JPS59108861A - Resonator - Google Patents

Resonator

Info

Publication number
JPS59108861A
JPS59108861A JP21882282A JP21882282A JPS59108861A JP S59108861 A JPS59108861 A JP S59108861A JP 21882282 A JP21882282 A JP 21882282A JP 21882282 A JP21882282 A JP 21882282A JP S59108861 A JPS59108861 A JP S59108861A
Authority
JP
Japan
Prior art keywords
tubular member
resonator
combustion engine
internal combustion
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21882282A
Other languages
Japanese (ja)
Inventor
Toshiichi Sawada
沢田 敏一
Yasuhiko Fukami
靖彦 深見
Shuzo Nishikori
秀三 錦古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21882282A priority Critical patent/JPS59108861A/en
Priority to US06/559,242 priority patent/US4539947A/en
Priority to DE8383112430T priority patent/DE3376862D1/en
Priority to EP83112430A priority patent/EP0111336B1/en
Publication of JPS59108861A publication Critical patent/JPS59108861A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/003Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
    • F01N1/006Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages comprising at least one perforated tube extending from inlet to outlet of the silencer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1222Flow throttling or guiding by using adjustable or movable elements, e.g. valves, membranes, bellows, expanding or shrinking elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1255Intake silencers ; Sound modulation, transmission or amplification using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Abstract

PURPOSE:To increase the output in the all revolution range of an internal-combustion engine by varying the sectional area of the opening of a tubular member which communicates to an intake duct and a resonance chamber. CONSTITUTION:The revolution signal of an internal-combustion engine (e.g., obtained from a distributor or a crank pulley, etc.) is input into a control computer 20, and the number of engine revolution is read-out in the computer 20, and the dominant frequency component of the intake noise in each revolution is calculated. In order to obtain the resonance frequency corresponding to the above-described frequency component, a driving signal is sent into an actuator 18 to revolve a block 15b through a shaft 19, and resonance frequency is varied.

Description

【発明の詳細な説明】 本発明は内燃機関の回転数に同期して共鳴周波数を可能
にする共鳴器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resonator that allows a resonant frequency to be synchronized to the rotational speed of an internal combustion engine.

−従来の共鳴器は第1図の如く構成されていた。- A conventional resonator was constructed as shown in FIG.

即ち、従来型の共鳴器17は吸気ダクト13の途中に装
着され、吸気ダク)13の内側吸入路14と連通ずる管
状部材15とこの管状部材15の端面が開口する共鳴室
16とから構成されていた。
That is, the conventional resonator 17 is installed in the middle of the intake duct 13 and is composed of a tubular member 15 that communicates with the inner suction passage 14 of the intake duct 13, and a resonance chamber 16 in which the end surface of the tubular member 15 is open. was.

そして、この共鳴器17の共鳴周波数fPは、rp=C
/ 2 yr  S/V−Rp−・・if)請求11!
+うtLル。
The resonant frequency fP of this resonator 17 is rp=C
/ 2 yr S/V-Rp-...if) Claim 11!
+UtLru.

(S−πD 2/ 4.I2p = 1 +o、s D
)ここで、Sは連通管状部材の開口断面積、Dは連通管
状部材15′の内径、lは連通管状部材15′の長さ、
■は共鳴室16′の内容積である。
(S-πD 2/ 4.I2p = 1 +o, s D
) Here, S is the opening cross-sectional area of the communicating tubular member, D is the inner diameter of the communicating tubular member 15', l is the length of the communicating tubular member 15',
(2) is the internal volume of the resonance chamber 16'.

従って、従来の共鳴器では、その構造から共鳴周波数f
Pが一律に決まってしまい、その特定共鳴周波数fPで
のみ減衰効果が得られていた。
Therefore, in the conventional resonator, due to its structure, the resonant frequency f
P was fixed uniformly, and a damping effect was obtained only at that specific resonance frequency fP.

