JPS60153422A - Air intake equipment of engine - Google Patents

Air intake equipment of engine

Info

Publication number
JPS60153422A
JPS60153422A JP59010647A JP1064784A JPS60153422A JP S60153422 A JPS60153422 A JP S60153422A JP 59010647 A JP59010647 A JP 59010647A JP 1064784 A JP1064784 A JP 1064784A JP S60153422 A JPS60153422 A JP S60153422A
Authority
JP
Japan
Prior art keywords
intake
passage
intake passage
engine
revolutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59010647A
Other languages
Japanese (ja)
Other versions
JPH0578646B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Junzo Sasaki
潤三 佐々木
Kazuhiko Ueda
和彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59010647A priority Critical patent/JPS60153422A/en
Priority to US06/693,297 priority patent/US4617897A/en
Publication of JPS60153422A publication Critical patent/JPS60153422A/en
Publication of JPH0578646B2 publication Critical patent/JPH0578646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0257Rotatable plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve the power of an engine in a high rotational range by the great intake air inertia effect by enabling variation in length of an intake passage in addition to enlargint the tuning range of said inertia effect by the chang- over of intake passage area. CONSTITUTION:When a number of revolutions of an engine reaches the primary specified number of revolutions N1, a change-over means 9 is driven to open a change-over valve 8. When the number of revolutions thereof is low and below the specified number N1, the primary suction passage 3a only is opened to supply intake air while when the number of revolutions is high and exceeds the specified number of revolutions N1, the secondary suction passage 3b as well as the primary suction passage 3a is opened to supply intake air. When the primary suction passage 3a only is opened and the number of revolutions is N1, the full throttle torque reaches a peak. When the number of revolutions exceeds number N2 at which the full throttle torque reaches a peak with both primary and secondary intake passages 3a and 3b opened, a driving means 20 is driven so as to shorten the length of the intake passage in accompany of increase in speed of the engine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に、吸気系の
気柱振動と吸気期間との同調による慣性過給を利用して
出力の向上を図るようにしたエンジンの吸気装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine intake system, and in particular, to improving output by utilizing inertia supercharging by synchronizing the air column vibration of the intake system with the intake period. The present invention relates to an improvement of an engine intake system.

(従来技術) 一般に、吸気管内の流れはいわゆる脈動流で、吸気弁が
開き吸入行程が始まると、シリンダ内に発生する負圧の
ために吸気管内気柱は加速されシリンダ内に流れ込む。
(Prior Art) Generally, the flow in the intake pipe is a so-called pulsating flow, and when the intake valve opens and the intake stroke begins, the air column in the intake pipe is accelerated due to the negative pressure generated in the cylinder and flows into the cylinder.

この間シリンダ内圧力および容積は、ピストン下降運動
と共に変化し、同時に吸気管内圧力および速度も漸次時
間的にも場所的にも変化する。シリンダで発生した圧力
波は吸気管を伝わり、サージタンク部で反射されてシリ
ンダに戻るものであって、吸気系においてはこの現象が
繰り返されている。上記ピストンの下降によって生じる
圧力変化の振動数と、吸気管およびシリンダ容積で決ま
る吸気系の固有振動数とを同調させると吸気慣性効果が
得られて、体積効率を向上させることができ高出力化が
実現できることはJ:り知られている。
During this time, the cylinder internal pressure and volume change with the downward movement of the piston, and at the same time, the intake pipe internal pressure and speed also gradually change both in time and location. The pressure waves generated in the cylinder propagate through the intake pipe, are reflected at the surge tank, and return to the cylinder, and this phenomenon is repeated in the intake system. By synchronizing the frequency of the pressure change caused by the downward movement of the piston with the natural frequency of the intake system determined by the volume of the intake pipe and cylinder, an intake inertia effect can be obtained, improving volumetric efficiency and increasing output. It is well known that this can be realized.

