17に固着されたアーム18に連結され、ア
ーム43の他端部ハロラド19に連結される。
On the other hand, one end of the arm 43 fixed to the throttle shaft 17 of the third scent cylinder C is connected via a rod 44 to an arm 18 fixed to the throttle shaft 17 of the fourth scent MD, and the other end of the arm 43 is connected to.

このロッド19は電磁制御弁45に連結される。This rod 19 is connected to an electromagnetic control valve 45.

一方、電磁制御弁45は機関回転数センサ46の出力信
号に基いて電子制御回路47によって制御される。
On the other hand, the electromagnetic control valve 45 is controlled by an electronic control circuit 47 based on an output signal from an engine speed sensor 46.

機関回転数が所定回転数よりも低いとき電磁制御弁45
は消勢されており、このとき第1図に示すように第2ス
ロツトル弁16は全閉状態にある。
When the engine speed is lower than the predetermined speed, the electromagnetic control valve 45
is deenergized, and at this time, the second throttle valve 16 is in a fully closed state as shown in FIG.

従ってこのときサージタンク31内の空気は燃料噴射弁
34から噴射された燃料と共に副吸気弁12を介して燃
焼室4内に供給される。
Therefore, at this time, the air in the surge tank 31 is supplied into the combustion chamber 4 via the auxiliary intake valve 12 together with the fuel injected from the fuel injection valve 34.

第1図かられかるように各第2スロツトル弁16は入口
部35から副吸気通路37に向かう混合気流に抵抗を与
えることなく案内するように配置されているのでより一
層高い充填効率を確保することができる。
As can be seen from FIG. 1, each of the second throttle valves 16 is arranged so as to guide the air mixture flowing from the inlet portion 35 toward the sub-intake passage 37 without providing any resistance, thereby ensuring even higher filling efficiency. be able to.

一方、機関回転数が所定回転数よりも高くなると電磁制
御弁45は付勢され、その結果ロッド19が電磁制御弁
45から突出するために第2スロツトル弁16が全開す
る。
On the other hand, when the engine speed becomes higher than the predetermined speed, the electromagnetic control valve 45 is energized, and as a result, the rod 19 protrudes from the electromagnetic control valve 45, so that the second throttle valve 16 is fully opened.

前述したように入口部35と主吸気通路36はほぼ一直
線上に配置されているので吸入空気は枝管30内におい
て大きな流れ抵抗を受けることなく主に主吸気弁10を
介して燃焼室4内に供給され、斯くして高い充填効率を
確保できることになる。
As mentioned above, since the inlet portion 35 and the main intake passage 36 are arranged almost in a straight line, the intake air flows mainly through the main intake valve 10 into the combustion chamber 4 without experiencing large flow resistance in the branch pipe 30. In this way, high filling efficiency can be ensured.

第3図に主吸気弁10と副吸気弁12の開弁期間を示す
FIG. 3 shows the opening periods of the main intake valve 10 and the auxiliary intake valve 12.

第3図において縦軸Fは弁揚程を示し、横軸θはクラン
ク角を示す。
In FIG. 3, the vertical axis F shows the valve lift, and the horizontal axis θ shows the crank angle.

また第3図において曲線には主吸気弁10、曲線りは副
吸気弁12、曲線Mは排気弁6を夫々示す。
Further, in FIG. 3, a curved line indicates the main intake valve 10, a curved line indicates the sub-intake valve 12, and a curved line M indicates the exhaust valve 6.

本考案では第3図に示すように主吸気弁10の開弁時期
は上死点前15°から200の範囲に設定され、主吸気
弁10の閉弁時期は下死点後50°から60°の範囲に
設定されている。
In the present invention, as shown in Fig. 3, the opening timing of the main intake valve 10 is set in the range of 15° to 200° before top dead center, and the closing timing of the main intake valve 10 is set in the range of 50° to 60° after bottom dead center. It is set in the range of °.

