JPS60159332A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS60159332A
JPS60159332A JP59014899A JP1489984A JPS60159332A JP S60159332 A JPS60159332 A JP S60159332A JP 59014899 A JP59014899 A JP 59014899A JP 1489984 A JP1489984 A JP 1489984A JP S60159332 A JPS60159332 A JP S60159332A
Authority
JP
Japan
Prior art keywords
intake
passage
length
engine
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59014899A
Other languages
Japanese (ja)
Other versions
JPH0578648B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Junzo Sasaki
潤三 佐々木
Kazuhiko Ueda
和彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59014899A priority Critical patent/JPS60159332A/en
Publication of JPS60159332A publication Critical patent/JPS60159332A/en
Publication of JPH0578648B2 publication Critical patent/JPH0578648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0231Movable ducts, walls or the like
    • F02B27/0236Movable ducts, walls or the like with continuously variable adjustment of a length or width
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0257Rotatable plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To aim at improvements in output of power in an engine, by making the length and area of a suction passage variable in design, and changing a suction passage area so as to cause a mean suction air flow velocity to be within an optimum range, while securing a favorable suction inertia effect upon changing the suction passage length. CONSTITUTION:In a suction passage 3 interconnected and opened to a combustion chamber 2 of each cylinder in an engine 1, there are provided with a passage length variable device 9 fitted with a cylinder member 11 slidably installed in a connecting part with a surge tank 5 and a passage area changing device 10 fitted with a moving member 12 installed in a space ranging from a suction port 7 to the inside of the cylinder member 11. And, each of actuators 13 and 14 of these aforesaid devices 9 and 10 is driven and controlled by a controlling device 15, and an engine speed signal out of an engine speed sensor 16 and a load signal out of a load sensor 17 both are inputted into this controlling device 15. With this constitution, a mean suction air flow velocity is kept up within the optimum range, while the engine speed and air column frequency are made to synchronize, thus the desired end comes to fruition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に、吸気系の
気柱振動と吸気期間との同一による慣性過給を利用して
出力の向上を図るようにしたエンジンの吸気装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine intake system, and particularly to an engine intake system that improves output by utilizing inertia supercharging caused by the air column vibration of the intake system and the intake period being the same. The present invention relates to an improvement of an engine intake system.

(従来技術) 一般に、吸気管内の流れはいわゆる脈動流で、吸気弁が
開き吸入行程が始まると、シリンダ内に発生する負圧の
ために吸気管内気柱は加速されシリンダ内に流れ込む。
(Prior Art) Generally, the flow in the intake pipe is a so-called pulsating flow, and when the intake valve opens and the intake stroke begins, the air column in the intake pipe is accelerated due to the negative pressure generated in the cylinder and flows into the cylinder.

この間シリンダ内圧力および容積は、ピストン下降運動
と共に変化し、同時に吸気管内圧力および速度も漸次時
間的にも場所的にも変化する。シリンダで発生した圧力
波は吸気管を伝わり、サージタンク部で反射されてシリ
ンダに戻るものであって、吸気系においてはこの現象が
繰り返されている。上記ピストンの下降によって生じる
圧力変化の振動数と、吸気管およびシリンダ容積で決ま
る吸気系の固有振動数とを同調させると吸気慣性効果が
得られて、体積効率を向上させることができ高出力化が
実現できることはよく知られている。
During this time, the cylinder internal pressure and volume change with the downward movement of the piston, and at the same time, the intake pipe internal pressure and speed also gradually change both in time and location. The pressure waves generated in the cylinder propagate through the intake pipe, are reflected at the surge tank, and return to the cylinder, and this phenomenon is repeated in the intake system. By synchronizing the frequency of the pressure change caused by the downward movement of the piston with the natural frequency of the intake system determined by the volume of the intake pipe and cylinder, an intake inertia effect can be obtained, improving volumetric efficiency and increasing output. It is well known that this can be achieved.

上記吸気系の固有振動数は吸気通路の長さと断面積と吸
気期間中の平均シリンダ容積で定まり、この固有振動数
と同調するエンジン回転数の範囲を広くし、吸気慣性効
果の利用による出方向上域を拡大するために、吸気通路
長さまたは吸気通路面積を可変とした技術が種々提案さ
れている(例えば、特開昭48−58214号、特開昭
56−115819号、特開昭58−119919号)
The natural frequency of the intake system is determined by the length and cross-sectional area of the intake passage, and the average cylinder volume during the intake period.The range of engine speeds that are synchronized with this natural frequency is widened, and the intake direction is determined by utilizing the intake inertia effect. In order to expand the upper region, various techniques have been proposed in which the length or area of the intake passage is made variable (for example, Japanese Patent Application Laid-Open Nos. 48-58214, 115819-1980, and 58-1982). -119919)
.

