JPH02163411A - Exhaust controller for two-cycle engine - Google Patents

Exhaust controller for two-cycle engine

Info

Publication number
JPH02163411A
JPH02163411A JP31780888A JP31780888A JPH02163411A JP H02163411 A JPH02163411 A JP H02163411A JP 31780888 A JP31780888 A JP 31780888A JP 31780888 A JP31780888 A JP 31780888A JP H02163411 A JPH02163411 A JP H02163411A
Authority
JP
Japan
Prior art keywords
cylinder
exhaust
engine
expansion chamber
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31780888A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamamoto
均 山本
Teiichi Sugizaki
悌一 杉崎
Koji Nakajima
康二 中島
Takumi Tottori
巧 鳥取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31780888A priority Critical patent/JPH02163411A/en
Publication of JPH02163411A publication Critical patent/JPH02163411A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To improve the suction efficiency and scavenging efficiency by arranging the conical guide cylinder and reflection cylinder in an expansion guide at the downstream edge of an exhaust pipe so that the opened port parts having each expanded diameter are opposed and attaching and separating the both cylinders according to the engine operation state. CONSTITUTION:In an expansion chamber 16 formed at the downstream edge of an exhaust pipe 5, a conical guide cylinder 14 in which a movable cylinder part 17 slidingly contacts a fixed cylinder part 16 and a conical reflection cylinder 25 in which a collar 26 slidingly contacts the second exhaust pipe 8 are installed so as to be shiftable in the exhaust flowing direction 15, and negative pressure waves are generated by the guide cylinder 14, and the positive waves are generated by the reflection cylinder 25. A controller 37 drives servomotors 23 and 34 according to the operation state of an engine 1, and shifts the 34 according to the operation state of the engine 1, and shifts the guide cylinder 14 and the reflection cylinder 25 through the driving members 19 and 30, and changes the generation positions of the negative and positive pressure waves. Thus, the driving parts of the guide cylinder and the reflection cylinder can be made small-sized and lightweight, improving the suction efficiency and scavenging efficiency of the engine body.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は、エンジン本体の排気ポートに排気管の上流端
が接続され、該排気管の下流端には膨張室が接続される
2サイクルエンジンの排気制御装置に関する。
Detailed Description of the Invention A0 Object of the Invention (1) Industrial Field of Application The present invention is directed to an engine in which an upstream end of an exhaust pipe is connected to an exhaust port of an engine body, and an expansion chamber is connected to a downstream end of the exhaust pipe. The present invention relates to an exhaust control device for a two-stroke engine.

(2)従来の技術 従来、かかる装置はたとえば実開昭48−1623号公
報等により公知である。
(2) Prior Art Conventionally, such a device is known from, for example, Japanese Utility Model Application Publication No. 1623/1983.

(3)発明が解決しようとする課題 上記従来のものでは、膨張室を形成するマフラー本体を
軸方向移動自在にして排気管に連結し、エンジンの運転
状態に対応してマフラー本体を駆動することによりエン
ジン本体の給気効率および掃気効率を向上させている。
(3) Problems to be Solved by the Invention In the above conventional system, the muffler body forming the expansion chamber is movable in the axial direction and connected to the exhaust pipe, and the muffler body is driven in accordance with the operating state of the engine. This improves the air supply efficiency and scavenging efficiency of the engine body.

ところが、比較的大きくかつ比較的大重量であるマフラ
ー本体を駆動するものであるので、大きな駆動力が必要
である。
However, since the muffler main body is relatively large and heavy, a large driving force is required.

本発明は、かかる事情に鑑みてなされたものであり、被
駆動部分を小型かつ軽量にして上記従来の問題を解決し
た2サイクルエンジンの排気制御装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an exhaust control device for a two-stroke engine that solves the above-mentioned conventional problems by making the driven portion smaller and lighter.

B1発明の構成 (11課題を解決するための手段 本発明は、排気管の下流端には膨張室内の上流端部に配
設される案内筒の上流端が接続され、該案内筒は、下流
側に向かうにつれて拡径して基本的に円錐状に形成され
るとともにその下流端を排気流通方向に沿って移動可能
に構成され、前記膨張室内の下流端部には、上流側に向
かうにつれて拡径して基本的に円錐状に形成されるとと
もにその上流端を排気流通方向に沿って移動可能にした
反射筒が配設され、案内筒および反射筒には、エンジン
運転状態に応じて案内筒の下流端および反射筒の上流端
を移動させるべく駆動手段がそれぞれ連結されることを
特徴とする。
B1 Structure of the Invention (11 Means for Solving the Problems) In the present invention, the upstream end of a guide tube disposed at the upstream end in the expansion chamber is connected to the downstream end of the exhaust pipe, and the guide tube is connected to the downstream end of the exhaust pipe. It is basically formed into a conical shape whose diameter increases toward the side, and its downstream end is movable along the exhaust flow direction. A reflector tube is provided which has a basically conical diameter and whose upstream end is movable along the exhaust flow direction. A driving means is connected to move the downstream end of the reflector tube and the upstream end of the reflector tube, respectively.