一方、これに対して副吸気弁12の開弁時期は上死点前
0°から10’の範囲に設定され、副吸気弁12の閉弁
時期は下死点後10°から30°の範囲に設定されてい
る。
On the other hand, the opening timing of the auxiliary intake valve 12 is set in the range of 0° to 10' before the top dead center, and the closing timing of the auxiliary intake valve 12 is set in the range of 10° to 30° after the bottom dead center. is set to .

更に、本考案では第3図に示されるように副吸気弁12
の最大弁揚程の50パーセントから70パーセントに設
定されている。
Furthermore, in the present invention, as shown in FIG.
It is set at 50% to 70% of the maximum valve lift.

吸入空気量が少ないときには前述したように第2スロツ
トル弁16が主マニホルド枝管15を全閉する。
When the amount of intake air is small, the second throttle valve 16 fully closes the main manifold branch pipe 15 as described above.

第3図かられかるように吸気行程が開始されるとまず始
めに主吸気弁10が開弁するが上述のように第2スロツ
トル弁16が全閉状態にあるために枝管30内の混合気
が主吸気弁10を介して燃焼室4内に供給されることが
なく、副吸気弁12が開弁して始めて枝管30内の混合
気が副吸気弁12を介して燃焼室4内に供給される。
As shown in FIG. 3, when the intake stroke starts, the main intake valve 10 opens first, but as mentioned above, since the second throttle valve 16 is fully closed, the mixture in the branch pipe 30 Air is not supplied into the combustion chamber 4 via the main intake valve 10, and the air-fuel mixture in the branch pipe 30 is not supplied into the combustion chamber 4 via the auxiliary intake valve 12 until the auxiliary intake valve 12 opens. supplied to

前述したように副吸気ポート13の断面積は主吸気ポー
ト11の断面積に比してはるかに小さく、斯くして副吸
気ポート13内を高速度で流れるのでこの間に燃料の気
化が促進される。
As mentioned above, the cross-sectional area of the sub-intake port 13 is much smaller than the cross-sectional area of the main intake port 11, and thus the fuel flows at a high speed within the sub-intake port 13, promoting vaporization of fuel during this time. .

次いで混合気は燃焼室4内に高速度で流入するために燃
焼室4内強力な乱れが発生せしめられる。
Then, the air-fuel mixture flows into the combustion chamber 4 at a high velocity, causing strong turbulence within the combustion chamber 4.

吸気行程末期には副吸気弁12が閉弁しても主吸気弁1
0が開弁しているが第2スロツトル弁16が全閉状態に
あるので燃焼室4内から主吸気ポート11内に吹返えさ
れる混合気量は少量であり、斯くして高い充填効率を確
保することができる。
At the end of the intake stroke, even if the sub-intake valve 12 closes, the main intake valve 1
0 is open, but the second throttle valve 16 is fully closed, so the amount of air-fuel mixture blown back from the combustion chamber 4 into the main intake port 11 is small, thus achieving high charging efficiency. can be secured.

この混合気の吹返し量を少なくするために第2スロツト
ル弁16をできるだけ主吸気弁10の近くに配置するこ
とが好ましい。
In order to reduce the amount of air-fuel mixture blown back, it is preferable to arrange the second throttle valve 16 as close to the main intake valve 10 as possible.

このように吸入空気量が少ないときには燃料に気化が促
進され、燃焼室内に強力な乱れが発生せしめられ、しか
も弁重合期間が短かくて残留ガス割合が少ないために安
定した燃焼が確保できる。
In this way, when the amount of intake air is small, vaporization of the fuel is promoted and strong turbulence is generated within the combustion chamber.Moreover, since the valve polymerization period is short and the residual gas proportion is small, stable combustion can be ensured.

また、充填効率が高くなるので高出力を得ることができ
る。
Furthermore, since the filling efficiency is increased, high output can be obtained.