しかるに、これらの先行技術は、吸気慣性効果の利用に
よる出方向上範囲の拡大作用が小さくて不十分であり、
また、変更範囲を広くするには複雑な機構を伴うなどの
問題があり、簡易な構造でより広い範囲で大きな同調が
得られることが望まれている。
However, in these prior art techniques, the effect of expanding the upward range in the exit direction by utilizing the intake inertia effect is small and insufficient;
In addition, there are problems such as the need for a complicated mechanism to widen the range of change, and it is desired to obtain large tuning over a wider range with a simple structure.

例えば、吸気通路の長さのみを変更するようにしたもの
では、同調範囲そのあのが狭いとともに、一応の同調状
態であってもそのエンジン回転数において最大限の吸気
慣性効果が得られる最適な同調条件に一致しているとは
限らないものである。
For example, in a case where only the length of the intake passage is changed, the tuning range is narrow, and even if the tuning is in a tentative state, the optimum tuning can be achieved to obtain the maximum intake inertia effect at that engine speed. It does not necessarily match the conditions.

また、同様に、吸気通路の長さと面積とを変更して各エ
ンジン回転数で気柱振動数との同調を得るにおいて、所
定エンジン回転数における同調条件を満たす長さと面積
の値は各種あるが、全ての条件が良好な充填効率の上昇
をもたらすものではない。
Similarly, when changing the length and area of the intake passage to obtain synchronization with the air column frequency at each engine speed, there are various length and area values that satisfy the tuning conditions at a given engine speed. However, not all conditions result in a good increase in filling efficiency.

すなわち、吸気慣性効果は気柱振動を利用して吸気行程
終期における吸気ボートの圧力を増大して充填効率を向
上せんとするものであるが、この充填効率は吸気通路面
積(径)そのものの大きさによっても変化するものであ
り、充填効率の低い通路面積の設定においては吸気通路
長さを変更して吸気慣性効果により充填効率を向上して
も、基本的に充填効率が低いのでこれを吸気慣性効果で
改善しても、全体としては良好な出方向上効果を得るこ
とはできず、このように単に吸気慣性の同調条件を合せ
るだけでは吸気慣性効果を最大限に利用することはでき
ないものである。
In other words, the intake inertia effect uses air column vibration to increase the pressure of the intake boat at the end of the intake stroke to improve charging efficiency, but this charging efficiency is dependent on the size of the intake passage area (diameter) itself. However, when setting a passage area with low filling efficiency, even if you change the length of the intake passage and improve the filling efficiency due to the intake inertia effect, the filling efficiency is basically low, so this is Even if the inertia effect is improved, it is not possible to obtain a good effect on the exit direction as a whole, and it is not possible to make the most of the intake inertia effect simply by adjusting the intake inertia tuning conditions like this. It is.

(発明の目的) 本発明は上記事情に鑑み、吸気通路長さを変更して慣性
同調領域を拡大するについて、吸気流速に着目し各領域
で吸気慣性効果が最大に得られるように、吸気通路の通
路長さおよび面積を変えて出力の向上を図るようにした
エンジンの吸気装置を提供することを目的とするもので
ある。
(Object of the Invention) In view of the above circumstances, the present invention focuses on the intake flow velocity to expand the inertia tuning region by changing the length of the intake passage. An object of the present invention is to provide an intake device for an engine in which output is improved by changing the length and area of the passage.

(発明の構成) 本発明の吸気装置は、吸気通路長さを可変とするととも
に、吸気通路面積を可変とし、エンジン回転数に対応し
て吸気通路面積を変更して平均吸気流速が充填効率上で
最適範囲内にあるように略一定に保つとともに、この吸
気通路面積に対応してエンジン回転数と気柱振動数とを
同調させるべく吸気通路長さを変更するようにしたこと
を特徴とするものである。
(Structure of the Invention) The intake device of the present invention has variable intake passage length and variable intake passage area, and changes the intake passage area in accordance with the engine rotation speed so that the average intake flow velocity improves filling efficiency. The length of the intake passage is kept substantially constant so that it is within the optimum range, and the length of the intake passage is changed in accordance with the area of the intake passage so as to synchronize the engine speed and the air column frequency. It is something.