上記吸気系の固有振動数は吸気通路の長さと断面積と吸
気期間中の平均シリンダ容積とで定まり、この固有振動
数と同調するエンジン回転数の範囲を広くし、吸気慣性
効果の利用による出方向上域を拡大するために、吸気通
路長さまたは吸気通路面積を可変とした技術が種々提案
されている(例えば、特開昭4E158214号、特開
昭56−115819号、特開昭58−119919号
)。
The natural frequency of the intake system is determined by the length and cross-sectional area of the intake passage, and the average cylinder volume during the intake period.The natural frequency of the intake system is determined by the length and cross-sectional area of the intake passage, and the average cylinder volume during the intake period. In order to expand the upper region in the direction, various techniques have been proposed in which the length of the intake passage or the area of the intake passage is varied (for example, Japanese Patent Application Laid-Open No. 4E158214, Japanese Patent Application Laid-open No. 115819-1982, Japanese Patent Laid-Open No. 115819-1982). No. 119919).

しかるに、これらの先行技術は、吸気慣性効果の利用に
よる出方向上t5囲の拡大作用が小さくて不十分であり
、より広い範囲で大きな同調が得られることが望まれて
いる。
However, in these prior art techniques, the effect of enlarging the upper t5 area in the exit direction by utilizing the intake inertia effect is small and insufficient, and it is desired to obtain greater tuning over a wider range.

〈発明の目的) 本発明は上記事情に鑑み、特に上記吸気慣性効果による
充填効率の向上が現実的に得やすいのは、通路の要求長
さが比較的短いエンジンの高回転域であることから、こ
の高回転域において各回転数で慣性効果が最大に得られ
るように吸気通路の通路面積および長さを変えて出力の
向上を図るようにしたエンジンの吸気装置を提供するこ
とを目的とするものである。
(Objective of the Invention) In view of the above-mentioned circumstances, the present invention has been developed to improve the filling efficiency due to the above-mentioned intake inertia effect, because it is actually easier to achieve this in the high-speed range of the engine where the required length of the passage is relatively short. The object of the present invention is to provide an engine intake system that improves output by changing the passage area and length of the intake passage so that the inertia effect is maximized at each rotation speed in this high rotation range. It is something.

(発明の構成) 本発明の吸気装置は、1つの気筒に至る吸気通路を第1
吸気通路と第2吸気通路とに分割形成し、これらをエン
ジン回転数に対応して切換使用することにより吸気通路
面積を変更するとともに、両吸気通路の通路長さを可変
とし、両吸気通路によって吸気を供給している高回転域
において吸気通路長さを変化させるようにしたことを特
徴とするものである。
(Structure of the Invention) The intake system of the present invention includes an intake passage leading to one cylinder.
The intake passage is divided into an intake passage and a second intake passage, and these are switched according to the engine speed to change the area of the intake passage, and the length of both intake passages is made variable. This is characterized in that the length of the intake passage is changed in the high rotation range where intake air is being supplied.

(発明の効果) 本発明によれば、簡易な構造によって実現できる吸気通
路面積の切換による吸気慣性効果の同調範囲の拡大に加
えて、高回転域で吸気通路長さを可変としたことにより
、吸気通路面積もしくは吸気通路長さのみを可変とした
ものよりも、同調範囲が拡大して高回転域で大きな吸気
慣性効果による出方向上が効果的に図れるとともに、低
回転域での吸気流速の向上による性能改善を図ることが
できるなどの種々の優れた利点を有する。
(Effects of the Invention) According to the present invention, in addition to expanding the tuning range of the intake inertia effect by switching the intake passage area which can be realized with a simple structure, by making the intake passage length variable in the high rotation range, Compared to a system in which only the intake passage area or length is variable, the tuning range is expanded, and the intake direction can be effectively increased due to the large intake inertia effect in the high rotation range, and the intake flow rate can be improved in the low rotation range. It has various excellent advantages, such as the ability to improve performance through improvements.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は吸気装置を備えた多気筒エンジンの要部断面正
面図、第2図は第1図のII−II線に沿う断面図であ
る。
FIG. 1 is a sectional front view of essential parts of a multi-cylinder engine equipped with an intake system, and FIG. 2 is a sectional view taken along line II--II in FIG. 1.

