JPH033068B2 - - Google Patents

Info

Publication number
JPH033068B2
JPH033068B2 JP57216338A JP21633882A JPH033068B2 JP H033068 B2 JPH033068 B2 JP H033068B2 JP 57216338 A JP57216338 A JP 57216338A JP 21633882 A JP21633882 A JP 21633882A JP H033068 B2 JPH033068 B2 JP H033068B2
Authority
JP
Japan
Prior art keywords
tubular member
resonator
actuator
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57216338A
Other languages
Japanese (ja)
Other versions
JPS59105959A (en
Inventor
Toshiichi Sawada
Yasuhiko Fukami
Shuzo Nishikori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57216338A priority Critical patent/JPS59105959A/en
Priority to US06/559,242 priority patent/US4539947A/en
Priority to EP83112430A priority patent/EP0111336B1/en
Priority to DE8383112430T priority patent/DE3376862D1/en
Publication of JPS59105959A publication Critical patent/JPS59105959A/en
Publication of JPH033068B2 publication Critical patent/JPH033068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/003Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
    • F01N1/006Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages comprising at least one perforated tube extending from inlet to outlet of the silencer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10013Means upstream of the air filter; Connection to the ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1222Flow throttling or guiding by using adjustable or movable elements, e.g. valves, membranes, bellows, expanding or shrinking elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1255Intake silencers ; Sound modulation, transmission or amplification using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の回転数に同期して共鳴周波
数を可変にする共鳴器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resonator whose resonance frequency is varied in synchronization with the rotational speed of an internal combustion engine.

従来の共鳴器は第1図の如く構成されていた。
即ち、従来型の共鳴器18は吸気ダクト13の途
中に装着され、吸気ダクト13の内側吸入路14
と連通する管状部材15′とこの管状部材15′の
端面が開口する共鳴室17とから構成されてい
た。そして、この共鳴器18の共鳴周波数pは、 p=C/2π・√24(+0.8)…(1) で求められる。
A conventional resonator was constructed as shown in FIG.
That is, the conventional resonator 18 is installed in the middle of the intake duct 13 and is connected to the inner intake passage 14 of the intake duct 13.
It consisted of a tubular member 15' that communicates with the resonator chamber 17, and a resonance chamber 17 that is open at the end surface of the tubular member 15'. The resonant frequency p of this resonator 18 is determined by p=C/2π·√ 2 4 (+0.8) (1).

ここで、Dは連通管状部材15′の内径、lは
連通管状部材15′の長さ、Vは共鳴室17の内
容積である。従つて、従来の共鳴器では、その構
造から共鳴周波数pが一律に決まつてしまい、
その特定共鳴周波数pでのみ減衰効果が得られ
ている。
Here, D is the inner diameter of the communicating tubular member 15', l is the length of the communicating tubular member 15', and V is the internal volume of the resonance chamber 17. Therefore, in a conventional resonator, the resonant frequency p is uniformly determined due to its structure.
The damping effect is obtained only at that specific resonance frequency p.

本発明は、特定の単一共鳴周波数のみ得られる
従来の共鳴器に対して、(1)式で示される連通管状
部材の長さl、およびその開口断面積を同時に変
えることにより共鳴周波数を可変とし、制御可能
な周波数範囲を広げようとするものである。
In contrast to conventional resonators that can obtain only a specific single resonant frequency, the present invention allows the resonant frequency to be varied by simultaneously changing the length l of the communicating tubular member expressed by equation (1) and the cross-sectional area of its opening. The aim is to expand the controllable frequency range.

即ち、(1)式で共鳴器の共鳴周波数pを変化さ
せるには、連通管状部材の形状すなわち管状部材
の内径D及び長さl、もしくは共鳴室容積Vを変
えればよい。しかし通常共鳴室容積は可能な限り
大きくとられ、共鳴室容積を可変型にして制御す
ることは技術的に難しい為、本発明では形状が簡
単な連通管状部材の長さl、およびその開口断面
積S(S=π/4D2)を変えるという構成を採用し た。
That is, in order to change the resonant frequency p of the resonator in equation (1), it is sufficient to change the shape of the communicating tubular member, that is, the inner diameter D and length l of the tubular member, or the resonance chamber volume V. However, the volume of the resonance chamber is usually set as large as possible, and it is technically difficult to control the volume of the resonance chamber by making it variable. A configuration was adopted in which the area S (S=π/4D 2 ) was changed.