(発明の効果) 本発明によれば、吸気通路長さと吸気通路面積との変更
により、慣性同調範囲を拡大し各領域で出方向上を図る
について、平均吸気流速が最適範囲内にあるように吸気
通路面積を変更し、これによって基本的に充填効率の良
好な条件を確保し、さらに、吸気通路長さを変更して良
好な吸気慣性効果を得るようにしたことにより、常に最
大限の吸気慣性効果を得てこれによる出方向上が効果的
に図ることができるものである。
(Effects of the Invention) According to the present invention, by changing the intake passage length and intake passage area, the inertia tuning range is expanded and the output direction is increased in each region, so that the average intake flow velocity is within the optimum range. The area of the intake passage has been changed, which basically ensures good conditions for filling efficiency, and the length of the intake passage has also been changed to obtain a good intake inertia effect, thereby ensuring maximum intake air at all times. It is possible to obtain an inertial effect and thereby effectively increase the direction of output.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

実施例1 第1図は吸気装置を備えた多気筒エンジンの要部断面正
面図を示している。
Embodiment 1 FIG. 1 shows a sectional front view of essential parts of a multi-cylinder engine equipped with an intake device.

エンジン1の各気筒の燃焼室2に連通開口する吸気通路
3は、サージタンク5下流で分岐され各気筒に対して独
立して結合され、シリンダヘッド6から吸気ボート7を
経て燃焼室2に連通し、途中に燃料噴射ノズル8が配設
されている。
An intake passage 3 that communicates with the combustion chamber 2 of each cylinder of the engine 1 is branched downstream of the surge tank 5 and is connected to each cylinder independently, and communicates with the combustion chamber 2 from the cylinder head 6 via an intake boat 7. However, a fuel injection nozzle 8 is disposed in the middle.

また、上記吸気通路3には、サージタンク5との接続部
分に摺動自在に内設された筒部材11を備えた通路長さ
可変手段9、および吸気ポート7近傍から上記筒部材1
1の内部に至る間に設けられた移動部材12を備えた通
路面積変更手段10とが設置されている。上記通路長さ
可変手段9は筒部材11をアクチュエータ13によって
移動して吸気通路長さを変更するものであり、一方、通
路面積変更手段10は移動部材12をアクチュエータ1
4によって移動して吸気通路面積を変更するものであり
、両アクチュエータ13.14は制御手段15(コント
ロールユニット)からの制御信号によって駆動制御され
る。この制御手段15は回転数センサー16からのエン
ジン回転数信号および負荷センサー17からの負荷信号
を受け、^負荷域においてエンジン回転数の変動に対応
して吸気通路の長さおよび面積を変更調整するものであ
る。
Further, in the intake passage 3, there is a passage length variable means 9 provided with a cylindrical member 11 slidably installed in the connecting portion with the surge tank 5, and a passage length variable means 9 that extends from the vicinity of the intake port 7 to the cylindrical member 11.
A passage area changing means 10 including a moving member 12 provided while reaching the inside of the passage area 1 is installed. The passage length changing means 9 changes the length of the intake passage by moving the cylindrical member 11 with the actuator 13, while the passage area changing means 10 moves the moving member 12 with the actuator 13.
4 to change the intake passage area, and both actuators 13 and 14 are driven and controlled by control signals from control means 15 (control unit). This control means 15 receives an engine speed signal from a speed sensor 16 and a load signal from a load sensor 17, and changes and adjusts the length and area of the intake passage in response to fluctuations in engine speed in the load range. It is something.

なお、上記移動部材12のサージタンク5側端部12a
は回動自在に取付けられ、先端が筒部材11内面に圧接
するように付勢され、この筒部材11の摺動を許容しつ
つ吸気の通る通路面積の増減を行うように構成されてい
る。その伯、第1図において、19は吸気弁、20はシ
リンダブロック、21はピストンである。
Note that the surge tank 5 side end 12a of the movable member 12
is rotatably attached, and is biased so that its tip comes into pressure contact with the inner surface of the cylindrical member 11, and is configured to increase or decrease the passage area through which intake air passes while allowing the cylindrical member 11 to slide. In FIG. 1, 19 is an intake valve, 20 is a cylinder block, and 21 is a piston.