本発明は、特定の単一共鳴周波数のみ得られる従来の共
鳴器に対して、(1)式で示される連通管状部材の長さ
iを変えることにより共鳴周波数を可変とし、制御可能
な周波数範囲を拡げることを目的とするものである。
In contrast to conventional resonators that can obtain only a specific single resonant frequency, the present invention makes the resonant frequency variable by changing the length i of the communicating tubular member shown in equation (1), and allows controllable frequency range. The purpose is to expand the

即ち、(11式で共鳴周波数を変化させるには、連通管
状部材の形状、すなわち管状部材の内径D1及び長さ7
!P1もしくは共鳴室容積■を可変にすればよいが、管
状部材開口断面積Sを可変にする方法が最も容易、かつ
コンパクトにできるものと考え、本発明では管状部材開
口断面積Sを可変にする構成を採用したものである。
That is, (in order to change the resonance frequency using equation 11, the shape of the communicating tubular member, that is, the inner diameter D1 and length 7 of the tubular member)
! Although P1 or the volume of the resonance chamber (2) may be made variable, we believe that making the cross-sectional area S of the opening of the tubular member variable is the easiest and most compact method, and in the present invention, the cross-sectional area S of the opening of the tubular member is made variable. This configuration is adopted.

以下、本発明を内燃機関吸気系における吸気騒音消音装
置として用いた一実施例を第2図に基づいて説明する。
An embodiment in which the present invention is used as an intake noise muffling device in an internal combustion engine intake system will be described below with reference to FIG.

図中1はピストン2を摺動自在に嵌装したシリンダで、
その上部はシリンダヘッド3で覆われており、また、シ
リンダへソド3には吸入弁4、排気弁5で周期的に開閉
される吸入口6、及び排気ロアが形成されている。そし
て排気ロアは排気通路8を介して排気管に連通し、この
排気管には排気消音を行なう消音器(図示省略)が設け
られている。
In the figure, 1 is a cylinder in which a piston 2 is slidably fitted.
Its upper part is covered with a cylinder head 3, and the cylinder head 3 is formed with an intake valve 4, an intake port 6 which is periodically opened and closed by an exhaust valve 5, and an exhaust lower. The exhaust lower communicates with an exhaust pipe via an exhaust passage 8, and this exhaust pipe is provided with a muffler (not shown) for muffling exhaust noise.

一方吸入口6は、吸気通路9、及びキャプレタ10 (
ディーゼル車の場合、キャブレタ10は存在しない)を
介して吸入空気の浄化を行なうエアクリーナ11に接続
されている。そしてエアクリーナ11の上流端には吸入
管12が取り付けられており、この吸入管12の先端に
は吸気ダクト13が接続され、吸気ダクト13の先端開
口部13aは、大気に開口している。
On the other hand, the intake port 6 is connected to an intake passage 9 and a capretor 10 (
In the case of a diesel vehicle, the carburetor 10 is not present) and is connected to an air cleaner 11 that purifies intake air. A suction pipe 12 is attached to the upstream end of the air cleaner 11, an intake duct 13 is connected to the tip of the suction pipe 12, and a tip opening 13a of the intake duct 13 is open to the atmosphere.

この吸入管12、もしくは吸気ダクト13 (本実施例
では吸気ダクト13)の途中には管状部材15が分岐し
ている。管状部材15の一端は吸気ダクト13内の吸入
路14と連通し、他端は密閉空間よりなる共鳴室16に
開口している。そして、管状部材15と共鳴室16とに
より共鳴器17が形成される。
A tubular member 15 branches off in the middle of the suction pipe 12 or the suction duct 13 (intake duct 13 in this embodiment). One end of the tubular member 15 communicates with the suction passage 14 in the intake duct 13, and the other end opens into a resonance chamber 16 which is a closed space. A resonator 17 is formed by the tubular member 15 and the resonance chamber 16.