一方、吸入空気量が増大すると前述したように第2スロ
ツトル弁16が全開せしめられるので吸気マニホルド8
内の混合気は主吸気弁10並びに副吸気弁12の双方を
介して燃焼室4内は供給される。
On the other hand, when the amount of intake air increases, the second throttle valve 16 is fully opened as described above, so that the intake manifold 8
The air-fuel mixture in the combustion chamber 4 is supplied to the combustion chamber 4 through both the main intake valve 10 and the auxiliary intake valve 12.

第3図かられかるように主吸気弁10の開弁時期はいわ
ゆる高速型に設定されているので吸入空気量の多い高速
高負荷運転時には高い充填効率を確保でき、斯くして高
出力を得ることができる。
As can be seen from Figure 3, the opening timing of the main intake valve 10 is set to the so-called high-speed type, so high filling efficiency can be ensured during high-speed, high-load operation with a large amount of intake air, thus achieving high output. be able to.

第4図は機関出力と回転数との関係を示している。FIG. 4 shows the relationship between engine output and rotational speed.

第4図にいて縦軸Pは出力を示し、横軸Nは回転数を示
す。
In FIG. 4, the vertical axis P shows the output, and the horizontal axis N shows the rotation speed.

なお、第4図において実線は副吸気弁12のみを介して
燃焼室4内に混合気を供給するようにした場合を示し、
破線は第2スロツトル弁16を全開状態に保持して副吸
気弁12並びに主吸気弁10の双方を介して燃焼室4内
に混合気を供給するようにした場合を示す。
In addition, in FIG. 4, the solid line indicates the case where the air-fuel mixture is supplied into the combustion chamber 4 only via the sub-intake valve 12,
The broken line shows the case where the second throttle valve 16 is kept fully open and the air-fuel mixture is supplied into the combustion chamber 4 through both the auxiliary intake valve 12 and the main intake valve 10.

従って第4図から回転数N。Therefore, from Fig. 4, the number of revolutions is N.

以下では第2スロツトル弁16を全閉し、回転数N。In the following, the second throttle valve 16 is fully closed and the rotational speed is N.

以上では第2スロツトル弁16を全開させるのが好まし
いことがわかる。
It can be seen from the above that it is preferable to fully open the second throttle valve 16.

なお、この実施例では機関始動時に燃料噴射弁34から
噴射された燃料が燃焼室4内に容易に導びかれるように
第2図で破線で示す如く副吸気ポート13は主吸気ポー
ト11よりも下方に配置されている。
In this embodiment, the auxiliary intake port 13 is located closer to the main intake port 11 as shown by the broken line in FIG. placed below.

考案の効果 以上述べたように本考案によれば低負荷運転時における
弁重合期間を短かくできるので残留排気ガス割合を低下
できる。
Effects of the Invention As described above, according to the present invention, the valve polymerization period during low-load operation can be shortened, so that the proportion of residual exhaust gas can be reduced.

その結果、低負荷運転時、特にアイドリンク運転時にお
ける燃焼を改善することができるのでアイドリング回転
数を低くすることができ、その結果燃料消費率を向上す
ることができる。
As a result, it is possible to improve combustion during low-load operation, especially during idling operation, so that the idling speed can be lowered, and as a result, the fuel consumption rate can be improved.

更に、低負荷運転時において高い充填効率を確保できる
ので低速出力を従来に比べて犬山に向上せしめることが
できる。
Furthermore, since high charging efficiency can be ensured during low-load operation, low-speed output can be significantly improved compared to the conventional system.

また、低負荷運転時には燃料の気化が促進され、更に燃
焼室内には強力な乱れが発生するので安定した燃焼を確
保することができる。
Furthermore, during low-load operation, fuel vaporization is promoted and strong turbulence is generated within the combustion chamber, so stable combustion can be ensured.

一方、高負荷運転時には主吸気弁からも混合気が供給さ
れるので高速出力も確保できることになる。
On the other hand, during high-load operation, air-fuel mixture is also supplied from the main intake valve, so high-speed output can be ensured.