上記制御手段15はエンジン回転数の上昇に応じて通路
面積変更手段10を駆動して吸気通路面積を増大し、吸
気ボート7での平均吸気流速が最適流速範囲内にあるよ
うに略一定に保つとともに、この吸気通路面積において
エンジン回転数と気柱振動数とが同調して吸気慣性効果
が得られるように通路長さ可変手段9を駆動して吸気通
路長さを変更調整するものであり、その変更は通路面積
の変更の影響を大きく受けるが、基本的にはエンジン回
転数の上昇に対応して通路長さが短くなるように変更す
るものである。なお、実際には、エンジン回転数に対応
して通路面積および長さが予め設定できるので、これに
応じて制御手段15は両者を同時に調整するものである
The control means 15 increases the intake passage area by driving the passage area changing means 10 in accordance with the rise in engine speed, and keeps the average intake flow velocity at the intake boat 7 substantially constant within the optimum flow velocity range. At the same time, the length of the intake passage is changed and adjusted by driving the passage length variable means 9 so that the engine rotational speed and the air column frequency are synchronized in this intake passage area and an intake inertia effect is obtained. This change is greatly affected by the change in passage area, but basically the passage length is shortened in response to an increase in engine speed. In fact, since the passage area and length can be set in advance in accordance with the engine speed, the control means 15 adjusts both at the same time.

吸気慣性の同調条件は、エンジン回転数に対応する吸気
期間と、吸気系の長さと面積に対応する気柱振動の周期
とが略等しく、吸気弁19が閉じる直前の吸気ボート7
の圧力が上昇して充填効率が増大するものであって、こ
のような同調条件を得るための吸気通路長さと面積の組
合せは無限に存在し、一定の同調状態を保ちつつ、吸気
通路3の長さと面積を同時に変えたときの体積効率と吸
気通路内の平均流速との関係をめた結果を第5図に示す
。この第5図から分るように、各エンジン回転数で通路
長さと面積を変えた場合に、体積効率が最大となる最適
流速Aが存在するものである。
The intake inertia tuning condition is such that the intake period corresponding to the engine speed is approximately equal to the period of air column vibration corresponding to the length and area of the intake system, and the intake boat 7 immediately before the intake valve 19 closes.
The pressure of the intake passage 3 increases and the filling efficiency increases.There are infinite combinations of intake passage length and area to obtain such tuning conditions. Figure 5 shows the relationship between the volumetric efficiency and the average flow velocity in the intake passage when the length and area are changed at the same time. As can be seen from FIG. 5, when the passage length and area are changed at each engine speed, there is an optimum flow rate A at which the volumetric efficiency is maximized.

よって、上記制御手段15は、エンジン回転数の変動に
対し吸気流速が上記最適流速Aの範囲内に維持されるよ
うに、通路面積変更手段10のアクチュエータ14に制
御信号を出力して通路面積を調整し、その時点で吸気慣
性の同調条件を得るべ(、上記通路面積に対し通路長さ
を演算し、通路長さ可変手段9のアクチュエータ13に
制御信号を出力し、各エンジン回転数で吸気慣性効果を
最大限に利用して、大きな体積効率を得て出力を向上す
るものである。
Therefore, the control means 15 outputs a control signal to the actuator 14 of the passage area changing means 10 to change the passage area so that the intake air flow velocity is maintained within the range of the optimum flow velocity A against fluctuations in the engine speed. At that point, the intake inertia tuning condition should be obtained (calculate the passage length with respect to the passage area, output a control signal to the actuator 13 of the passage length variable means 9, and adjust the intake inertia at each engine speed. It makes maximum use of the inertial effect to obtain large volumetric efficiency and improve output.

なお、第5図において、破線で示す特性aは、通路面積
をある一定値に固定した場合において、通路長さを変え
ることによって得られた同調状態を示し、エンジン回転
数が高回転域では平均吸気流速は最適流速Aの範囲内に
あって(通路面積が比較的広い)良好な体積効率が得ら
れているが、回転数が低下するにしたがって吸気流速が
低下し、通路長さを変更しても体積効率の向上は少ない
ものである。この場合に、エンジン回転数の低下に伴っ
て通路面積を減少して吸気流速が最適範囲内となるよう
に上昇させ、減少した通路面積との組合せにおいて同調
状態を得るべく通路長さを変更するように制御するもの
である。
In Fig. 5, characteristic a indicated by a broken line indicates the synchronization state obtained by changing the passage length when the passage area is fixed at a certain constant value. The intake flow rate is within the range of the optimal flow rate A (the passage area is relatively wide), and good volumetric efficiency is obtained, but as the rotation speed decreases, the intake flow rate decreases, and the passage length must be changed. However, the improvement in volumetric efficiency is small. In this case, as the engine speed decreases, the passage area is reduced to increase the intake flow velocity to within the optimum range, and the passage length is changed to obtain a synchronized state in combination with the reduced passage area. It is controlled as follows.