(2)作用 上記構成によれば、円錐状の案内筒を介して膨張室に排
気を導くので、該案内筒の部分で負圧波を発生させるこ
とができ、また反射筒で反射させることにより正圧波を
発生させることができ、案内筒の下流端および反射筒の
上流端をそれぞれ移動させることにより負圧波および正
圧波の発生位置をエンジン運転状態に応じて変化させて
、エンジン高負荷状態から低負荷状態まで安定した出力
特性を得ることが可能となる。
(2) Effect According to the above configuration, the exhaust gas is guided to the expansion chamber through the conical guide tube, so that negative pressure waves can be generated at the guide tube, and positive pressure waves can be generated by reflecting them at the reflection tube. It is possible to generate pressure waves, and by moving the downstream end of the guide tube and the upstream end of the reflector tube, the generation positions of negative pressure waves and positive pressure waves can be changed according to the engine operating condition, and the engine can be changed from high load to low load. It is possible to obtain stable output characteristics up to the load state.

(3)実施例 以下、図面により本発明の一実施例について説明すると
、先ず第1図において、自動二輪車に搭載される2サイ
クルエンジンEのエンジン本体を構成するシリンダブロ
ック1の内面には、該シリンダブロックl内に摺動自在
に嵌合されたピストン2により開閉される排気ポート3
が開口されており、この排気ポート3の開閉時期を制御
すべく排気ポート3の上部には排気時期制御弁4が配設
される。またtJト気ポート3には第1排気管5の上流
端が接続されており、この第1排気管5は、膨張室6を
内部に形成する管部材7および第2排気管8を介して図
示しない消音器に接続される。
(3) Embodiment Below, an embodiment of the present invention will be explained with reference to the drawings. First, in FIG. Exhaust port 3 opened and closed by piston 2 slidably fitted into cylinder block l
is open, and an exhaust timing control valve 4 is disposed above the exhaust port 3 to control the opening/closing timing of the exhaust port 3. Further, the upstream end of a first exhaust pipe 5 is connected to the tJ air port 3, and the first exhaust pipe 5 is connected via a pipe member 7 and a second exhaust pipe 8 that form an expansion chamber 6 therein. It is connected to a muffler (not shown).

排気ポート3に設けられた排気時期制御弁4はシリンダ
ロック1に回動自在に配設された駆動軸10に固着され
ており、この駆動軸10はプーリおよび伝動ワイヤ等か
ら成る伝動手段11を介してサーボモータ12に連結さ
れる。またサーボモータ12には、サーボモータ12の
作動量すなわち排気時期制御弁4の開度を検出するため
のポテンショメータ13が付設される。
The exhaust timing control valve 4 provided at the exhaust port 3 is fixed to a drive shaft 10 rotatably disposed on the cylinder lock 1. The servo motor 12 is connected to the servo motor 12 via the servo motor 12 . Further, the servo motor 12 is provided with a potentiometer 13 for detecting the operating amount of the servo motor 12, that is, the opening degree of the exhaust timing control valve 4.

第2図を併せて参照して、管部材7はその横断面積を第
1排気管5の横断面積よりも大きくして形成されるもの
であり、その上流端部には上流側に向かうにつれて縮径
したテーバ管部7aが設けられる。この管部材7により
形成される膨張室6内の上流端部には、該膨張室6内の
下流側に向かうにつれて拡径して基本的に円錐状に形成
されるとともに下流端を排気流通方向15に沿って移動
可能に構成される案内筒14が配設され、該案内筒14
の上流端は第1排気管5の下流端に接続される。
Referring also to FIG. 2, the pipe member 7 is formed with a cross-sectional area larger than the cross-sectional area of the first exhaust pipe 5, and the upstream end of the pipe member 7 has a shape that contracts toward the upstream side. A tapered pipe portion 7a having a larger diameter is provided. The upstream end of the expansion chamber 6 formed by the pipe member 7 is basically formed into a conical shape whose diameter increases toward the downstream side of the expansion chamber 6, and the downstream end is connected in the exhaust flow direction. A guide tube 14 configured to be movable along the guide tube 15 is disposed, and the guide tube 14
The upstream end of is connected to the downstream end of the first exhaust pipe 5.