以下、本発明に係る共鳴器を内燃機関吸気系に
おける吸気騒音消音装置として用いた一実施例を
第2図に基づいて説明する。図中1はピストン2
を摺動自在に嵌装したシリンダで、その上部はシ
リンダヘツド3で覆われており、また、シリンダ
ヘツド3には吸入弁4、排気弁5で周期的に開閉
される吸入口6、及び排気口7が形成されてい
る。そして排気口7は排気通路8を介して排気管
に連通し、この排気管には排気消音を行なう消音
器(図示せず)が設けられている。
An embodiment in which a resonator according to the present invention is used as an intake noise muffling device in an internal combustion engine intake system will be described below with reference to FIG. 1 in the figure is piston 2
The upper part of the cylinder head 3 is covered with a cylinder head 3, and the cylinder head 3 has an intake valve 4, an intake port 6 which is periodically opened and closed by an exhaust valve 5, and an exhaust valve. A mouth 7 is formed. The exhaust port 7 communicates with an exhaust pipe via an exhaust passage 8, and this exhaust pipe is provided with a muffler (not shown) for muffling exhaust noise.

一方吸入口6は、吸気通路9、及びキヤブレタ
10(デイーゼル車の場合キヤブレタ10は存在
しない)を介して吸入空気の浄化を行なうエアク
リーナ11に接続されている。そしてエアクリー
ナ11の上流端には吸入管12が取り付けられて
おり、この吸入管12の先端には吸気ダクト13
が接続され、吸気ダクト13の先端開口部13a
は、大気に開口している。
On the other hand, the intake port 6 is connected to an air cleaner 11 that purifies intake air via an intake passage 9 and a carburetor 10 (the carburetor 10 does not exist in the case of a diesel vehicle). A suction pipe 12 is attached to the upstream end of the air cleaner 11, and an intake duct 13 is attached to the tip of this suction pipe 12.
is connected to the tip opening 13a of the intake duct 13.
is open to the atmosphere.

この吸入管12、もしくは吸気ダクト13(本
実施例では吸気ダクト13)の途中には管状部材
15が分岐している。管状部材15の一端は吸気
ダクト13内の吸入路14と連通し、他端は密閉
空間よりなる共鳴室17に開口している。そして
管状部材15は一端側から他端側に向けて開口面
積が増大するテーパ形状となつている。そして、
この管状部材15と共鳴室17とにより共鳴器1
8が形成される。固定テーパ管状部材15の内側
にはその内壁と同一のテーパ角度形状の外壁を有
する可動部材16が、共鳴器18の固定テーパ管
状部材15と対向した側に固定されたリニアアク
チユエータ19のシヤフト20に固定されてい
る。尚、吸気ダクト13、固定テーパ管状部材1
5、可動部材16、及び共鳴室17は、樹脂成形
品である。従つて、前記吸気ダクト13、固定テ
ーパ管状部材15、および共鳴室17の固定は接
着、ねじ止め、かしめ、溶着など適宜の手段によ
り行なわれる。
A tubular member 15 branches off in the middle of the suction pipe 12 or the suction duct 13 (intake duct 13 in this embodiment). One end of the tubular member 15 communicates with the suction passage 14 in the intake duct 13, and the other end opens into a resonance chamber 17 which is a closed space. The tubular member 15 has a tapered shape in which the opening area increases from one end to the other end. and,
The resonator 1 is formed by this tubular member 15 and the resonance chamber 17.
8 is formed. A movable member 16 having an outer wall having the same taper angle as the inner wall of the fixed tapered tubular member 15 is attached to the shaft of a linear actuator 19 fixed to the side of the resonator 18 facing the fixed tapered tubular member 15. It is fixed at 20. In addition, the intake duct 13, the fixed tapered tubular member 1
5, the movable member 16, and the resonance chamber 17 are resin molded products. Therefore, the intake duct 13, fixed tapered tubular member 15, and resonance chamber 17 are fixed by appropriate means such as adhesion, screwing, caulking, and welding.