また、上記最適吸気流速としては、エンジンの種類等に
よってその値は相違するが、−例としては、40〜60
m/s好ましくは50m/Sである。一方、吸気慣性効
果が最大となる同調条件は、吸気期間をts、気性振動
数をfsとして、吸気期間tsと気柱振動の周期1/「
sが略等しく、例えば、0.9< tsx fs< 1
.1 の範囲に設定するものである。
In addition, as for the above-mentioned optimum intake flow rate, the value varies depending on the type of engine, etc., but for example, it is 40 to 60.
m/s is preferably 50 m/s. On the other hand, the tuning condition that maximizes the inspiratory inertia effect is, where the inspiratory period is ts and the air frequency is fs, the inspiratory period ts and the period of air column vibration 1/"
s are approximately equal, for example, 0.9<tsx fs<1
.. It is set within the range of 1.

実施例2 第2図は本例の吸気装置を備えた多気筒エンジンの要部
断面正面図、第3図は第2図の■−■線に沿う断面図で
ある。なお、第1図と構造が異なっても一部の同一名称
部分には同一符号を付している。
Embodiment 2 FIG. 2 is a sectional front view of a main part of a multi-cylinder engine equipped with an intake system of this embodiment, and FIG. 3 is a sectional view taken along the line ■-■ in FIG. Note that even if the structure is different from that in FIG. 1, some parts with the same names are given the same reference numerals.

エンジン1の各気筒の燃焼室2に連通開口する吸気通路
3は、スロットル弁4下流にサージタンク5を備え、こ
のサージタンク5下流で分岐され各気筒に対して独立し
て結合され、燃料噴射ノズル8が配設されている。
An intake passage 3 that communicates with the combustion chamber 2 of each cylinder of the engine 1 is provided with a surge tank 5 downstream of the throttle valve 4, and is branched downstream of the surge tank 5 and connected to each cylinder independently to inject fuel. A nozzle 8 is provided.

上記サージタンク5はケーシング22と、これに回転自
在に内設された円筒状の回転部材23によって形成され
、このサージタンク5に吸気通路3の通路長さを変更す
る通路長さ可変手段9が構成されている。このケーシン
グ22はエンジン1のシリンダヘッド6に締結される吸
気マニホールドを形成し、各気筒に対応してそれぞれ結
合された吸気通路3の延長部分がケーシング22の周方
向に沿って形成されている。また、回転部材23は内部
空間がスロットル弁4下流の拡張室、換言すれば、吸気
保持空間としての実質的なサージタンクを構成するもの
であり、一端面の中心に開口部23aが開設され、この
開口部23aがスロットル弁4を備えた上流側の吸気通
路3に連通して吸気入口となり、回転部材23の円筒状
外周面はその内部空間と外周部の吸気通路3とを区画す
るとともに、ケーシング22の隣接する気筒に対する吸
気通路3の内壁面に接して各吸気通路3を気筒ごとに独
立させている。該回転部材23の局面には各気筒に対す
る吸気通路3に連通ずる出口側の連通口23bが開設さ
れ、回転部材23の回転位置に対応して内部空間と吸気
通路3との連通位置が変更し、これによってサージタン
ク5から各気筒に至る吸気通路3の長さが可変となるよ
うに構成されている。
The surge tank 5 is formed by a casing 22 and a cylindrical rotating member 23 rotatably installed inside the casing 22, and the surge tank 5 is provided with a passage length variable means 9 for changing the passage length of the intake passage 3. It is configured. This casing 22 forms an intake manifold fastened to the cylinder head 6 of the engine 1, and extended portions of the intake passages 3 connected to each cylinder are formed along the circumferential direction of the casing 22, corresponding to each cylinder. Further, the internal space of the rotating member 23 constitutes an expansion chamber downstream of the throttle valve 4, in other words, a substantial surge tank serving as an intake air holding space, and an opening 23a is opened at the center of one end surface. This opening 23a communicates with the upstream intake passage 3 provided with the throttle valve 4 and serves as an intake inlet, and the cylindrical outer peripheral surface of the rotating member 23 partitions the internal space and the intake passage 3 on the outer periphery. Each intake passage 3 is made independent for each cylinder by being in contact with the inner wall surface of the intake passage 3 for adjacent cylinders of the casing 22. A communication port 23b on the outlet side that communicates with the intake passage 3 for each cylinder is provided on the surface of the rotating member 23, and the communication position between the internal space and the intake passage 3 changes in accordance with the rotational position of the rotating member 23. As a result, the length of the intake passage 3 from the surge tank 5 to each cylinder is made variable.