案内筒14は、第1排気管5に接続される固定筒部16
と、排気流通方向15に沿って移動可能な可動筒部17
とから成る。固定筒部16は上流側に向かうにつれて小
径となる円錐状に形成されるものであり、上流端を突出
するようにして管部材7の上流端に固着され、しかも該
固定筒部16の上流端は第1排気管5の下流端に結合さ
れる。
The guide tube 14 has a fixed tube section 16 connected to the first exhaust pipe 5.
and a movable cylinder part 17 movable along the exhaust flow direction 15.
It consists of The fixed cylinder part 16 is formed in a conical shape whose diameter becomes smaller toward the upstream side, and is fixed to the upstream end of the tube member 7 with the upstream end protruding. is connected to the downstream end of the first exhaust pipe 5.

また可動筒部17は、膨張室6内で排気流通方向15に
沿って移動可能に配設されるものであり、上流側の直管
部分17aと下流側のテーバ管部分17bとが一体に結
合されて成る。直管部分17aの内径は固定筒部16の
大径端すなわち下流端外径よりもわずかに大きく設定さ
れるものであり、該直管部分17aは固定筒部16の大
径端外面に摺接して排気流通方向15に移動すべく固定
筒部16の膨張室6内に臨む部分を囲繞して配置される
。またテーバ管部分17bは排気流通方向15に沿う下
流側に向かうにつれて拡径する円錐状に形成されるもの
であり、その小径端すなわち上流端が直管部分17aに
同軸に結合される。
Moreover, the movable cylinder part 17 is arranged so as to be movable along the exhaust flow direction 15 within the expansion chamber 6, and an upstream straight pipe part 17a and a downstream Taber pipe part 17b are integrally connected. It consists of being done. The inner diameter of the straight pipe portion 17a is set to be slightly larger than the outer diameter of the large diameter end, that is, the downstream end, of the fixed cylinder portion 16, and the straight pipe portion 17a slides on the outer surface of the large diameter end of the fixed cylinder portion 16. The fixed cylinder portion 16 is disposed so as to surround the portion of the fixed cylinder portion 16 facing into the expansion chamber 6 so as to move in the exhaust flow direction 15 . Further, the Taber pipe portion 17b is formed in a conical shape whose diameter increases toward the downstream side along the exhaust flow direction 15, and its small diameter end, that is, the upstream end thereof, is coaxially connected to the straight pipe portion 17a.

管部材7には排気流通方向15と直交する軸線を有する
駆動軸18が回動自在に支承されており、この駆動軸1
日に固着される駆動部材19が案内筒14における可動
筒部エフに連結される。すなわち駆動部材19は可動筒
部17のテーバ管部分17bを跨ぐように形成されてお
り、該テーバ管部分17bが前記駆動軸18と平行な一
対の連結ピン20を介して該駆動部材19に連結される
A drive shaft 18 having an axis perpendicular to the exhaust flow direction 15 is rotatably supported on the pipe member 7.
A driving member 19 fixedly attached to the guide cylinder 14 is connected to the movable cylinder part F of the guide cylinder 14 . That is, the drive member 19 is formed to straddle the Taber tube portion 17b of the movable cylinder portion 17, and the Taber tube portion 17b is connected to the drive member 19 via a pair of connecting pins 20 parallel to the drive shaft 18. be done.

而して該駆動軸1日の回動による駆動部材19の揺動作
動に応じて可動筒部17が排気流通方向15に移動し、
それにより可動筒部17の下流端すなわち案内筒14の
下流端が排気流通方向15に沿って移動する。
Then, the movable cylinder portion 17 moves in the exhaust flow direction 15 in response to the swinging motion of the drive member 19 due to the rotation of the drive shaft,
As a result, the downstream end of the movable cylinder portion 17, that is, the downstream end of the guide cylinder 14, moves along the exhaust flow direction 15.

管部材7から突出した駆動軸18の突出端にはプーリ2
1が固着されており、このプーリ21は伝動ワイヤ等の
伝動索22を介して駆動手段としてのサーボモータ23
に連結される。しかも該サーボモータ23には、サーボ
モータ23の作動量すなわち膨張室6内における案内筒
14下流端の位置を検出すべくポテンショメータ24が
付設される。
A pulley 2 is attached to the protruding end of the drive shaft 18 protruding from the pipe member 7.
1 is fixed to the pulley 21, and the pulley 21 is connected to a servo motor 23 as a driving means via a transmission cable 22 such as a transmission wire.
connected to. Furthermore, a potentiometer 24 is attached to the servo motor 23 in order to detect the operating amount of the servo motor 23, that is, the position of the downstream end of the guide cylinder 14 within the expansion chamber 6.