リニアアクチユエータ19は軸方向の位置制御
が電気的に容易、かつ精度良く行なえるようなア
クチユエータ、例えばステツプモータを用いてい
る。そして、内燃機関の回転検出器(図示せず)
からの回転信号を基にコントロールコンピユータ
21により機関回転に同期した共鳴周波数を計算
し、その計算に基づいた電気信号がリニアアクチ
ユエータ19に印加される様になつている。その
為、アクチユエータ19のシヤフト20に固定さ
れた可動部材16は、コンピユータ21からの電
気信号に対応した量だけ図中の上下に移動する。
そして、この移動に伴なつて固定テーパ管状部材
15の内壁と可動部材16の外壁で囲まれた隙間
22の断面積が可変制御される。
The linear actuator 19 uses an actuator that can electrically easily and accurately control the position in the axial direction, such as a step motor. and an internal combustion engine rotation detector (not shown)
The control computer 21 calculates a resonance frequency synchronized with the engine rotation based on the rotation signal from the engine, and an electric signal based on the calculation is applied to the linear actuator 19. Therefore, the movable member 16 fixed to the shaft 20 of the actuator 19 moves up and down in the figure by an amount corresponding to the electrical signal from the computer 21.
Along with this movement, the cross-sectional area of the gap 22 surrounded by the inner wall of the fixed tapered tubular member 15 and the outer wall of the movable member 16 is variably controlled.

次に上記共鳴器18による共鳴周波数可変方法
について説明する。
Next, a method of varying the resonance frequency using the resonator 18 will be explained.

第3図は共鳴室容積V=2000c.c.、連通管状部材
の開口断面積S=310mm2とした場合の連通管状部
材長さlの変化に対応する共鳴周波数の対応を(1)
式より求めたものであり、第4図は共鳴室容積V
=2000c.c.、連通管状部材長さl=46mmとした場合
の連通管状部材の開口断面積Sの変化に対する共
鳴周波数の対応を求めたものである。
Figure 3 shows the response of the resonance frequency to the change in the length l of the communicating tubular member when the resonance chamber volume V = 2000 c.c. and the opening cross-sectional area of the communicating tubular member S = 310 mm 2 (1)
It is obtained from the formula, and Figure 4 shows the resonance chamber volume V
= 2000 c.c., and the length l of the communicating tubular member was 46 mm.

この第3図、第4図より明らかな様に共鳴周波
数を高く変化させるためには、連通管状部材15
の長さlを短くし、又、開口断面積Sを大きくす
ればよい。
As is clear from FIGS. 3 and 4, in order to increase the resonance frequency, the communication tubular member 15
It is sufficient to shorten the length l and increase the opening cross-sectional area S.

そこで、上記構成の共鳴器18では第2図に示
すように連通管状部材形状を固定テーパ管状部材
15とすると共に、この管状部材15内に同じく
テーパ形状をした可動部材16を配設する構造と
し、可動部材16をリニアアクチユエータ19に
より上下に移動させることにより、連通管状部材
の実質長さl、および実質開口断面積Sを同時に
可変制御する様にしているのである。
Therefore, in the resonator 18 having the above configuration, as shown in FIG. 2, the communicating tubular member is formed into a fixed tapered tubular member 15, and a movable member 16 having the same tapered shape is disposed within this tubular member 15. By moving the movable member 16 up and down by the linear actuator 19, the substantial length l and the substantial opening cross-sectional area S of the communicating tubular member are simultaneously variably controlled.