管状部材15は2重管構造となっており、その詳細を第
3.第4図に示す。環状部材15は所定開口部を有する
キャップ15fと、このキャップ15fを両端に装着す
る外側管状部材15aと、キャンプ15fに固定された
側板15Cと、外側管状部材15a内に配設された半円
筒状のブロック15bとにより構成される。そして、管
状部材15の通気路は外側管状部材15aの内壁とブロ
ック15bの壁面とによって形成されるようになってい
る。従ってブロック15bが回転摺動するすることによ
り、通気路断面積を可変とすることが可能となる。り)
側管状部材15aは一端が吸気ダクト13に固定され、
他端が共鳴器17に固定される。ブロック15bは、共
鳴室16のうち外側管状部材15aと反対側の面に固定
された回転方向に作動するアクチュエータ18にシャフ
ト19を介して固定されている。そして、外側管状部材
15a、ブロック15b及び吸気ダクト13は、樹脂の
ブロー成形品である。従って、前述の吸気ダクト13、
外側管状部材15a、共鳴器17の固定は接着剤ネジ止
め、絞め、溶着など適宜の手段により行なわれる。
The tubular member 15 has a double tube structure, and its details will be explained in Section 3. It is shown in Figure 4. The annular member 15 includes a cap 15f having a predetermined opening, an outer tubular member 15a to which the cap 15f is attached at both ends, a side plate 15C fixed to the camp 15f, and a semi-cylindrical member disposed inside the outer tubular member 15a. 15b. The air passage of the tubular member 15 is formed by the inner wall of the outer tubular member 15a and the wall surface of the block 15b. Therefore, by rotating and sliding the block 15b, it is possible to change the cross-sectional area of the ventilation passage. the law of nature)
One end of the side tubular member 15a is fixed to the intake duct 13,
The other end is fixed to the resonator 17. The block 15b is fixed via a shaft 19 to an actuator 18 which is fixed to a surface of the resonance chamber 16 on the opposite side to the outer tubular member 15a and operates in a rotational direction. The outer tubular member 15a, the block 15b, and the intake duct 13 are blow-molded resin products. Therefore, the above-mentioned intake duct 13,
The outer tubular member 15a and the resonator 17 are fixed by appropriate means such as adhesive screwing, tightening, welding, etc.

そして、内燃機関の回転検出器(図示省略)による回転
信号を基にコントロールコンピュータ20により、機関
回転に同期して共鳴周波数を計算し、その計算に基づい
た電気信号がリニアアクチュエータ18に印加される様
になっている。その為アクチュエータ8のシャフト19
に固定されたブロック15bは、コンピュータ20から
の電気信号に対応した量だけ外側管状部材15aの内壁
をガイドとして回転される。尚、ブロック15bには、
アクチュエータ18のシャフト19の固定用穴が穿設さ
れており、外側管状部側15aに固定されたキヤ・7プ
15fには案内穴15dが設けられている。そして、シ
ャフト19は穴15e。
Then, the control computer 20 calculates a resonance frequency in synchronization with the engine rotation based on a rotation signal from a rotation detector (not shown) of the internal combustion engine, and an electric signal based on the calculation is applied to the linear actuator 18. It looks like this. Therefore, the shaft 19 of the actuator 8
The block 15b fixed to the outer tubular member 15a is rotated by an amount corresponding to an electric signal from the computer 20 using the inner wall of the outer tubular member 15a as a guide. Furthermore, in block 15b,
A hole for fixing the shaft 19 of the actuator 18 is provided, and a guide hole 15d is provided in the cap 15f fixed to the outer tubular portion side 15a. The shaft 19 has a hole 15e.

15dに嵌入された状態でネジ締め、絞め等によって固
定される。また、ブロック15bは、外側管状部材15
aの内壁に対して、空気洩れがないようにその円周外面
が接触し、かつ回転可能な寸法諸元にしである。
15d is fixed by screwing, tightening, etc. The block 15b also includes the outer tubular member 15.
Its circumferential outer surface is in contact with the inner wall of a to prevent air leakage, and its dimensions are such that it can rotate.