第3図を併せて参照して、管部材7の下流端には排気流
通方向15に沿う下流側に向かうにつれて小径となるテ
ーバ管部7bが一体に設けられており、第2排気管8は
、テーバ管部7bの小径端に中間部を固着されて膨張室
6内に突入される。
Referring also to FIG. 3, the downstream end of the pipe member 7 is integrally provided with a Taber pipe part 7b whose diameter becomes smaller toward the downstream side along the exhaust flow direction 15, and the second exhaust pipe 8 is , the intermediate portion is fixed to the small diameter end of the Taber pipe portion 7b and thrust into the expansion chamber 6.

しかも膨張室6内の下流端部には、排気流通方向15に
沿う上流側に向かうにつれて拡径して基本的に円錐状に
形成されるとともに第2排気管8に接続される反射筒2
5が、その上流端を排気流通方向15に沿って移動可能
にして配設される。すなわち反射筒25の下流端には円
筒状カラー26が嵌着されており、該カラー26が第2
排気管8の外周に摺動自在に嵌合される。
Furthermore, at the downstream end of the expansion chamber 6, there is a reflector tube 2 which is basically formed into a conical shape and whose diameter increases toward the upstream side along the exhaust flow direction 15, and which is connected to the second exhaust pipe 8.
5 is disposed with its upstream end movable along the exhaust flow direction 15. That is, a cylindrical collar 26 is fitted to the downstream end of the reflecting tube 25, and this collar 26 is connected to the second
It is slidably fitted to the outer periphery of the exhaust pipe 8.

この管部材7におけるテーバ管部7bには、前記駆動軸
18と平行な駆動軸28が回動自在に支承されており、
この駆動軸28と、反射筒25の大径端すなわち上流端
に架設される被動軸29とが連結ロッド30により連結
される。しかも連結ロッド30の揺動を許容すべく、反
射筒25における大径端には排気流通方向15に延びる
切欠き31が設けられる。したがって駆動軸2日が回動
するのに応じて連結ロッド30が揺、動じ、それにより
反射筒25が排気流通方向15に沿って移動する。
A drive shaft 28 parallel to the drive shaft 18 is rotatably supported on the Taber pipe portion 7b of the pipe member 7.
This drive shaft 28 and a driven shaft 29 installed at the large diameter end, that is, the upstream end of the reflection tube 25 are connected by a connecting rod 30. Moreover, in order to allow the connecting rod 30 to swing, a notch 31 extending in the exhaust flow direction 15 is provided at the large diameter end of the reflector tube 25 . Therefore, as the drive shaft 2 rotates, the connecting rod 30 swings and moves, thereby causing the reflector tube 25 to move along the exhaust flow direction 15.

管部材7から突出した駆動軸28の端部にはプーリ32
が固着されており、このプーリ32は伝動ワイヤ等の伝
動索33を介して駆動手段としてのサーボモータ34に
連結される。しかも該サーボモータ34には、サーボモ
ータ34の作動量すなわち膨張室6内における反射筒2
5上流端の位置を検出すべくポテンショメータ35が付
設される。
A pulley 32 is attached to the end of the drive shaft 28 protruding from the pipe member 7.
This pulley 32 is connected to a servo motor 34 as a driving means via a transmission cable 33 such as a transmission wire. Moreover, the servo motor 34 has an operating amount of the servo motor 34, that is, a reflection tube 2 in the expansion chamber 6.
5. A potentiometer 35 is attached to detect the position of the upstream end.

各サーボモータ12.23.34の作動は制御手段37
により制御される。また制御手段37には、エンジン回
転数検出器38で検出されたエンジン回転数Nt、スロ
ットル開度検出器39で検出されたスロットル開度θア
8、膨張室6内の排気温度を検出する排気温検出器40
により検出される排気温度TE、冷却水温検出器41に
より検出されるエンジン冷却水温Te、大気温検出器4
2により検出された大気温度TA、大気圧検出器43で
検出される大気圧P、がそれぞれ入力されるとともにポ
テンショメータ13,24.35によるサーボモータ1
2,23.34の作動量検出値が入力される。さらに図
示しない気化器におけるブリード空気量制御のためのソ
レノイド弁44の作動と、オイルポンプ45の作動とが
制御手段37により制御される。
The operation of each servo motor 12.23.34 is controlled by control means 37.
controlled by The control means 37 also includes an exhaust gas that detects the engine speed Nt detected by the engine speed detector 38, the throttle opening θa8 detected by the throttle opening detector 39, and the exhaust temperature in the expansion chamber 6. Temperature detector 40
Exhaust temperature TE detected by the engine cooling water temperature Te detected by the cooling water temperature detector 41, atmospheric temperature detector 4
The atmospheric temperature TA detected by the sensor 2 and the atmospheric pressure P detected by the atmospheric pressure detector 43 are respectively input, and the servo motor 1 is controlled by the potentiometers 13 and 24.35.
The operating amount detection values of 2, 23, and 34 are input. Furthermore, the control means 37 controls the operation of a solenoid valve 44 for controlling the amount of bleed air in a carburetor (not shown) and the operation of an oil pump 45.