この可変制御を第5図、第6図を用いて更に詳
細に説明する。第5図は連通管状部材の固定テー
パ管状部材15と可動部材16の初期設定位置を
示すものであり、連通通路22の開口面積S0は固
定テーパ管状部材15の内壁と固定テーパ管状部
材16の外壁の隙間22にて形成される。従つて
この時の共鳴周波数lは、固定テーパ管状部材1
5、可動部材16が重なり合う長さl0を連通管長
さlとし、又両テーパ管隙間の平均開口断面積S0
を連通管開口断面積Sとすることにより決まる。
第6図は可動部材16をリニアアクチユエータ1
9にてXmm移動させた場合を示すが、この場合に
は実質連通管長さlは可動部材16が重なり合う
長さl1となり、又実質連通管開口断面積Sは可動
部材16外周の隙間S1となる。従つてこの場合に
は初期設定位置と比べてl1<l0,S1>S0となり、
共鳴周波数は初期設定位置で得られるlより高く
なる。
This variable control will be explained in more detail using FIGS. 5 and 6. FIG. 5 shows the initial setting positions of the fixed tapered tubular member 15 and the movable member 16 of the communicating tubular member. It is formed by a gap 22 in the outer wall. Therefore, the resonance frequency l at this time is the fixed taper tubular member 1.
5. Let the length l 0 of the overlapping movable member 16 be the communicating pipe length l, and the average opening cross-sectional area of the gap between both tapered pipes S 0
It is determined by setting S to the cross-sectional area of the communicating tube opening.
FIG. 6 shows the movable member 16 connected to the linear actuator 1.
9 shows the case where the moving member 16 is moved by X mm. In this case, the actual communication tube length l is the length l 1 where the movable member 16 overlaps, and the actual communication tube opening cross-sectional area S is the gap S 1 on the outer periphery of the movable member 16. becomes. Therefore, in this case, compared to the initial setting position, l 1 < l 0 and S 1 > S 0 ,
The resonant frequency will be higher than l obtained at the initial setting position.

この様にして共鳴周波数の可変範囲は、初期設
定位置で決まる下限共鳴周波数lから、可動テー
パ管状部材を移動するリニアアクチユエータ19
のストローク変化量で規定される上限共鳴周波数
hまで変えることができる。
In this way, the variable range of the resonant frequency is determined by the linear actuator 19 that moves the movable tapered tubular member from the lower limit resonant frequency l determined by the initial setting position.
Upper resonant frequency defined by stroke change amount
It can be changed up to h.

第7図は共鳴室17の容積V=2000c.c.、固定テ
ーパ管状部材15の一端側直径(第8図図示)
Dp=20mm、固定テーパ管状部材15の長さlp=
40mmとし、かつ固定テーパ管状部材15のテーパ
角θを40゜としたものと60゜としたものについて、
可動部材16のストロークXを可変して、共鳴周
波数を測定した実験結果である。この実験結果よ
り明らかな様にテーパ角度θが大きい程、移動ス
トロークXに対する共鳴周波数の変化が大きく、
テーパ角度60゜のものは20mmで共鳴周波数を50Hz
から180Hzまで変化させることができる。即ち、
本例のものでは必要共鳴周波数の変位域に対し
て、連通管状部材の実質長さlおよび実質開口断
面積Sを同時に可変制御しているために可動部材
16のストロークX変化量を小さくすることがで
きる。
Figure 7 shows the volume V of the resonance chamber 17 = 2000 c.c., and the diameter of one end of the fixed tapered tubular member 15 (as shown in Figure 8).
Dp=20mm, length lp of fixed tapered tubular member 15=
40 mm, and the taper angle θ of the fixed tapered tubular member 15 is 40° and 60°,
These are the results of an experiment in which the resonance frequency was measured while varying the stroke X of the movable member 16. As is clear from this experimental result, the larger the taper angle θ, the larger the change in resonance frequency with respect to the moving stroke X.
The one with a taper angle of 60° has a resonance frequency of 50Hz at 20mm.
It can be changed from 180Hz to 180Hz. That is,
In this example, since the actual length l and the actual opening cross-sectional area S of the communicating tubular member are simultaneously variably controlled in the displacement range of the required resonance frequency, the amount of change in the stroke X of the movable member 16 can be made small. Can be done.

尚、上述の説明から明らかな様に、本例の共鳴
器18の共鳴周波数の可変範囲は可動部材16の
移動ストロークXで決まるが、さらには第8図に
示した諸元、すなわちテーパ角度θ固定テーパ管
状部材高さlp、その開口径Dpおよび共鳴室容積
Vを適切に選定することにより、同じ移動ストロ
ーク量Xでも共鳴周波数の可変範囲を希望すべき
範囲にチユーニングすることができる。
As is clear from the above description, the variable range of the resonant frequency of the resonator 18 of this example is determined by the movement stroke X of the movable member 16, but it is also determined by the specifications shown in FIG. By appropriately selecting the height lp of the fixed tapered tubular member, its opening diameter Dp, and the resonance chamber volume V, it is possible to tune the variable range of the resonance frequency to a desired range even with the same moving stroke amount X.