次に上記共鳴器17による共鳴周波数可変方法について
説明する。第5図は先の(11式により、例えば共鳴室
容積V=2000ccとし1.環状部材の長さilPを
一定とした時の前記管状部材の開口面積Sと共鳴周波数
との関係を図示したものである。この第5図より管状部
材の長さj!p=30mmとすると、管状部材開口断面
積S=461mJの時の共鳴周波数fPは150Hzと
なり、開口断面積S−820++Jと大きくすると、共
鳴周波数fpは200Hzに高めることができ、逆に開
口断面積S=205mdtに小さくすると、共鳴周波数
fPを100Hzと低くすることができることが分る。
Next, a method of varying the resonance frequency using the resonator 17 will be explained. FIG. 5 illustrates the relationship between the opening area S of the tubular member and the resonant frequency when the resonance chamber volume V = 2000 cc and the length ilP of the annular member is constant. From Fig. 5, if the length of the tubular member is j!p = 30 mm, the resonant frequency fP when the tubular member opening cross-sectional area S = 461 mJ is 150 Hz, and when the opening cross-sectional area is increased to S-820++J, the resonance frequency fP is 150 Hz. It can be seen that the frequency fp can be increased to 200 Hz, and conversely, if the aperture cross-sectional area S is decreased to 205 mdt, the resonance frequency fP can be lowered to 100 Hz.

その為、必要とする上限共鳴周波数fupは、連通管状
部材15の長さが最大となった状態、即ち第6図に示す
キヤ・ノブ15fの所定開口面積SOと、外側管状部材
15aの内壁と内側管ブロック15bの開口側壁、さら
に側板15cとによって形成される通気路の断面積Sと
が等しい時に得られる。そして内側管状ブロック15b
はアクチュエータ1日と連動しており、これが回転摺動
することにより、3壁面によって形成される通気路面積
Sがせばめられる為、下限共鳴周波数fl。
Therefore, the required upper limit resonant frequency fup is determined when the length of the communicating tubular member 15 is at its maximum, that is, between the predetermined opening area SO of the gear knob 15f shown in FIG. 6 and the inner wall of the outer tubular member 15a. This is obtained when the cross-sectional area S of the ventilation path formed by the opening side wall of the inner tube block 15b and the side plate 15c is equal. and inner tubular block 15b
is linked to the actuator 1, and as this rotates and slides, the air passage area S formed by the three walls is narrowed, so the lower limit resonance frequency fl.

Wは、第7図に示す様に内側管状ブロックが初期設定よ
り最大量θ°回転した時の3壁面によって決まる通気路
の断面積Sによって決まる。
W is determined by the cross-sectional area S of the ventilation passage determined by the three wall surfaces when the inner tubular block is rotated by the maximum amount θ° from the initial setting as shown in FIG.

次に前述の第5図をもと具体的な共鳴周波数範囲の算出
を行なう。例えば、管状部材長さβ−3Q van、外
側管状部材の所定開口断面積5o=525y+Jとし、
アクチュエータの回転角、β−1Q8゜に設定すると、
通気路の最小断面積はS=205m1となり、上限共鳴
周波数fupは160Hz、下限共鳴周波数flowは
100 Hzとなる。従って、本例によればブロック1
5bを回転摺動させることによって、共鳴周波数を10
0Hzから160 Hzまで、連続的に可変することが
できる。
Next, a specific resonant frequency range will be calculated based on the above-mentioned FIG. For example, the length of the tubular member is β-3Q van, the predetermined opening cross-sectional area of the outer tubular member is 5o=525y+J,
When the rotation angle of the actuator is set to β-1Q8°,
The minimum cross-sectional area of the air passage is S=205 m1, the upper limit resonant frequency fup is 160 Hz, and the lower limit resonant frequency flow is 100 Hz. Therefore, according to this example, block 1
By rotating and sliding 5b, the resonance frequency is increased to 10
It can be continuously varied from 0 Hz to 160 Hz.

尤も前述の例は共鳴室容積V=2000CC管状部材長
さ7!=30mmとして計算したが、この両者を適切に
選定することによって、同じアクチュエータの回転角θ
に対して共鳴周波数の可変範囲を希望すべき範囲に設定
することができる。さらに、外側管状部材の所定開口断
面積Soすなわち、管状部材の内径をさらに大きく取る
ことにより、可変共鳴周波数範囲を大きくできる。
Of course, in the above example, the resonance chamber volume V=2000CC and the tubular member length 7! = 30 mm, but by appropriately selecting both of them, the rotation angle θ of the same actuator can be changed.
The variable range of the resonant frequency can be set to a desired range. Furthermore, by further increasing the predetermined opening cross-sectional area So of the outer tubular member, that is, the inner diameter of the tubular member, the variable resonance frequency range can be increased.