この制御手段37では、排気時期制御弁4の開度すなわ
ちサーボモータ12の作動量がエンジン運転状態に応じ
て制御され、また案内筒14の下流端位置をエンジン負
荷に応じて移動させるべ(サーボモータ23の作動が制
御されるとともに、反射筒25の上流端位置をエンジン
負荷に応じて移動させるべくサーボモータ34の作動が
制御される。
In this control means 37, the opening degree of the exhaust timing control valve 4, that is, the operating amount of the servo motor 12, is controlled according to the engine operating state, and the downstream end position of the guide tube 14 is moved according to the engine load (servo motor 12). The operation of the motor 23 is controlled, and the operation of the servo motor 34 is also controlled to move the upstream end position of the reflector tube 25 in accordance with the engine load.

ここでサーボモータ23の作動を制御する手順について
第4図を参照しながら説明すると、先ず第1ステツプS
1ではデータが読込まれ、第2ステツプS2では第4ス
テツプS4での補正演算に必要な大気圧補正係数に0が
検索される。すなわち第5図で示すように大気圧PAに
応じて大気圧補正係数KPAを定めたマツプが予め準備
されており、このマツプに従って大気圧補正係数KPA
が検索される。次の第3ステツプS3では第4ステツプ
S4での補正演算に必要な大気温補正係数KTAが検索
される。すなわち第6図で示すように大気温T^に応じ
て大気温補正係数に0を定めたマツプが予め準備されて
おり、このマツプに従って大気温補正係数に0が検索さ
れる。
Here, the procedure for controlling the operation of the servo motor 23 will be explained with reference to FIG.
1, the data is read, and in the second step S2, 0 is searched for in the atmospheric pressure correction coefficient necessary for the correction calculation in the fourth step S4. That is, as shown in FIG. 5, a map is prepared in advance in which the atmospheric pressure correction coefficient KPA is determined according to the atmospheric pressure PA, and the atmospheric pressure correction coefficient KPA is determined according to this map.
is searched. In the next third step S3, an atmospheric temperature correction coefficient KTA necessary for the correction calculation in the fourth step S4 is retrieved. That is, as shown in FIG. 6, a map in which the atmospheric temperature correction coefficient is set to 0 according to the atmospheric temperature T^ is prepared in advance, and 0 is searched for the atmospheric temperature correction coefficient according to this map.

第4ステツプS4では、上述の第2および第3ステップ
S2.S3で求めた補正係数に、、、に、Aを用いた第
(11式により、読込んだスロットル開度θ、Hが補正
される。
In the fourth step S4, the above-mentioned second and third steps S2. The read throttle opening degrees θ and H are corrected by Equation (11) using A as the correction coefficient obtained in S3.

θア、′ −θtNX KPAX KrA−−(1)さ
らに次の第5ステツプS5では、エンジン回転数NEと
、補正後のスロットル開度0丁□′とに基づいてサーボ
モータ23の作動量が検索される。
θA,' -θtNX KPAX KrA--(1) Furthermore, in the next fifth step S5, the operating amount of the servo motor 23 is searched based on the engine rotation speed NE and the corrected throttle opening 0-inch'. be done.

すなわち、第7図で示すように、サーボモータ23の作
動量として駆動部材19の回動量θ。が前記スロットル
開度θアlおよびエンジン回転数N、に基づく三次元マ
ツプとして予め定められており、このマツプに従って前
記回動量θ。が得られる。ここでθ。は、その値が大き
くなるにつれて案内筒14の下流端が排気流通方向15
に沿う上流側に移動することを示すものである。
That is, as shown in FIG. 7, the amount of rotation θ of the drive member 19 is the amount of operation of the servo motor 23. is predetermined as a three-dimensional map based on the throttle opening θAl and the engine speed N, and the rotation amount θ is determined in accordance with this map. is obtained. Here θ. As the value increases, the downstream end of the guide tube 14 moves toward the exhaust flow direction 15.
This indicates movement upstream along the .

第6ステツプS6では、次の第8ステツプS7で行なう
補正演算に必要な排気温補正係数Lxが検索される。す
なわち第8図で示すように排気温Tえに応じて排気温補
正係数KTtを定めたマツプが予め準備されており、こ
のマツプに従って排気温補正係数に7.が検索される。
In the sixth step S6, an exhaust temperature correction coefficient Lx necessary for the correction calculation to be performed in the next eighth step S7 is searched. That is, as shown in FIG. 8, a map is prepared in advance in which the exhaust temperature correction coefficient KTt is determined according to the exhaust temperature T, and the exhaust temperature correction coefficient 7. is searched.