エンジン1の各気筒の燃焼室2に連通開口する吸気通路
3は、スロットル弁4下流にサージタンク5を備え、こ
のサージタンク5下流で分岐され各気筒に対して独立し
て結合される。
An intake passage 3 that communicates with the combustion chamber 2 of each cylinder of the engine 1 is provided with a surge tank 5 downstream of the throttle valve 4, and is branched downstream of the surge tank 5 and connected to each cylinder independently.

上記スOツ1〜ル弁4の下流側で、サージタンク5の外
周部からシリンダヘッド6内に形成された燃焼室2の近
傍部分の吸気通路3は、隔壁7によって、通路面積の比
較的小さい第1吸気通路3aと、通路面積の比較的大き
い第2吸気通路3bとに区画形成され、第1吸気通路3
aは燃焼室2の第1吸気ポート12aに、第2吸気通路
3bは第2吸気ポート12bにそれぞれ開口している。
The intake passage 3 in the vicinity of the combustion chamber 2 formed in the cylinder head 6 from the outer periphery of the surge tank 5 on the downstream side of the throttle valve 4 is formed by a partition wall 7 with a relatively small passage area. The first intake passage 3 is divided into a small first intake passage 3a and a second intake passage 3b having a relatively large passage area.
a opens to the first intake port 12a of the combustion chamber 2, and the second intake passage 3b opens to the second intake port 12b.

第2吸気通路3bの途中には切換弁8を備えた切換手段
9が介装され、該切換弁8はその回転軸8aがアクチュ
エータ10に連係されて、該アクチュエータ10のコン
トロールユニット11からの制御信号に基づく作動によ
り第2吸気通路3bを開閉し、第1吸気通路3aのみに
よって吸気を供給するときと、両吸気通路3a、3bに
よって吸気を供給するときとで吸気通路面積を変更する
ように構成されている。
A switching means 9 having a switching valve 8 is interposed in the middle of the second intake passage 3b, and the switching valve 8 has its rotating shaft 8a linked to an actuator 10, and the switching valve 8 is controlled by a control unit 11 of the actuator 10. The second intake passage 3b is opened and closed by an operation based on a signal, and the intake passage area is changed between when intake air is supplied only through the first intake passage 3a and when intake air is supplied through both intake passages 3a and 3b. It is configured.

上記隔壁7は切換弁8下流の一部が除去されて両側の第
1および第2吸気通路3a、3bが互いに連通し、この
連通部分に臨んで燃料噴射ノズル13が配設され、単一
の燃料噴射ノズル13によって両吸気通路3a、3bに
燃料供給が行えるようにしている。
A part of the partition wall 7 downstream of the switching valve 8 is removed so that the first and second intake passages 3a and 3b on both sides communicate with each other, and a fuel injection nozzle 13 is disposed facing this communication part, so that a single A fuel injection nozzle 13 allows fuel to be supplied to both intake passages 3a and 3b.