次に上記作用を行なう共鳴器17を実際に内燃機関の回
転数に同期して使用する例を説明する。
Next, an example will be described in which the resonator 17 that performs the above operation is actually used in synchronization with the rotational speed of the internal combustion engine.

第2図に示す様に内燃機関の回転信号(例えばディスト
リビュータ又はクランクプーリ等から得られる。)がマ
イクロコンピュータを応用したコントロールコンピュー
タ20に入力され、コンピュータ20内で機関回転数を
読み取り、各回転時の吸気騒音の支配的周波数成分を計
算する。そして、その周波数成分に対応する共鳴周波数
が得られるようアクチュエータ18へ駆動信号を送りシ
ャフト19を介してブロック15bを回転させ共鳴周波
数を変える。以上の制御方法を示すフローチャートを第
8図に示す。
As shown in FIG. 2, a rotation signal of the internal combustion engine (obtained from a distributor or a crank pulley, etc.) is input to a control computer 20 using a microcomputer, and the engine rotation speed is read within the computer 20. Calculate the dominant frequency components of the intake noise. Then, a drive signal is sent to the actuator 18 to rotate the block 15b via the shaft 19 to change the resonance frequency so that a resonance frequency corresponding to the frequency component is obtained. A flowchart showing the above control method is shown in FIG.

この様に制御するため、内燃機関の回転数の上昇、下降
に対してもリニアアクチュエータ18を正、逆方向に移
動させ、常に回転数に同期して共鳴周波数を可変にでき
るようにすることができる。
In order to control in this way, it is possible to move the linear actuator 18 in the forward and reverse directions even when the rotational speed of the internal combustion engine increases or decreases, so that the resonance frequency can always be varied in synchronization with the rotational speed. can.

又、機関回転数の同期方法としては、第9図に実線で示
すように共鳴周波数可変範囲fup得るからflowま
で機関回転数に対して直接的に連続して同期さゼたり、
又は破線で示す様に階段状に同期させたり、コントロー
ルコンピュータによって自在に同期させることができる
Furthermore, as a method of synchronizing the engine speed, as shown by the solid line in FIG.
Alternatively, synchronization can be performed stepwise as shown by the broken line, or synchronization can be performed freely by a control computer.

第10図は上記共鳴器17を内燃機関に用いたことによ
る吸気騒音低減効果を示す。図中細線イは共鳴器17を
装着しない時の吸気騒音で図より明らかな様に4000
から4800回転付近に大きな騒音ピークが存在し問題
となっている。この騒音ピークは機関回転数の2次成分
、即ち133Hzから160 Hzが支配的である。従
って共鳴器17の共鳴周波数可変範囲を先に記したリニ
アアクチュエータ18の回転角θ−18o°で1゜OH
zから160Hzまで可変にできる諸元に選定し機関回
転数3000回転から4800回転まで同期して可変に
することによって、図中太線ハで示すように、従来の共
鳴器装着(図中一点鎖線口)より、大幅に吸気騒音を低
減することができる。
FIG. 10 shows the effect of reducing intake noise by using the resonator 17 in an internal combustion engine. The thin line A in the figure is the intake noise when the resonator 17 is not installed, which is 4000 as is clear from the figure.
There is a large noise peak around 4,800 rpm, which has become a problem. This noise peak is dominated by the second-order component of the engine speed, that is, from 133 Hz to 160 Hz. Therefore, the resonant frequency variable range of the resonator 17 is 1°OH at the rotation angle θ-18° of the linear actuator 18 described above.
By selecting specifications that can be varied from Z to 160 Hz and synchronously varying the engine speed from 3,000 to 4,800 revolutions, as shown by the thick line C in the figure, it is possible to replace the conventional resonator installation (the dot-dashed line in the figure ), it is possible to significantly reduce intake noise.