上記回転部材23の他端面にはケーシング22の外方に
突出する軸部23cが連接され、この軸部23cと開口
部23aの周囲でケーシング22に回転可能に支承され
る一方、軸部23Gの端部に固着された入力用のギヤー
24にモータ25の出力軸に固着されたギヤー26が噛
合されて、回転部材23の回転作動によって吸気通路長
さを変更する駆動手段27が構成されている。上記モー
タ25は制御手段15(コントロールユニット)からの
制御信号によって駆動制御される。
A shaft portion 23c protruding outward of the casing 22 is connected to the other end surface of the rotating member 23, and is rotatably supported by the casing 22 around the shaft portion 23c and the opening 23a. A gear 26 fixed to the output shaft of a motor 25 is meshed with an input gear 24 fixed to the end, thereby forming a driving means 27 that changes the length of the intake passage by the rotational operation of the rotating member 23. . The motor 25 is driven and controlled by a control signal from the control means 15 (control unit).

また、上記サージタンク5下流の吸気通路3には、吸気
ボート7に近接した位置に、通路面積を変更して吸気流
速を変更する調整弁28が配設されて通路面積変更手段
10が構成され、上記調整弁28は操作ロッド29に連
係され、この操作ロッド29のアクチュエータ30によ
る作動にともなって回動するように構成されている。上
記アクチュエータも前記制御手段15からの制御信号に
よって駆動制御される。
Further, in the intake passage 3 downstream of the surge tank 5, a regulating valve 28 for changing the passage area and changing the intake flow velocity is disposed at a position close to the intake boat 7, thereby forming passage area changing means 10. The regulating valve 28 is connected to an operating rod 29 and is configured to rotate as the operating rod 29 is operated by an actuator 30. The actuator is also driven and controlled by a control signal from the control means 15.

上記制御手段15には前例と同様に回転数センサー16
からのエンジン回転数信号および負荷センサー17から
の負荷信号が入力され、該制御手段15はエンジン回転
数の変動に対応して吸気通路長さを変更する通路長さ可
変手段9の駆動手段27および前記吸気通路面積を変更
する通路面積変更手段10を駆動制御し、吸気流速が最
適範囲内にあるように略一定に保つとともに、吸気通路
3の気柱振動数とエンジン回転数に基づく吸気期間の周
期とが同調して吸気慣性効果が最大となる値に吸気通路
面積および吸気通路長さを調整するものである。
The control means 15 includes a rotation speed sensor 16 as in the previous example.
The control means 15 receives the engine speed signal from the engine speed signal and the load signal from the load sensor 17, and the control means 15 controls the drive means 27 of the passage length variable means 9 which changes the length of the intake passage in response to fluctuations in the engine speed. The passage area changing means 10 for changing the intake passage area is driven and controlled to keep the intake flow velocity substantially constant within the optimum range, and to adjust the intake period based on the air column frequency of the intake passage 3 and the engine rotation speed. The intake passage area and the intake passage length are adjusted to values that synchronize with the cycle and maximize the intake inertia effect.

この実施例における制御手段15による通路長さ可変手
段9および通路面積変更手段10の制御は、基本的には
前例と同様であるが、前例では通路面積変更手段10に
よってサージタンク5下流の吸気通路全体の通路面積を
変更するようにしていたのに対し、この例では吸気ボー
ト7近傍の一部の吸気通路3のみ通路面積を変更するよ
うにしたものであって、この通路面積の変更による気柱
振動数への影響が前例よりも少なく、そのため、エンジ
ン回転数の変動に対して最適吸気流速を得るべく通路面
積変更手段10の調整弁28を作動させても、それによ
って吸気慣性の同調条件の変動は少なく、最大吸気慣性
効果を得るための同調状態への調整は主に通路長さ可変
手段9による通路長さの変更によって行うものである。
The control of the passage length variable means 9 and the passage area changing means 10 by the control means 15 in this embodiment is basically the same as the previous example, but in the previous example, the passage area changing means 10 controls the intake passage downstream of the surge tank 5. Whereas the entire passage area was changed, in this example, the passage area of only a part of the intake passage 3 near the intake boat 7 is changed, and the passage area is changed by changing the passage area. The influence on the column frequency is smaller than in the previous example, and therefore, even if the regulating valve 28 of the passage area changing means 10 is operated to obtain the optimum intake flow velocity with respect to fluctuations in engine speed, the tuning condition of the intake inertia will be changed accordingly. There is little variation, and adjustment to the synchronized state for obtaining the maximum intake inertia effect is mainly performed by changing the passage length using the passage length variable means 9.