また本考案によれば、第2スロツトル弁の全閉時にこの
第2スロツトル弁の一側縁部が副吸気通路の入口部に近
接し、かつ他側縁部が一側縁部よりも第1スロツトル弁
側に位置するようになっているので、第1スロツトル弁
を通過した混合気は第2スロツトル弁に案内されてスム
ーズに副吸気通路内に流入し、より一層高い充填率を得
ることができる。
Further, according to the present invention, when the second throttle valve is fully closed, one side edge of the second throttle valve is closer to the inlet of the auxiliary intake passage, and the other side edge is closer to the first side edge than the one side edge. Since it is located on the throttle valve side, the air-fuel mixture that has passed through the first throttle valve is guided to the second throttle valve and smoothly flows into the auxiliary intake passage, making it possible to obtain an even higher filling rate. can.

またこの時、燃料噴射弁が下方を向いていることにより
、燃料は効率よく副吸気通路内に流入し、燃焼室内にス
ムーズに導かれる。
At this time, since the fuel injection valve faces downward, fuel efficiently flows into the sub-intake passage and is smoothly guided into the combustion chamber.

したがって良好な燃焼を得ることができる。Therefore, good combustion can be obtained.

【図面の簡単な説明】 第1図は本考案に係る内燃機関の断面平面図、第2図は
第1図の側面断面図、第3図は主吸気弁並びに副吸気弁
の開弁時期を示すグラフ、第4図は機関出力と回転数と
の関係を示すグラフである。 4・・・・・・燃焼室、6・・・・・・排気弁、10・
・・・・・主吸気弁、11・・・・・・主吸気ポート、
12・・・・・・副吸気弁、13・・・・・・副吸気通
路、16・・・・・・第2スロツトル弁。
[Brief Description of the Drawings] Figure 1 is a sectional plan view of the internal combustion engine according to the present invention, Figure 2 is a side sectional view of Figure 1, and Figure 3 shows the opening timing of the main intake valve and sub-intake valve. The graph shown in FIG. 4 is a graph showing the relationship between engine output and rotation speed. 4... Combustion chamber, 6... Exhaust valve, 10.
...Main intake valve, 11...Main intake port,
12...Sub-intake valve, 13...Sub-intake passage, 16...Second throttle valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 主吸気弁と、該主吸気弁より開口面積の小さな副吸気弁
とを具備し、機関負荷を制御する第1スロツトル弁後流
の吸気通路を主吸気通路と、該主吸気通路よりも断面積
が小さく、かつ該主吸気通路よりも下方に位置する副吸
気通路とに2分割して、該主吸気通路を上記主吸気弁を
介して燃焼室内に連結すると共に該副吸気通路を副吸気
弁を介して該燃焼室内に連結し、かつ上記吸気通路の主
吸気通路と副吸気通路との分岐部分より上流側であって
上記吸気通路の上方部分に、該副吸気通路の入口部側に
噴射孔を向けた燃料噴射弁を設け、更に上記主吸気通路
内に、全閉時に一側縁部が副吸気通路の入口部に近接し
、かつ他側縁部が該−側縁部よりも上記第1スロツトル
弁側に位置する第2スロツトル弁を設けると共に、機関
の運転状態に応じて該第2スロツトル弁の開閉制御をす
る第2スロツトル弁制御装置を具備し、吸入空気量が大
きなときに上記第2スロツト・ル弁を開弁するようにし
た内燃機関の吸気装置。
It is equipped with a main intake valve and a sub-intake valve whose opening area is smaller than that of the main intake valve, and an intake passage downstream of the first throttle valve that controls the engine load is defined as the main intake passage and has a cross-sectional area smaller than that of the main intake passage. The main intake passage is connected to the combustion chamber via the main intake valve, and the auxiliary intake passage is connected to the combustion chamber via the main intake valve. The injection is connected to the combustion chamber via the combustion chamber, and is injected into the upper part of the intake passage, which is upstream of the branching part of the intake passage between the main intake passage and the auxiliary intake passage, and toward the entrance of the auxiliary intake passage. A fuel injection valve is provided in the main intake passage with the hole facing toward the main intake passage. A second throttle valve located on the first throttle valve side is provided, and a second throttle valve control device is provided to control the opening and closing of the second throttle valve according to the operating state of the engine, and when the amount of intake air is large. An intake system for an internal combustion engine, wherein the second throttle valve is opened.
JP7794680U 1980-06-06 1980-06-06 Internal combustion engine intake system Expired JPS6026185Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7794680U JPS6026185Y2 (en) 1980-06-06 1980-06-06 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7794680U JPS6026185Y2 (en) 1980-06-06 1980-06-06 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS572215U JPS572215U (en) 1982-01-07
JPS6026185Y2 true JPS6026185Y2 (en) 1985-08-07