尚、本例の共鳴器17は併せて次の効果を奏することも
できる。
Note that the resonator 17 of this example can also provide the following effects.

即ち、吸気系の吸入空気の吸入通路管の固有共振振動数
と吸入弁の開閉振動数を一致させると多量の混合気体(
燃料と吸入空気)をシリンダ内に吸入されるのはよく知
られており、その為、従来では吸入管長さを内燃機関の
ある回転数で共振が得られるよう選定し、その回転時の
機関出力を高めている。
In other words, if the natural resonance frequency of the intake air passage pipe of the intake system matches the opening/closing frequency of the intake valve, a large amount of mixed gas (
It is well known that the internal combustion engine (fuel and intake air) is drawn into the cylinder.For this reason, in the past, the length of the intake pipe was selected to obtain resonance at a certain rotational speed of the internal combustion engine, and the engine output at that rotational speed was is increasing.

そこで、共振器17を前記吸入管の途中に装着して、そ
の共振周波数を可変にすることにより、吸入管全体の固
有共振振動数を変化させ、吸入弁4の開閉タイミングと
同期させれば、内燃機関の全回転域に於いて出力を高め
る手段として作用することもできる。
Therefore, by installing the resonator 17 in the middle of the suction pipe and making its resonance frequency variable, the natural resonance frequency of the entire suction pipe can be changed and synchronized with the opening/closing timing of the suction valve 4. It can also act as a means to increase the output in the entire rotation range of the internal combustion engine.

尚、上述の例は本発明の望しい態様であるが、本発明は
上記側辺外にも種々の態様がある。
Although the above-mentioned examples are preferred embodiments of the present invention, the present invention includes various embodiments other than the above-mentioned embodiments.

即ち、上述の例ではアクチュエータ18を共鳴室16に
装着したが、第11図に示す様に吸気ダクト13側に装
着してもよい。さらには、第12図に示すようにその装
着性を考慮して共鳴器取付部21を吸気ダクト13がら
分離して、自在にその取付位置を変えることができるよ
うにすることも可能である。
That is, in the above example, the actuator 18 is installed in the resonance chamber 16, but it may be installed on the intake duct 13 side as shown in FIG. Furthermore, as shown in FIG. 12, it is also possible to separate the resonator mounting portion 21 from the intake duct 13 in consideration of the ease of mounting, so that the mounting position thereof can be changed freely.

また上述の実施例では外側連通管状部材15aの最初開
口部を1箇所としたが、これを第13図に示すように、
放射状に分散させ、それに伴い菊花形管状のブロック1
5bとの組合せにより、連通管状部材の開口断面積を可
変するようにしてもよい。
Furthermore, in the above-described embodiment, the outer communicating tubular member 15a initially had one opening, but as shown in FIG.
Radially dispersed and chrysanthemum-shaped tubular blocks 1
5b, the opening cross-sectional area of the communicating tubular member may be varied.

更に上述の実施例では共鳴器17を吸気系に配設して吸
気騒音低減手法として用いたが、同一構成の共鳴器17
を排気系へ配設して排気騒音低減装置として実施しても
、同様の効果が発揮できる。
Furthermore, in the above-described embodiment, the resonator 17 was disposed in the intake system and used as a method for reducing intake noise.
The same effect can be achieved even if the exhaust system is installed in the exhaust system as an exhaust noise reduction device.