したがつて、通路長さ可変手段9の作動によって、通路
長さを変更して同調状態を得た後、通路面積を変更して
吸気流速を調整しても同調状態は殆ど変化しない。
Therefore, even if the passage length is changed to obtain a synchronized state by operating the passage length variable means 9, the synchronized state will hardly change even if the passage area is changed to adjust the intake flow rate.

実施例3 本例は第4図に示し、前例と同様の通路長さ変更手段1
0を備えているのに対し、サージタンク5下流の吸気通
路3に配設した移動部材31をリンク32を介してアク
チュエータ33で作動し、吸気ボート7近傍だけでなく
その上流部分についても通路面積を変更するようにした
通路面積変更手段10を備えてなり、この例においては
第1実施例と同様に、通路面積の変更に伴って吸気流速
が変化するとともに、気柱振動が変化するようにしたこ
とにより、同調範囲が拡大して一層幅の広いエンジン回
転数で大きな吸気慣性効果による出方向上が行えるもの
である。
Embodiment 3 This example is shown in FIG. 4, and includes passage length changing means 1 similar to the previous example.
0, the movable member 31 disposed in the intake passage 3 downstream of the surge tank 5 is actuated by an actuator 33 via a link 32, and the passage area is increased not only near the intake boat 7 but also in its upstream portion. In this example, as in the first embodiment, the air column vibration is changed so that the intake flow velocity changes and the air column vibration changes as the passage area changes. As a result, the tuning range is expanded and the engine speed can be increased over a wider range of engine speeds due to the large intake inertia effect.

その他は前例と同様に構成され、同一構造には同一符号
を付してその説明を省略する。
The rest of the structure is the same as in the previous example, and the same structures are given the same reference numerals and their explanations will be omitted.

よって、上記各実施例においては、通路面積の変更によ
って吸気流速を最適範囲Aに維持するとともに、吸気慣
性効果を得るべく通路長さを変動させることから、吸気
慣性効果を最大限に利用して充填効率の向上を図ること
ができ、広い範囲において大きな吸気慣性効果を得て出
力が向上できるものである。特に、低回転域では吸気通
路面積を小さくして吸気流速を維持し、燃焼室内での燃
焼性能を改善することとができる。
Therefore, in each of the above embodiments, the intake flow velocity is maintained within the optimum range A by changing the passage area, and the passage length is varied to obtain the intake inertia effect, so that the intake inertia effect is utilized to the maximum. It is possible to improve filling efficiency, obtain a large intake inertia effect over a wide range, and improve output. Particularly in the low rotation range, the area of the intake passage can be reduced to maintain the intake flow velocity and improve the combustion performance within the combustion chamber.

また、上記第2および第3実施例では、吸気通路長さを
変更する通路長さ可変手段9をサージタンク5の周囲に
形成した吸気通路延長部と、これに沿って回転作動する
回転部材23とによって構成したことにより、全体をコ
ンパクトに形成して構造の簡略化が図れ、確実な作動を
確保することができる。
Further, in the second and third embodiments described above, the intake passage extension part in which the passage length variable means 9 for changing the intake passage length is formed around the surge tank 5, and the rotating member 23 that rotates along the intake passage extension part. With this construction, the entire structure can be made compact, the structure can be simplified, and reliable operation can be ensured.