Family

ID=29440484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7794680U Expired JPS6026185Y2 (en) 1980-06-06 1980-06-06 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS6026185Y2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982523A (en) * 1982-10-30 1984-05-12 Mazda Motor Corp Intake apparatus of engine
JPS5982522A (en) * 1982-10-30 1984-05-12 Mazda Motor Corp Intake apparatus of engine
JPS5993926A (en) * 1982-11-19 1984-05-30 Honda Motor Co Ltd Multicylinder type internal-combustion engine
JPS59109437A (en) * 1982-12-13 1984-06-25 Mitsubishi Agricult Mach Co Ltd Working equipment utilizing crawler type travel working machine associated with engine
JPS6027710A (en) * 1983-07-25 1985-02-12 Mazda Motor Corp Controller of valve timing of engine
JPS60153423A (en) * 1984-01-23 1985-08-12 Mazda Motor Corp Air intake equipment of engine
JPS60159334A (en) * 1984-01-30 1985-08-20 Mazda Motor Corp Suction device for engine
JPS60153422A (en) * 1984-01-23 1985-08-12 Mazda Motor Corp Air intake equipment of engine
JPS6125276U (en) * 1984-07-23 1986-02-14 株式会社 ナムコ running vehicle
JPH0718346B2 (en) * 1985-05-07 1995-03-01 ヤマハ発動機株式会社 Intake device for automobile multi-cylinder engine
JPH076395B2 (en) * 1985-11-08 1995-01-30 トヨタ自動車株式会社 Internal combustion engine intake system
US5429086A (en) * 1994-02-14 1995-07-04 Cummins Engine Company, Inc. Shared runner intake ports for I.C. engine

Also Published As

Publication number Publication date
JPS572215U (en) 1982-01-07

Similar Documents

Publication Publication Date Title
US4523560A (en) Intake device of an internal combustion engine
US5937821A (en) Control apparatus for an in-cylinder injection type internal combustion engine
JPH0235133B2 (en)
JPS6026185Y2 (en) Internal combustion engine intake system
JPS5845574B2 (en) Internal combustion engine intake passage device
US10584649B2 (en) Control device for internal combustion engine
JPS5845573B2 (en) Internal combustion engine intake passage device
JP2662799B2 (en) Engine intake control device
JP3985419B2 (en) Control device for internal combustion engine
JP2620259B2 (en) Engine intake system
JP2577564B2 (en) Engine valve timing control device
JPH03199627A (en) Intake air device for engine
JPS5830095Y2 (en) Internal combustion engine intake passage structure
JPH10274069A (en) Cylinder injection type engine with mechanical supercharger
JP2577563B2 (en) Engine with mechanical supercharger
JPH1077870A (en) Engine with supercharger
JPS5941293Y2 (en) Internal combustion engine with supercharger
JP2587835B2 (en) Scavenging device for supercharged engine
JPS63159618A (en) Intake air device for engine
JPS60125723A (en) Intake apparatus for internal combustion engine
JPS597539Y2 (en) Double intake internal combustion engine
JPS6343383Y2 (en)
JPH0415935Y2 (en)
JP3328747B2 (en) Engine control device
JPS5941294Y2 (en) Internal combustion engine with supercharger