次に上記作用を行なう共鳴器18を実際に内燃
機関の回転数に同期して使用する例を説明する。
第2図に示す様に内燃機関の回転信号(例えばデ
イストリビユータ又はクランクプーリ等から得ら
れる)がマイクロコンピユータを応用したコント
ロールコンピユータ21に入力され、コンピユー
タ21内で機関回転数が読み取られる。そして、
その周波数成分に対応する共鳴周波数が得られる
ようにアクチユエータへ駆動信号を送りシヤフト
20を介して可動部材16をスライド移動させ共
鳴周波数を変える。以上の制御フローチヤートを
第9図に示す。
Next, an example will be described in which the resonator 18 that performs the above operation is actually used in synchronization with the rotational speed of the internal combustion engine.
As shown in FIG. 2, a rotation signal of the internal combustion engine (obtained from a distributor or a crank pulley, for example) is input to a control computer 21 using a microcomputer, and the engine rotation speed is read within the computer 21. and,
A drive signal is sent to the actuator and the movable member 16 is slid through the shaft 20 to change the resonance frequency so that a resonance frequency corresponding to the frequency component is obtained. The above control flowchart is shown in FIG.

この様に制御するため、内燃機関の回転数の上
昇、下降に対してもリニアアクチユエータ19
を、正、逆方向に移動させ、常に回転数に同期し
て共鳴周波数を可変にできるようにすることがで
きる。又、機関回転数の同期信号としては、第1
0図に示すように共鳴周波数可変範囲lからhま
で機関回転数に対して直線的に連続して同期させ
たり、又階段状に同期させたり、コントロールコ
ンピユータにより自在に同期させることができ
る。
In order to control in this way, the linear actuator 19
can be moved in the forward and reverse directions so that the resonant frequency can be varied in synchronization with the rotational speed. In addition, as a synchronization signal for the engine speed, the first
As shown in Figure 0, the resonant frequency variable range from l to h can be linearly and continuously synchronized with respect to the engine speed, or can be synchronized stepwise, or synchronized freely by the control computer.

第11図は上記共鳴器18を内燃機関(4サイ
クル4気筒)に用いたことによる吸気騒音低減効
果を示す。図中細線イは共鳴器18を装着しない
時の吸気騒音で4000回転から4800回転付近に大き
な騒音ピークが存在し問題となつている。この騒
音ピークは、機関回転数の2次成分、すなわち
133Hzから160Hzが支配的である。従つて共鳴器1
8の共鳴周波数可変範囲を第7図に示したテーパ
角θ=60゜にてリニアアクチユエータ19のスト
ローク量X=10mmで100Hzから160Hzまで可変にで
きる諸元に選定し、機関回転数3000回転から4800
回転まで同期して可変することにより図中太線ハ
で示すように従来型の共鳴器装着(図中一点鎖線
ロ)より前記回転域で大幅に吸気騒音を低減する
ことができる。
FIG. 11 shows the effect of reducing intake noise by using the resonator 18 in an internal combustion engine (4-cycle, 4-cylinder). The thin line A in the figure represents intake noise when the resonator 18 is not installed, and there is a large noise peak around 4000 to 4800 rotations, which is a problem. This noise peak is the second-order component of the engine speed, i.e.
133Hz to 160Hz is dominant. Therefore, resonator 1
The resonant frequency variable range of 8 was selected to be variable from 100Hz to 160Hz with the taper angle θ = 60° and the stroke amount of the linear actuator 19 = 10mm as shown in Fig. 7, and the engine speed was 3000. 4800 from rotation
By synchronously varying up to the rotation, intake noise can be significantly reduced in the rotation range, as shown by the bold line C in the figure, compared to the conventional resonator installation (dotted chain line B in the figure).

尚、本例の共鳴器18は併せて次の効果を奏す
ることもできる。
Note that the resonator 18 of this example can also provide the following effects.