前記サージタンク5はケーシング14と、これに回転自
在に内設された円筒状の回転部材15とによって形成さ
れ、このサージタンク5に第1および第2吸気通路3a
、3bの通路長さを変更する通路長さ可変手段19が構
成されている。このケーシング14はエンジン1のシリ
ンダヘッド6に締結される吸気マニホールドを形成し、
各気筒に対応した独立吸気通路3がそれぞれ結合され、
シリンダヘッド6から連続する隔壁7で区画された第1
吸気通路3aおよび第2吸気通路3bの延長部分がケー
シング14の周方向に沿って形成されている。また、円
筒状の回転部材15は内部空間がスロットル弁4下流の
拡張室、1@言すれば吸気保持空間としての実質的なサ
ージタンクを構成するものであり、一端面の中心に開口
部15aが開設され、この開口部15aがスロットル弁
4を備えた上流側の吸気通路3に連通して吸気入口とな
り、回転部材15の円筒状外周面はその内部空間と外周
部の第1および第2吸気通路3a、3bとを区画すると
ともに、ケーシング14の隣接する気筒に対する吸気通
路3の内壁面に接して各吸気通路を気筒ごとに独立させ
ている。該回転部材15の周面には各気筒に対する第1
および第2吸気通路3a、3bに連通する出口側の矩形
状の連通口15bが開設され、該回転部材15の回転位
置に対応して内部空間と第1および第2吸気通路3a、
3bとの連通位置が変更し、これによってサージタンク
5から各気筒に至る独立吸気通路としての実質的な各吸
気通路3a、3bの長さが可変となるように構成されて
いる。
The surge tank 5 is formed by a casing 14 and a cylindrical rotating member 15 rotatably installed inside the casing 14, and the surge tank 5 includes first and second intake passages 3a.
, 3b is constructed. This casing 14 forms an intake manifold fastened to the cylinder head 6 of the engine 1,
Independent intake passages 3 corresponding to each cylinder are connected to each other,
A first section partitioned by a partition wall 7 continuous from the cylinder head 6
Extended portions of the intake passage 3a and the second intake passage 3b are formed along the circumferential direction of the casing 14. The cylindrical rotating member 15 has an internal space that constitutes an expansion chamber downstream of the throttle valve 4, or in other words, a substantial surge tank serving as an intake air holding space, and has an opening 15a at the center of one end surface. is opened, and this opening 15a communicates with the upstream intake passage 3 provided with the throttle valve 4 to serve as an intake inlet. The intake passages 3a and 3b are partitioned, and each intake passage is made independent for each cylinder by being in contact with the inner wall surface of the intake passage 3 of the casing 14 for adjacent cylinders. The circumferential surface of the rotating member 15 has a first
A rectangular communication port 15b on the outlet side communicating with the second intake passages 3a, 3b is opened, and the inner space and the first and second intake passages 3a,
3b is changed, so that the substantial length of each intake passage 3a, 3b as an independent intake passage from the surge tank 5 to each cylinder becomes variable.

上記回転部材15の細端面にはケーシング14の外方に
突出する軸部15cが連接され、この軸部15cと開口
部15aの周囲でケーシング14に回転可能に支承され
る一方、軸部15Cの端部に固着された入ツノ用のギヤ
ー16にモータ17の出力軸に固着されたギヤー18が
噛合されて、回転部材15の回転によって通路長さを変
更する駆動手段20が構成されている。上記モータ17
も前記コントロールユニツl〜11からの制御信号によ
って駆動制御される。
A shaft portion 15c protruding outward from the casing 14 is connected to the narrow end surface of the rotating member 15, and is rotatably supported by the casing 14 around the shaft portion 15c and the opening 15a. A gear 18 fixed to the output shaft of a motor 17 is meshed with an input horn gear 16 fixed to the end, thereby forming a driving means 20 that changes the path length by rotation of the rotating member 15. The above motor 17
are also driven and controlled by control signals from the control units 1 to 11.

上記コントロールユニツI〜11には回転数センサー2
1からのエンジン回転数信号が入力され、該コントロー
ルユニツ1〜11はエンジン回転数の変動に対応して前
記吸気通路面積を変更づる切換手段9および吸気通路長
さを変更する通路長さ可変手段19の駆動手段20を駆
動制御し、吸気通路面積および吸気通路長さを吸気通路
3の気柱振動数とエンジン回転数に基づく吸気期間の周
期とが同調して吸気慣性効果が最大となる値に調整する
ものである。
The above control units I to 11 have a rotation speed sensor 2.
The control units 1 to 11 are provided with a switching means 9 for changing the intake passage area and a passage length variable means for changing the length of the intake passage in response to fluctuations in the engine rotation speed. The driving means 20 of 19 is drive-controlled, and the intake passage area and the intake passage length are set to values at which the air column frequency of the intake passage 3 and the cycle of the intake period based on the engine rotation speed are synchronized and the intake inertia effect is maximized. It is to be adjusted to.

なお、第1図において、22は吸気弁、23はシリンダ
ブロック、24はピストンである。
In FIG. 1, 22 is an intake valve, 23 is a cylinder block, and 24 is a piston.

上記コン1〜ロールユニツト11によるエンジン回転数
に対する吸気通路3a、3bの切換による吸気通路面積
の制御、および回転部材15の回転による吸気通路長さ
の制御を第3図に示す。
FIG. 3 shows the control of the area of the intake passage by switching the intake passages 3a and 3b according to the engine speed by the controllers 1 to 11, and the control of the length of the intake passage by rotating the rotating member 15.