さらに第7ステツプS7では該補正係数KT!を用いた
次の第(2)式に従って作動量θ。が補正される。
Furthermore, in the seventh step S7, the correction coefficient KT! The operating amount θ is calculated according to the following equation (2) using . is corrected.

θ1=θ。×に□・・・・・・(2) 最後の第8ステツプS8では、上記第(2)式で得られ
た作動量θ。′が出力され、その作動量θ。
θ1=θ. x to □...(2) In the final eighth step S8, the operating amount θ obtained from the above equation (2). ' is output, and its operating amount θ.

分だけサーボモータ23が作動せしめられることになる
The servo motor 23 will be operated accordingly.

またサーボモータ34の作動制御も、基本的には上記第
4図で示した制御手順に従って制jHされる。
Furthermore, the operation of the servo motor 34 is basically controlled according to the control procedure shown in FIG. 4 above.

次にこの実施例の作用について説明すると、エンジン運
転状態に応して排気時期制御弁4の開度を制御すること
により、2サイクルエンジンEの出力は第9図で左下が
りの斜線で示す部分Aのように増大する。また案内筒1
4の下流端位置をエンジン負荷に応じて制御することに
より、2サイクルエンジンEの出力は、第9図で右下が
りの斜線で示す部分Bのように増大する。すなわち、2
サイクルエンジンEの低負荷運転域では、案内筒14の
下流端が排気流通方向15に沿う下流側にあるので、排
ガスが案内筒14により膨張室6内に導入されるのに伴
って生じる負圧の発生部位は膨張室6内の上流端部にお
いて比較的下流側の位置となり、排気および掃気行程の
時間間隔が比較的長いのに対応して負圧発生部を排気ポ
ート3から比較的離れた位置とすることができ、また2
サイクルエンジンEの高負荷運転域では、案内筒14の
下流端が排気流通方向15に沿う上流側にあるので、排
ガスが案内筒14により膨張室6内に導入されるのに伴
って生じる負圧の発生部位は膨張室6内の上流端部にお
いて比較的上流側の位置となり、排気および掃気行程の
時間間隔が比較的短いのに対応して負圧発生部を排気ポ
ート3に比較的近接した位置とすることができ、このよ
うに負圧発生部の位置を制御することによりエンジン運
転状態に対応した新気導入および燃焼ガス排出を行ない
、2サイクルエンジンEの出力を向上することができる
Next, the operation of this embodiment will be explained. By controlling the opening degree of the exhaust timing control valve 4 according to the engine operating condition, the output of the two-cycle engine E is adjusted to the portion indicated by the diagonal line downward to the left in FIG. It increases like A. Also, guide tube 1
By controlling the downstream end position of 4 in accordance with the engine load, the output of the 2-cycle engine E increases as shown in a portion B indicated by diagonal lines downward to the right in FIG. That is, 2
In the low-load operating range of the cycle engine E, since the downstream end of the guide tube 14 is located on the downstream side along the exhaust flow direction 15, the negative pressure generated as the exhaust gas is introduced into the expansion chamber 6 by the guide tube 14. The generation site is located relatively downstream in the upstream end of the expansion chamber 6, and the negative pressure generation portion is located relatively far from the exhaust port 3 in response to the relatively long time interval between the exhaust and scavenging strokes. position and can also be 2
In the high-load operating range of the cycle engine E, since the downstream end of the guide tube 14 is located on the upstream side along the exhaust flow direction 15, the negative pressure generated as the exhaust gas is introduced into the expansion chamber 6 by the guide tube 14. The generation site is located relatively upstream at the upstream end of the expansion chamber 6, and the negative pressure generation portion is located relatively close to the exhaust port 3 in response to the relatively short time interval between the exhaust and scavenging strokes. By controlling the position of the negative pressure generator in this manner, fresh air is introduced and combustion gas is discharged in accordance with the engine operating state, and the output of the two-stroke engine E can be improved.

また反射筒25の上流端位置をエンジン負荷に応じて制
御することにより、2サイクルエンジンEの出力は、第
9図で右下がりの斜線で示す部分Cのように増大する。
Furthermore, by controlling the upstream end position of the reflector tube 25 in accordance with the engine load, the output of the two-cycle engine E increases as shown in a portion C indicated by diagonal lines downward to the right in FIG.