即ち、吸気径の吸入空気の吸入通路管の固有共
振振動数と吸入弁の開閉振動数を一致させると多
量の混合気体(燃料と吸入空気)がシリンダ内に
吸入されるのはよく知られており、その為従来で
は吸入管長さを、内燃機関のある回転数で共振が
得られるよう選定し、その回転時の機関出力を高
めている。そこで、共鳴器18を前記吸入管の途
中に装着し、この共鳴周波数を可変にすることに
より吸入管全体の固有共振振動数を変化させ吸入
弁4の開閉タイミングと同期させれば内燃機関の
全回転域に於いて出力を高める手段として使用す
ることもできる。
In other words, it is well known that if the natural resonance frequency of the intake air intake passage pipe with the intake diameter matches the opening/closing frequency of the intake valve, a large amount of mixed gas (fuel and intake air) will be sucked into the cylinder. Therefore, conventionally, the length of the intake pipe is selected so as to obtain resonance at a certain rotation speed of the internal combustion engine, thereby increasing the engine output at that rotation speed. Therefore, by installing a resonator 18 in the middle of the suction pipe and making the resonant frequency variable, the natural resonance frequency of the entire suction pipe can be changed and synchronized with the opening/closing timing of the intake valve 4. It can also be used as a means to increase output in the rotation range.

尚、上述の例は本発明の望ましい態様である
が、本発明は上記例以外にも種々の態様がある。
Note that, although the above-mentioned examples are desirable embodiments of the present invention, the present invention has various embodiments other than the above-mentioned examples.

即ち、上述の例ではリニアアクチユエータ19
を共鳴器に装着したが、第12図に示す様に吸気
ダクト13側に装着してもよい。さらには第13
図に示すようにその装着性を考慮して共鳴器取付
部23を吸気ダクト13から分離して、自在にそ
の取付位置を変えることができるようにすること
も可能である。
That is, in the above example, the linear actuator 19
is attached to the resonator, but it may also be attached to the intake duct 13 side as shown in FIG. Furthermore, the 13th
As shown in the figure, it is also possible to separate the resonator mounting part 23 from the intake duct 13 in consideration of the ease of mounting, so that its mounting position can be changed freely.

また、上述の例では共鳴器18を1つのみ設け
ていたが、第14図に示す様に共鳴器18を複数
としても良い。この様に共鳴器18を複数設けた
場合、各共鳴器18の共鳴室容積V、連通管状部
材開口面積S、もしくは連通管状部材長さl(第
14図図示の例では容積U)を互いに異なるよう
にすれば、制御可能な共鳴周波数域を広げること
ができる。
Further, in the above example, only one resonator 18 was provided, but as shown in FIG. 14, a plurality of resonators 18 may be provided. When a plurality of resonators 18 are provided in this way, the resonance chamber volume V, the opening area S of the communicating tubular member, or the length l of the communicating tubular member (volume U in the example shown in FIG. 14) of each resonator 18 are different from each other. By doing so, the resonant frequency range that can be controlled can be expanded.

更に上述の実施例では共鳴器18を吸気系に配
設して、吸気騒音低減手段として用いたが、同一
構成の共鳴器を排気系へ配設して、排気騒音低減
装置として実施しても同様の効果が発揮できる。
Furthermore, in the above embodiment, the resonator 18 was arranged in the intake system and used as an intake noise reduction means, but a resonator with the same configuration could also be arranged in the exhaust system and implemented as an exhaust noise reduction device. A similar effect can be achieved.