エンジン回転数が第1の設定回転数N1に達すると、切
換手段9を駆動して切換弁8を開き、この設定回転数N
1以下の低回転域では第1吸気通路3aのみによる小ざ
い吸気通路面積でもって吸気を供給する一方、設定回転
数N1を越えた高回転域では第1吸気通路3aに加えて
第2吸気通路3bによる大きい吸気通路面積でもって吸
気を供給するように通路面積を切換制御するものである
When the engine speed reaches the first set speed N1, the switching means 9 is driven to open the switching valve 8, and this set speed N1 is driven.
In the low rotation speed range of 1 or less, intake air is supplied by only the first intake passage 3a with a small intake passage area, while in the high rotation range exceeding the set rotation speed N1, the second intake passage is supplied in addition to the first intake passage 3a. 3b, the passage area is switched and controlled so that intake air is supplied with a large intake passage area.

これに対し、吸気通路長′ざ制御は基本的にはエンジン
回転数が低い時には通路長さを長くし、エンジン回転数
が上昇して高回転となった時には通路長さを短縮するも
のであって、切換弁8が開いた後の高回転域において第
2の設定回転数N2以上で駆動手段20を駆動して、エ
ンジン回転数の上昇に伴って通路長さが短縮覆るJ:う
に制御するものである。
On the other hand, intake passage length control basically increases the passage length when the engine speed is low, and shortens the passage length when the engine speed rises and becomes high. Then, in the high rotation range after the switching valve 8 opens, the driving means 20 is driven at a second set rotation speed N2 or more, and the passage length is shortened as the engine rotation speed increases. It is something.

上記制御によれば第4図に示゛すj;う1こ、エンジン
回転数の変動に対する全開トルク特性は、第1吸気通路
3aのみによる吸気供給時の曲線■と、第1および第2
吸気通路3a、3bの両者による吸気供給時の曲線■と
の関係から、両者の切換時点となる第1の設定回転数N
1すなわち切換手段9の作動時期を設定するとともに、
曲線■がビークを越える時点に設定した第2の設定回転
数N2かう吸気通路長さを短縮することにより吸気慣性
効果を得て、鎖線■で示づように、大ぎな出力低下を抑
制して出力の向上を図るものである。
According to the above control, as shown in FIG.
From the relationship with the curve (■) when air is supplied by both the intake passages 3a and 3b, the first set rotation speed N at which the two are switched is determined.
1, that is, setting the operating timing of the switching means 9,
By shortening the second set rotation speed N2 set at the time when the curve ■ exceeds the peak and the length of the intake passage, an intake inertia effect is obtained, and as shown by the chain line ■, a large decrease in output is suppressed. The purpose is to improve output.

よって、上記実施例においては、通路面積の切換手段に
加えて高回転域で通路長さを変動させることから、吸気
慣性効果が要求される高回転域で吸気系の固有振動数の
変動幅を大ぎくかつ細かくすることができ、広い範囲に
おいて吸気慣性効果を得て出力の向上を図ることができ
る。
Therefore, in the above embodiment, in addition to the passage area switching means, the passage length is varied in the high rotation range, so that the fluctuation width of the natural frequency of the intake system can be reduced in the high rotation range where the intake inertia effect is required. It can be made both large and fine, and the intake inertia effect can be obtained over a wide range to improve output.

また、低回転域では吸気通路面積を小さくして吸気流速
の向上を図ることにより燃焼性能を改善することとがで
き、高回転域では大ぎい吸気通路面積として多口の吸気
を良りfに供給することができる。
In addition, combustion performance can be improved in the low rotation range by reducing the intake passage area and improving the intake flow velocity, and in the high rotation range, the intake passage area is increased to increase the intake air from multiple mouths. can be supplied.