一方、吸気通路面積および吸気通路長さを変更するだめ
の手段の作動は、上記実施例のようにエンジン回転数を
検出したコントロールユニットによる制御手段で行うほ
か、排気圧力に対応して作動するアクチュエータによっ
て駆動制御するなどエンジン回転数に相関関係のある信
号によって作動する手段が適宜採用可能である。
On the other hand, the actuation of the means for changing the intake passage area and the intake passage length is performed by a control means by a control unit that detects the engine speed as in the above embodiment, or by an actuator that operates in response to exhaust pressure. It is possible to appropriately adopt means that operates based on a signal having a correlation with the engine rotation speed, such as drive control based on the engine speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における吸気装置を有す
るエンジンの要部断面正面図、第2図は第2の実施例に
おける吸気装置を有するエンジンの要部断面正面図、 第3図は第2図の11線に沿う断面図、第4図は第3の
実施例にお1ノる吸気装置を有するエンジンの要部断面
正面図、 第5図は吸気通路の長さと面積を同時に変えたときの体
積効率と吸気通路内の平均流速との関係を示す特性図で
ある。 1・・・・・・エンジン 3・・・・・・吸気通路5・
・・・・・サージタンク 7・・・・・・吸気ボート9
・・・・・・通路長さ可変手段 10・・・・・・通路面積変更手段 15・・・・・・制御手段 笛 1!!I 笥 4 図 @5図 小−吸気褒滲一入
FIG. 1 is a cross-sectional front view of a main part of an engine having an intake system according to a first embodiment of the present invention, FIG. 2 is a front cross-sectional view of a main part of an engine having an intake system according to a second embodiment, and FIG. is a sectional view taken along line 11 in Fig. 2, Fig. 4 is a sectional front view of the main part of an engine having an intake device according to the third embodiment, and Fig. 5 shows the length and area of the intake passage at the same time. FIG. 7 is a characteristic diagram showing the relationship between the volumetric efficiency and the average flow velocity in the intake passage when changing the volumetric efficiency. 1...Engine 3...Intake passage 5.
... Surge tank 7 ... Intake boat 9
... Passage length variable means 10 ... Passage area changing means 15 ... Control means whistle 1! ! I 笥 4 Figure @ 5 Figure small - intake reward 1 piece

Claims (1)

【特許請求の範囲】[Claims] (1)気筒に至る吸気通路長さを可変とする通路長さ可
変手段を設けるとともに、少なくとも吸気ボート近傍の
吸気通路の通路面積を変更する通路面積変更手段を設け
、平均吸気流速を最適範囲内に略一定に保つように吸気
通路面積を調整するべくエンジン回転数に対応して上記
通路面積変更手段を作動制御するとともに、エンジン回
転数と気柱振動数とを同調させて吸気慣性効果を得るよ
うに吸気通路長さを調整するべくエンジン回転数に対応
して上記吸気通路長さ可変手段を作動制御するMI11
手段を設けたことを特徴とするエンジンの吸気装置。
(1) In addition to providing a passage length variable means for varying the length of the intake passage leading to the cylinder, at least a passage area changing means for changing the passage area of the intake passage near the intake boat is provided to keep the average intake flow velocity within the optimum range. In order to adjust the intake passage area so as to keep it substantially constant, the passage area changing means is operated and controlled in accordance with the engine rotation speed, and the engine rotation speed and the air column vibration frequency are synchronized to obtain an intake inertia effect. MI11 for controlling the operation of the intake passage length variable means in accordance with the engine speed in order to adjust the intake passage length as shown in FIG.
An engine intake device characterized by being provided with a means.
JP59014899A 1984-01-30 1984-01-30 Suction device for engine Granted JPS60159332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014899A JPS60159332A (en) 1984-01-30 1984-01-30 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014899A JPS60159332A (en) 1984-01-30 1984-01-30 Suction device for engine

Publications (2)

Publication Number Publication Date
JPS60159332A true JPS60159332A (en) 1985-08-20
JPH0578648B2 JPH0578648B2 (en) 1993-10-29

Family

ID=11873834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014899A Granted JPS60159332A (en) 1984-01-30 1984-01-30 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS60159332A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858214A (en) * 1971-11-25 1973-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4858214A (en) * 1971-11-25 1973-08-15

Also Published As

Publication number Publication date
JPH0578648B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
EP1818523B1 (en) Control of engine intake system
JPS60159332A (en) Suction device for engine
JPH0578651B2 (en)
JPH062550A (en) Intake control device for internal combustion engine
JPS60159333A (en) Suction device for engine
JPH071009B2 (en) Engine intake control device
JPS60156927A (en) Suction device for engine
JPH0578646B2 (en)
JPS60156930A (en) Suction device for engine
JPH0578647B2 (en)
JPS60156928A (en) Suction device for engine
JPS60156929A (en) Suction device for engine
JPH0587645B2 (en)
JPH0778371B2 (en) Engine intake system
KR200149879Y1 (en) Intake apparatus in engine
RU2028482C1 (en) Device for automatic control of gas-turbine engine
JP2000186561A (en) Variable intake system of engine
JPS6285120A (en) Air intake device for engine
JP2845984B2 (en) Engine pumping loss reduction device
JPH033068B2 (en)
RU2121069C1 (en) Speed governor for supercharged internal combustion engine
JPH06307248A (en) Intake air amount control device for internal combustion engine
JPH0380966B2 (en)
JPH0742860B2 (en) Engine intake system
JPS60184926A (en) Intake device for engine