以上説明した様に、本発明の共鳴器は、従来の
連通管状部材に対して、その構造を固定テーパ管
状部材と可動部材との2重構造とすることにより
両部材の隙間を連通通路とし、かつ可動部材をア
クチユエータに連動して移動させて、前記連通通
路の実質長さ、および実質開口断面積を同時に変
化(実質長さを短くすると同時に実質開口断面積
を大きくする)させるようにしたため、アクチユ
エータのわずかなストローク変化量で大きく共鳴
周波数を可変制御することができる。さらにアク
チユエータが内燃機関回転数に同期して駆動でき
るようにコントロールコンピユータにて制御して
いるため機関回転数に共鳴周波数を同期させ減衰
効果が得られる機関回転域を、大幅に広くするこ
とができる。
As explained above, the resonator of the present invention has a double structure of a fixed tapered tubular member and a movable member, in contrast to the conventional communicating tubular member, so that the gap between the two members is used as a communication passage. and the movable member is moved in conjunction with the actuator to simultaneously change the substantial length and the substantial opening cross-sectional area of the communication passage (shorten the substantial length and increase the substantial opening cross-sectional area at the same time); The resonance frequency can be greatly variably controlled with a small amount of stroke change of the actuator. Furthermore, since the actuator is controlled by a control computer so that it can be driven in synchronization with the internal combustion engine speed, it is possible to synchronize the resonance frequency with the engine speed and significantly widen the engine speed range in which a damping effect can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の共鳴器を示す断面図、第2図は
本発明の共鳴器の一実施例を内燃機関への装着状
態を示す断面図、第3図は共鳴器連通管状部材長
さと共鳴周波数との関係を示す説明図、第4図は
共鳴器連通管状部材開口断面積と共鳴周波数との
関係を示す説明図、第5図、第6図は第2図図示
共鳴器の共鳴周波数変化状態を示す断面図、第7
図は第2図図示共鳴器の可動部材の移動ストロー
クと可変周波数との関係を示す説明図、第8図は
第2図図示共鳴器の諸元を示す断面図、第9図は
第2図図示共鳴器の制御フローチヤート図、第1
0図は機関回転数と共鳴周波数の同期方法を示す
説明図、第11図は第2図図示共鳴器の吸気騒音
低減の効果を示す説明図、第12図、第13図、
第14図は夫々本発明の他の実施例を示す断面図
である。 1……内燃機関シリンダ、3……シリンダヘツ
ド、4……吸入弁、5……排気弁、6……吸入
口、9……吸気通路、12……吸入管、13……
吸気ダクト、14……吸入路、15……固定テー
パ管状部材、16……可動部材、17……共鳴
室、18……共鳴器、19……リニアアクチユエ
ータ、20……リニアアクチユエータシヤフト、
21……コントロールコンピユータ。
Fig. 1 is a sectional view showing a conventional resonator, Fig. 2 is a sectional view showing an embodiment of the resonator of the present invention installed in an internal combustion engine, and Fig. 3 is a resonator communication tubular member length and resonance. Figure 4 is an explanatory diagram showing the relationship between resonator communication tubular member opening cross-sectional area and resonance frequency. Figures 5 and 6 are diagrams showing changes in resonance frequency of the resonator shown in Figure 2. Sectional view showing the state, No. 7
The figures are explanatory diagrams showing the relationship between the movement stroke of the movable member of the resonator shown in Figure 2 and the variable frequency, Figure 8 is a sectional view showing the specifications of the resonator shown in Figure 2, and Figure 9 is the diagram shown in Figure 2. Illustrated resonator control flowchart, 1st
Figure 0 is an explanatory diagram showing a method of synchronizing the engine speed and resonance frequency, Figure 11 is an explanatory diagram showing the effect of reducing intake noise of the resonator shown in Figure 2, Figures 12, 13,
FIG. 14 is a sectional view showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1...Internal combustion engine cylinder, 3...Cylinder head, 4...Intake valve, 5...Exhaust valve, 6...Intake port, 9...Intake passage, 12...Intake pipe, 13...
Intake duct, 14... Suction path, 15... Fixed taper tubular member, 16... Movable member, 17... Resonance chamber, 18... Resonator, 19... Linear actuator, 20... Linear actuator shaft,
21...Control computer.