ざらに、上記実施例では、吸気通路長さを変更する通路
長さ可変手段19をサージタンク5の周囲に形成した吸
気通路延長部と、これに沿って回転作動する回転部材と
によって構成したことにより、全体をコンパクトに形成
して構造の簡略化が図れ、確実な作動を確保することが
できる。しかも、高回転域においては同調時の吸気通路
長さは短くなり、エンジン回転数変動に対する吸気通路
変更長さも短くてよいことから、さらにコンパクト化が
図れるものである。
Roughly speaking, in the above embodiment, the passage length variable means 19 for changing the length of the intake passage is constituted by an intake passage extension formed around the surge tank 5 and a rotating member that rotates along this extension. As a result, the entire structure can be made compact, the structure can be simplified, and reliable operation can be ensured. Furthermore, in a high rotation range, the length of the intake passage during synchronization is short, and the length of the intake passage to be changed in response to fluctuations in the engine rotation speed can also be shortened, so that further compactness can be achieved.

なお、上記実施例では、第1吸気通路3aの通路面積が
第2吸気通路3bの通路面積より小さくなるように設け
ているが、両者の通路面積は同一または第1吸気通路3
aの通路面積が第2吸気通路3bの通路面積より大きく
てもよい。
In the above embodiment, the passage area of the first intake passage 3a is smaller than the passage area of the second intake passage 3b.
The passage area of the second intake passage 3b may be larger than the passage area of the second intake passage 3b.

また、上記のような慣性過給は、高負荷時に必要なもの
であるから、実施例のような通路長さの制御は高負荷時
のみ行うようにしてもよい。
Further, since the above-mentioned inertial supercharging is necessary at times of high load, the passage length control as in the embodiment may be performed only at times of high load.

さらに、上記実施例では、第1および第2吸気通路3a
、3bとを区画する隔壁7の一部を除去して両者を連通
ずるようにしているが、この連通をなくして両吸気通路
3a、3bを完全に独立形成するようにしてもよい。そ
の際、吸気系の固有振動数は若干変化するものである。
Furthermore, in the above embodiment, the first and second intake passages 3a
, 3b are removed to communicate with each other, but this communication may be eliminated to form both intake passages 3a, 3b completely independently. At that time, the natural frequency of the intake system changes slightly.

また、燃焼全2に単一の吸気ボー1〜を開口し、この吸
気ボートの上流側の吸気通路を第1吸気通路と第2吸気
通路とに分割形成するようにしてもよい。
Alternatively, a single intake boat 1 may be opened in the combustion chamber 2, and the intake passage on the upstream side of this intake boat may be divided into a first intake passage and a second intake passage.

一方、吸気通路面積および吸気通路長さを変更するため
の切換手段9iBよび駆動手段20の作動は、上記実施
例のようにエンジン回転数を検出したコン1〜ロールユ
ニツト11によって行うほか、排気圧力に対応して作動
するアクチュエータによって駆動制御するなどエンジン
回転数に相関関係のある信号によって作動する手段が適
宜採用可能である。
On the other hand, the switching means 9iB and the driving means 20 for changing the intake passage area and the intake passage length are operated by the controller 1 to the roll unit 11 which detect the engine speed as in the above embodiment, and also by the exhaust pressure It is possible to appropriately adopt means that operates based on a signal having a correlation with the engine rotational speed, such as drive control using an actuator that operates in response to the engine speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における吸気装置を有するエ
ンジンの要部断面正面図、 第2図は第1図のI[−IF線に沿う断面図、第3図は
制御特性例を示す説明図、 第4図は第3図の制御に基づくエンジン回転数と全開ト
ルクとの関係を示す特性図である。 1・・・・・・エンジン 3・・・・・・吸気通路3a
・・・・・・第1吸気通路 3b・・・・・・第2吸気
通路5・・・・・・サージタンク 8・・・・・・切換
弁9・・・・・・切換手段 11・・・・・・コントロールユニット14・・・・・
・ケーシング 15・・・・・・回転部材19・・・・
・・通路長さ可変手段 20・・・・・・駆動手段 −− 第2図 第3図 工ンジ゛ン回中λ数 第4図 エンジ′ン回転(匁 273−
FIG. 1 is a cross-sectional front view of essential parts of an engine having an intake system according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the I[-IF line in FIG. 1, and FIG. 3 shows an example of control characteristics. Explanatory diagram: FIG. 4 is a characteristic diagram showing the relationship between engine speed and full-throttle torque based on the control shown in FIG. 3. 1...Engine 3...Intake passage 3a
......First intake passage 3b...Second intake passage 5...Surge tank 8...Switching valve 9...Switching means 11. ...Control unit 14...
・Casing 15...Rotating member 19...
... Passage length variable means 20 ... Drive means - Fig. 2 Fig. 3 Number of λ during engine rotation Fig. 4 Engine rotation (momme 273-