以上説明した様に本発明の共鳴器は、機関回転数に同期
して共鳴器の連通管状部材の開口断面積をアクチュエー
タにて変化させるようにしたため、その共鳴周波数を可
変にすることができ、共鳴効果が得られる周波数範囲を
従来の共鳴器より大きくすることができるという優れた
効果が得られる。
As explained above, in the resonator of the present invention, the cross-sectional area of the opening of the communicating tubular member of the resonator is changed by the actuator in synchronization with the engine speed, so that the resonant frequency can be made variable. An excellent effect can be obtained in that the frequency range in which the resonance effect can be obtained can be made larger than that of conventional resonators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の共鳴器を示す断面図、第2図は本発明の
共鳴器の一実施例を内燃機関に装着した状態を示す構成
図、第3図は第2図図示共鳴器の連通管状部材を示す斜
視図、第4図は第3図図示達通管状部材の分解斜視図、
第5図は共鳴器の連通管部材形状と共鳴周波数との関係
を示す説明図、第6図及び第7図は第2図図示共鳴器に
よる共鳴周波数変化状態を示す断面図、第8図は制御フ
ローチャート図第9図は機関回転数と共鳴周波数の同期
方法を示す説明図、第10図は第2図図示共鳴器の吸気
騒音低減効果を示す説明図、第11図及び第12図は夫
々本発明共鳴器の他の実施例を示す断面図、第13図は
本発明共鳴器の更に他の実施例の要部を示す分解斜視図
である。 1・・・内燃機関シリンダ、4・・・吸入弁、5・・・
排気弁、6・・・吸入口、9・・・吸気通路、12・・
・吸入管、13・・・吸気ダクト、14・・・吸入路、
15・・・連通管状部材、15a・・・外側連通管状部
材、15b・・・ブロック、16・・・共鳴室、17・
・・共鳴器、18・・・アクチュエータ、20・・・コ
ントロールコンピュータ。 代理人弁理士 岡 部   隆 第1図 第2図 第3図 第5図 A a、I+Ifil 31 ’Fi    Hx第6
図 第7図 第8図 ′l旨閣@稚t!X (r、pm) 第10図 第11図      第12図 36
Fig. 1 is a sectional view showing a conventional resonator, Fig. 2 is a configuration diagram showing an embodiment of the resonator of the present invention installed in an internal combustion engine, and Fig. 3 is a communication diagram of the resonator shown in Fig. 2. A perspective view showing the tubular member; FIG. 4 is an exploded perspective view of the delivery tubular member shown in FIG. 3;
FIG. 5 is an explanatory diagram showing the relationship between the shape of the communicating tube member of the resonator and the resonant frequency, FIGS. 6 and 7 are cross-sectional views showing how the resonant frequency is changed by the resonator shown in FIG. 2, and FIG. Control flow chart Figure 9 is an explanatory diagram showing a method of synchronizing the engine speed and resonance frequency, Figure 10 is an explanatory diagram showing the intake noise reduction effect of the resonator shown in Figure 2, and Figures 11 and 12 are respectively FIG. 13 is a sectional view showing another embodiment of the resonator of the present invention, and FIG. 13 is an exploded perspective view showing essential parts of still another embodiment of the resonator of the present invention. 1... Internal combustion engine cylinder, 4... Intake valve, 5...
Exhaust valve, 6... Intake port, 9... Intake passage, 12...
・Suction pipe, 13... Intake duct, 14... Suction path,
15... Communication tubular member, 15a... Outer communication tubular member, 15b... Block, 16... Resonance chamber, 17.
... Resonator, 18... Actuator, 20... Control computer. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2 Figure 3 Figure 5 A a, I+Ifil 31 'Fi Hx No. 6
Figure 7 Figure 8 'Ishikaku@Chit! X (r, pm) Figure 10 Figure 11 Figure 12 36

Claims (1)