すなわち、2サイクルエンジンEの低負荷運転域では、
反射筒25の上流端は排気流通方向15に沿う下流側に
あるので、徘ガスが反射筒25で反射することにより生
じる正圧波の発生部位は膨張室6内の下流端部において
比較的下流側の位置となり、排気および掃気行程の時間
間隔が比較的長いのに対応して正圧発生部を排気ポート
3から比較的離れた位置とすることができ、また2サイ
クルエンジンEの高負荷運転域では、反射筒25の上流
端が排気流通方向15に沿う上流側にあるので、排ガス
が反射筒25で反射して生じる正圧発生部位は膨張室6
内の下流端部において比較的上流側の位置となり、排気
および掃気行程の時間間隔が比較的短いのに対応して正
圧発生部を排気ポート3に比較的近接した位置とするこ
とができ、上述の負圧発生部の位置側?fflと併せて
エンジン運転状態に対応した新気導入および燃焼ガス排
出を効率良く行ない、2サイクルエンジンEの出力を向
上することができる。
In other words, in the low load operating range of the two-stroke engine E,
Since the upstream end of the reflector tube 25 is located on the downstream side along the exhaust flow direction 15, the positive pressure wave generated by the wandering gas reflected by the reflector tube 25 is generated at a relatively downstream side at the downstream end in the expansion chamber 6. This position allows the positive pressure generating part to be located relatively far from the exhaust port 3 in response to the relatively long time interval between the exhaust and scavenging strokes, and also allows the positive pressure generating part to be located relatively far from the exhaust port 3. Since the upstream end of the reflector tube 25 is located on the upstream side along the exhaust flow direction 15, the positive pressure generated when the exhaust gas is reflected by the reflector tube 25 is generated in the expansion chamber 6.
The positive pressure generating section can be located relatively close to the exhaust port 3, corresponding to the relatively short time interval between the exhaust and scavenging strokes. Is it on the side where the negative pressure generator is located above? In combination with ffl, it is possible to efficiently introduce fresh air and exhaust combustion gas in accordance with the engine operating state, thereby improving the output of the two-stroke engine E.

しかも上記出力向上のために駆動するのは、案内筒14
および反射筒25であり、それらを駆動するための駆動
力は比較的小さくてすむ。
Moreover, the guide tube 14 is driven to improve the output.
and the reflecting tube 25, and the driving force for driving them can be relatively small.

C0発明の効果 以上のように本発明によれば、排気管の下流端には膨張
室内の上流端部に配設される案内筒の上流端が接続され
、該案内筒は、下流側に向かうにつれて拡径して基本的
に円錐状に形成されるとともにその下流端を排気流通方
向に沿って移動可能に構成され、前記膨張室内の下流端
部には、上流側に向かうにつれて拡径して基本的に円錐
状に形成されるとともにその上流端を排気流通方向に沿
って移動可能にした反射筒が配設され、案内筒および反
射筒には、エンジン運転状態に応じて案内筒の下流端お
よび反射筒の上流端を移動させるべく駆動手段がそれぞ
れ連結されるので、膨張室内での負圧発生部および正圧
発生部の位置をエンジン運転状態に応じて変化させて、
エンジン高負荷状態から低負荷状態まで安定した出力特
性を得ることが可能となり、しかも案内筒および反射筒
を個別に駆動することによってより精密な制御が可能と
なり、さらに案内筒および反射筒は比較的軽く、したが
って駆動力が小さくてすむ。
C0 Effects of the Invention As described above, according to the present invention, the upstream end of the guide tube disposed at the upstream end in the expansion chamber is connected to the downstream end of the exhaust pipe, and the guide tube is directed toward the downstream side. It is basically formed into a conical shape with its diameter increasing as it goes toward the upstream side, and its downstream end is movable along the exhaust flow direction. A reflector tube is basically formed in a conical shape and its upstream end is movable along the exhaust flow direction. Since the driving means are connected to each other to move the upstream end of the reflector tube, the positions of the negative pressure generating section and the positive pressure generating section within the expansion chamber can be changed according to the engine operating state.
It is possible to obtain stable output characteristics from engine high load conditions to low load conditions, and by driving the guide tube and reflector tube individually, more precise control is possible, and the guide tube and reflector tube are relatively small. It is light and therefore requires less driving force.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は全体概
略図、第2図は第1図の■−■線断面図、第3図は第1
図の■−■線断面図、第4図は制御手段の制御手順を示
すフローチャート、第5図は大気圧補正係数を検索する
ためのマツプを示す図、第6図は大気温補正係数を検索
するためのマツプを示す図、第7図は駆動手段の作動量
を検索するだめのマツプを示す図、第8図は排気温補正
係数を検索するだめのマツプを示す図、第9図は出力。 特性図である。 ■・・・エンジン本体としてのシリンダブロック、3・
・・排気ポート、5・・・第1排気管、6・・・膨張室
、14・・・案内筒、15・・・排気流通方向、23.
34・・・駆動手段としてのサーボモータ、25・・・
反射筒、E・・・2サイクルエンジン
The drawings show one embodiment of the present invention; FIG. 1 is an overall schematic diagram, FIG. 2 is a sectional view taken along the line ■-■ of FIG. 1, and FIG.
Figure 4 is a flowchart showing the control procedure of the control means, Figure 5 is a map for searching the atmospheric pressure correction coefficient, and Figure 6 is a search for the atmospheric temperature correction coefficient. Figure 7 is a map for searching the operating amount of the drive means, Figure 8 is a map for searching the exhaust temperature correction coefficient, and Figure 9 is a map for searching the output. . It is a characteristic diagram. ■... Cylinder block as the engine body, 3.
... Exhaust port, 5... First exhaust pipe, 6... Expansion chamber, 14... Guide tube, 15... Exhaust flow direction, 23.
34... Servo motor as driving means, 25...
Reflector tube, E...2 cycle engine