Claims (1)

【特許請求の範囲】 1 内燃機関のシリンダに通じる通路に一端が開
口した固定テーパ管状部材と、この固定テーパ管
状部材の他端に連通した密閉空間よりなる共鳴室
と、前記固定テーパ管状部材内に摺動自在に配設
されたテーパ形状の可動部材と、電気信号に基づ
いてこの可動部材を変位させるアクチユエータ
と、前記内燃機関の回転数を検出してこのアクチ
ユエータに出力する電気信号を制御するコントロ
ールコンピユータとを備える共鳴器。 2 前記固定テーパ管状部材の一端が吸気ダクト
に開口し、前記コントロールコンピユータが前記
内燃機関の回転数に応じた共鳴周波数を得るべく
前記アクチユエータに電気信号を出力する特許請
求の範囲第1項記載の共鳴器。 3 前記固定テーパ管状部材の一端が吸入管に開
口し、前記コントロールコンピユータが前記内燃
機関の吸入弁の開閉振動数に対応する共鳴周波数
を得るべく前記アクチユエータに電気信号を出力
する特許請求の範囲第1項記載の共鳴器。
[Scope of Claims] 1. A fixed tapered tubular member having one end open to a passage communicating with a cylinder of an internal combustion engine, a resonance chamber consisting of a sealed space communicating with the other end of the fixed tapered tubular member, and a resonance chamber formed within the fixed tapered tubular member. a tapered movable member slidably disposed on the movable member; an actuator that displaces the movable member based on an electric signal; and an actuator that detects the rotational speed of the internal combustion engine and controls an electric signal output to the actuator. A resonator comprising a control computer. 2. The device according to claim 1, wherein one end of the fixed tapered tubular member opens into an intake duct, and the control computer outputs an electric signal to the actuator to obtain a resonance frequency corresponding to the rotation speed of the internal combustion engine. resonator. 3. One end of the fixed tapered tubular member opens into an intake pipe, and the control computer outputs an electrical signal to the actuator to obtain a resonant frequency corresponding to an opening/closing frequency of an intake valve of the internal combustion engine. Resonator according to item 1.
JP57216338A 1982-12-09 1982-12-09 Resonator Granted JPS59105959A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57216338A JPS59105959A (en) 1982-12-09 1982-12-09 Resonator
US06/559,242 US4539947A (en) 1982-12-09 1983-12-08 Resonator for internal combustion engines
EP83112430A EP0111336B1 (en) 1982-12-09 1983-12-09 Resonator for internal combustion engines
DE8383112430T DE3376862D1 (en) 1982-12-09 1983-12-09 Resonator for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216338A JPS59105959A (en) 1982-12-09 1982-12-09 Resonator

Publications (2)

Publication Number Publication Date
JPS59105959A JPS59105959A (en) 1984-06-19
JPH033068B2 true JPH033068B2 (en) 1991-01-17

Family

ID=16686974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216338A Granted JPS59105959A (en) 1982-12-09 1982-12-09 Resonator

Country Status (1)

Country Link
JP (1) JPS59105959A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562054B2 (en) * 1989-05-29 1996-12-11 本田技研工業株式会社 Air intake noise reduction device for internal combustion engine
JP6030963B2 (en) * 2013-01-16 2016-11-24 富士重工業株式会社 Resonator structure
CN112282992A (en) * 2020-10-27 2021-01-29 浙江吉利控股集团有限公司 Silencing air intake system for vehicle

Also Published As

Publication number Publication date
JPS59105959A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
EP0111336B1 (en) Resonator for internal combustion engines
US7337877B2 (en) Variable geometry resonator for acoustic control
US4805573A (en) Engine with variable area intake passages
US4592310A (en) Intake device for internal combustion engine
JP3261964B2 (en) Variable intake device for internal combustion engine
JPH0543871B2 (en)
JPH033068B2 (en)
JPS59105958A (en) Resonator
JP4385585B2 (en) Internal combustion engine
JPS60216029A (en) Suction apparatus for engine
JPS60164610A (en) Suction device for engine
JPS59215913A (en) Resonator
JP3624540B2 (en) Engine intake system
JP2009127609A (en) Intake device for multi-cylinder internal combustion engine
JP2000248948A (en) Exhaust control method of engine and device thereof
JPS60166707A (en) Suction device of engine
JPS59108861A (en) Resonator
JPH02163411A (en) Exhaust controller for two-cycle engine
JPS61197714A (en) Intake device of multicylinder internal-combustion engine
JPS60159333A (en) Suction device for engine
JPH0424106Y2 (en)
JPS5941625A (en) Intake device for multicylinder internal-combustion engine
JPH01219315A (en) Variable air intake device for internal combustion engine
JPH0545769B2 (en)
JPH06307248A (en) Intake air amount control device for internal combustion engine