【特許請求の範囲】 (11内燃機関のシリンダに通じる通路に一端が開口し
た外側連通管状部材と、この外側連通管状部材の他端に
連通した密閉空間よりなる共鳴室と、前記外側連通器状
部材の端部に設けられ所定の開口部を有するキャップと
、前記外側連通管状部材内に回転自在に配設されその回
転に伴なって前記キャップの開口部面積を可変するブロ
ックと、電気信号に基づいてこのブロックを変位させる
リニアアクチュエータと、前記内燃機関の回転数を検出
してこのリニアアクチュエータに出力する電気信号を制
御するコントロールコンピュータとを備える共鳴器。 (2)前記外側連通管状部材の一端が吸気ダクトに開口
し、前記コントロールコンピュータが前記内燃機関の回
転数に応じた共鳴周波数を計算し、その共鳴周波数を得
るべく前記リニアアクチュエータに電気信号を出力する
特許請求の範囲第1項記載の共鳴器。 (3)前記り)側連通管状部材の一端が吸入管に開口し
、前記コントロールコンピュータが前記内燃機関の吸入
弁の開閉振動数に対応する共鳴周波数を計算し、その共
鳴周波数を得るべく前記リニアアクチュエータに電気信
号を出力する特許請求の範囲第1項記載の共鳴器。
[Scope of claims] a cap provided at an end of the member and having a predetermined opening; a block rotatably disposed within the outer communicating tubular member and varying the opening area of the cap with rotation; a resonator comprising a linear actuator that displaces the block based on the internal combustion engine; and a control computer that detects the rotational speed of the internal combustion engine and controls an electric signal output to the linear actuator. (2) One end of the outer communicating tubular member. 2. The linear actuator according to claim 1, wherein the control computer calculates a resonant frequency according to the rotational speed of the internal combustion engine, and outputs an electric signal to the linear actuator to obtain the resonant frequency. (3) As described above, one end of the side communicating tubular member opens to the intake pipe, and the control computer calculates a resonance frequency corresponding to the opening/closing frequency of the intake valve of the internal combustion engine, and obtains the resonance frequency. 2. The resonator according to claim 1, wherein the resonator outputs an electric signal to the linear actuator.
JP21882282A 1982-12-09 1982-12-13 Resonator Pending JPS59108861A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21882282A JPS59108861A (en) 1982-12-13 1982-12-13 Resonator
US06/559,242 US4539947A (en) 1982-12-09 1983-12-08 Resonator for internal combustion engines
DE8383112430T DE3376862D1 (en) 1982-12-09 1983-12-09 Resonator for internal combustion engines
EP83112430A EP0111336B1 (en) 1982-12-09 1983-12-09 Resonator for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21882282A JPS59108861A (en) 1982-12-13 1982-12-13 Resonator

Publications (1)

Publication Number Publication Date
JPS59108861A true JPS59108861A (en) 1984-06-23

Family

ID=16725886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21882282A Pending JPS59108861A (en) 1982-12-09 1982-12-13 Resonator

Country Status (1)

Country Link
JP (1) JPS59108861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482846B1 (en) * 2001-12-11 2005-04-14 현대자동차주식회사 Variable resonator
CN112664744A (en) * 2020-12-15 2021-04-16 江苏科技大学 Helmholtz resonator with adjustable extension neck and adjusting method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482846B1 (en) * 2001-12-11 2005-04-14 현대자동차주식회사 Variable resonator
CN112664744A (en) * 2020-12-15 2021-04-16 江苏科技大学 Helmholtz resonator with adjustable extension neck and adjusting method thereof

Similar Documents

Publication Publication Date Title
US4539947A (en) Resonator for internal combustion engines
KR890000569B1 (en) Engine intake passage length varying device
US5283398A (en) Resonator type silencer
US4590895A (en) Intake passage for internal combustion engine
US6591804B2 (en) Variable intake apparatus for a multi-cylinder internal combustion engine
US7021264B2 (en) Variable valve
JPS6022021A (en) Variable resonator
JPS59108861A (en) Resonator
US20060065237A1 (en) Intake system including a resonance chamber
RU146120U1 (en) TURBOCHARGER SUPPLY PRESSURE REGULATOR (OPTIONS)
JPS59105958A (en) Resonator
JPS59105959A (en) Resonator
KR980002656A (en) Automotive exhaust pressure regulator
JPS60216029A (en) Suction apparatus for engine
JPS5847222Y2 (en) Intake pipe of piston internal combustion engine
US3810450A (en) Stuffer for two-cycle engines
JP3381883B2 (en) Engine intake control device
TWI816740B (en) A rotary valve internal combustion engine
JPS59168215A (en) Resonator
US4513707A (en) Multiple port intake means for rotary piston engines
JPS60216064A (en) Intake unit for multi-cylinder engine
JPS59215913A (en) Resonator
JPH1122472A (en) Suction device of internal combustion engine
JPS6146178Y2 (en)
JPH0361612A (en) Exhaust rotary valve of two-cycle engine