Claims (1)

【特許請求の範囲】[Claims] エンジン本体の排気ポートに排気管の上流端が接続され
、該排気管の下流端には膨張室が接続される2サイクル
エンジンの排気制御装置において、前記排気管の下流端
には膨張室内の上流端部に配設される案内筒の上流端が
接続され、該案内筒は、下流側に向かうにつれて拡径し
て基本的に円錐状に形成されるとともにその下流端を排
気流通方向に沿って移動可能に構成され、前記膨張室内
の下流端部には、上流側に向かうにつれて拡径して基本
的に円錐状に形成されるとともにその上流端を排気流通
方向に沿って移動可能にした反射筒が配設され、案内筒
および反射筒には、エンジン運転状態に応じて案内筒の
下流端および反射筒の上流端を移動させるべく駆動手段
がそれぞれ連結されることを特徴とする2サイクルエン
ジンの排気制御装置。
In an exhaust control device for a two-stroke engine, in which an upstream end of an exhaust pipe is connected to an exhaust port of an engine body, and an expansion chamber is connected to a downstream end of the exhaust pipe, the downstream end of the exhaust pipe is connected to an upstream end of the expansion chamber. The upstream end of a guide tube disposed at the end is connected, and the guide tube is basically formed into a conical shape with its diameter increasing toward the downstream side, and the downstream end is connected along the exhaust flow direction. A reflector is configured to be movable, and at the downstream end of the expansion chamber is basically formed into a conical shape whose diameter increases toward the upstream side, and whose upstream end is movable along the exhaust flow direction. A two-stroke engine characterized in that a cylinder is disposed, and driving means are connected to the guide cylinder and the reflection cylinder, respectively, to move the downstream end of the guide cylinder and the upstream end of the reflection cylinder according to the engine operating state. exhaust control device.
JP31780888A 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine Pending JPH02163411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31780888A JPH02163411A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31780888A JPH02163411A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Publications (1)

Publication Number Publication Date
JPH02163411A true JPH02163411A (en) 1990-06-22

Family

ID=18092272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31780888A Pending JPH02163411A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Country Status (1)

Country Link
JP (1) JPH02163411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020341A1 (en) * 1992-04-06 1993-10-14 Peter John Mcmanus Internal combustion engine variable tuned exhaust system
WO1995030082A1 (en) * 1994-04-28 1995-11-09 Peter John Mcmanus Variable exhaust system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020341A1 (en) * 1992-04-06 1993-10-14 Peter John Mcmanus Internal combustion engine variable tuned exhaust system
WO1995030082A1 (en) * 1994-04-28 1995-11-09 Peter John Mcmanus Variable exhaust system

Similar Documents

Publication Publication Date Title
EP0382063A1 (en) 2-Cycle multi-cylinder engine
JP3261964B2 (en) Variable intake device for internal combustion engine
US4941319A (en) Engine control device
US4706617A (en) Two-cycle engine
JPS62157222A (en) Controller for pulsation in suction and exhaust systems in internal combustion engine
EP0172688B1 (en) Two-cycle engine
JPH02163411A (en) Exhaust controller for two-cycle engine
EP0344780B1 (en) Intake control device for engine
JP2652442B2 (en) Exhaust control device for two-stroke engine
US5136989A (en) Two-stroke cycle internal combustion engine
JPH02163410A (en) Exhaust controller for two-cycle engine
WO1995030080A1 (en) Valve device for an internal combustion engine
JP3055427B2 (en) Variable intake pipe length device
JPS60216029A (en) Suction apparatus for engine
JP2008274884A (en) Control device for internal combustion engine
JPS59194058A (en) Idling revolution number control device for engine
JP2709952B2 (en) Exhaust control method for two-stroke engine
JP4385585B2 (en) Internal combustion engine
JP2006097651A (en) Intake device
JP3106936B2 (en) Variable intake device
US11828238B2 (en) Method in a two-stroke engine and two-stroke engine
JPS6244097Y2 (en)
JP2008303745A (en) Control device of internal combustion engine
JPH033068B2 (en)
JPS6363725B2 (en)