Claims (1)

【特許請求の範囲】[Claims] (1)気筒に至る吸気通路が少なくとも一部において第
1吸気通路と第2吸気通路との2つで形成され、第2吸
気通路を開閉して吸気を供給する通路面積を切換える切
換手段を備え、エンジン回転数の上昇に対応して吸気通
路面積が増大するように上記切換手段を作動させるよう
にしたエンジンの吸気装置において、上記第1および第
2吸気通路の吸気通路長さを可変とする通路長さ可変手
段を設け、前記切換手段が作動し第1および第21吸気
通路によって吸気が供給されている高回転域で、エンジ
ン回転数の上昇に対応して吸気通路長さが短くなるよう
に上記通路長さ可変手段の駆動手段を作動制御するよう
にしたことを特徴とするエンジンの吸気装置。
(1) The intake passage leading to the cylinder is formed at least in part by a first intake passage and a second intake passage, and includes a switching means for opening and closing the second intake passage to switch the passage area for supplying intake air. In the engine intake system, the switching means is operated so that the area of the intake passage increases in response to an increase in engine speed, wherein the intake passage lengths of the first and second intake passages are variable. A passage length variable means is provided so that the length of the intake passage is shortened in response to an increase in engine rotation speed in a high rotation range where the switching means is activated and intake air is supplied by the first and twenty-first intake passages. An intake system for an engine, characterized in that the drive means for the passage length variable means is controlled in operation.
JP59010647A 1984-01-23 1984-01-23 Air intake equipment of engine Granted JPS60153422A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59010647A JPS60153422A (en) 1984-01-23 1984-01-23 Air intake equipment of engine
US06/693,297 US4617897A (en) 1984-01-23 1985-01-22 Intake system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010647A JPS60153422A (en) 1984-01-23 1984-01-23 Air intake equipment of engine

Publications (2)

Publication Number Publication Date
JPS60153422A true JPS60153422A (en) 1985-08-12
JPH0578646B2 JPH0578646B2 (en) 1993-10-29

Family

ID=11756008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010647A Granted JPS60153422A (en) 1984-01-23 1984-01-23 Air intake equipment of engine

Country Status (1)

Country Link
JP (1) JPS60153422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159334A (en) * 1984-01-30 1985-08-20 Mazda Motor Corp Suction device for engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964611U (en) * 1972-09-19 1974-06-06
JPS572215U (en) * 1980-06-06 1982-01-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964611U (en) * 1972-09-19 1974-06-06
JPS572215U (en) * 1980-06-06 1982-01-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159334A (en) * 1984-01-30 1985-08-20 Mazda Motor Corp Suction device for engine
JPH0578651B2 (en) * 1984-01-30 1993-10-29 Mazda Motor

Also Published As

Publication number Publication date
JPH0578646B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
US4617897A (en) Intake system for internal combustion engines
US4566412A (en) Intake system for rotary piston engine
US4756284A (en) Intake system for internal combustion engine
JPH0578651B2 (en)
JPS60153422A (en) Air intake equipment of engine
JPS60224922A (en) Suction system for multicylinder engine
JPS60153421A (en) Air intake equipment of engine
JPH0578647B2 (en)
JPH062550A (en) Intake control device for internal combustion engine
JPS60159333A (en) Suction device for engine
JPS60156929A (en) Suction device for engine
JPS60156927A (en) Suction device for engine
JP3624540B2 (en) Engine intake system
JPH0545769B2 (en)
JP2500856B2 (en) Multi-cylinder engine intake system
JPH10299491A (en) Intake device for internal combustion engine
JPS60156930A (en) Suction device for engine
JPH0823294B2 (en) Engine intake system
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0380966B2 (en)
JP2000186561A (en) Variable intake system of engine
JPS60159332A (en) Suction device for engine
JPS61232330A (en) Intake apparatus for rotary piston engine
JPS63195328A (en) Intake air control device for rotary piston engine