JPH02163410A - Exhaust controller for two-cycle engine - Google Patents

Exhaust controller for two-cycle engine

Info

Publication number
JPH02163410A
JPH02163410A JP31780788A JP31780788A JPH02163410A JP H02163410 A JPH02163410 A JP H02163410A JP 31780788 A JP31780788 A JP 31780788A JP 31780788 A JP31780788 A JP 31780788A JP H02163410 A JPH02163410 A JP H02163410A
Authority
JP
Japan
Prior art keywords
exhaust
engine
expansion chamber
guide tube
downstream end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31780788A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamamoto
均 山本
Teiichi Sugizaki
悌一 杉崎
Koji Nakajima
康二 中島
Takumi Tottori
巧 鳥取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31780788A priority Critical patent/JPH02163410A/en
Publication of JPH02163410A publication Critical patent/JPH02163410A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To improve the suction efficiency and scavenging efficiency by arranging a conical guide cylinder whose upstream edge is connected, in shiftable ways in an exhaust flow passage direction, in an expansion chamber formed at the downstream edge of an exhaust pipe, and by shifting the downstream edge according to the engine operation state. CONSTITUTION:A conical guide cylinder 14 in which a movable cylinder part 17 slidingly contacts along a fixed cylinder part 16 is arranged in shiftable ways in the exhaust flowing direction 15 at the upstream edge part in an expansion chamber 6 formed on the downstream edge of an exhaust pipe 5, and the exhaust gas supplied from an engine 1 is introduced into the expansion chamber 6 through the guide cylinder 14, and negative pressure waves are generated in the conical guide cylinder 14. A control means 25 drives a servomotor 23 according to the operation state of the engine 1, and shifts the downstream edge of the guide cylinder 14 through a driving member 19, and the stable output characteristic is obtained by varying the generation position of the negative pressure waves. Thus, the driving part of the guide cylinder can be made small-sized and lightweight, improving the suction efficiency and scavenging efficiency of the engine body.

Description

【発明の詳細な説明】 A1発明の目的 (1)産業上の利用分野 本発明は、エンジン本体の排気ポートに排気管の上流端
が接続され、該排気管の下流端には膨張室が接続される
2サイクルエンジンの排気制御装置に関する。
Detailed Description of the Invention A1 Object of the Invention (1) Industrial Application Field The present invention is directed to an engine in which an upstream end of an exhaust pipe is connected to an exhaust port of an engine body, and an expansion chamber is connected to a downstream end of the exhaust pipe. The present invention relates to an exhaust control device for a two-stroke engine.

(2)従来の技術 従来、かかる装置はたとえば実開昭48−1623号公
報等により公知である。
(2) Prior Art Conventionally, such a device is known from, for example, Japanese Utility Model Application Publication No. 1623/1983.

(3)発明が解決しようとする課題 上記従来のものでは、膨張室を形成するマフラー本体を
軸方向移動自在にして排気管に連結し、エンジンの運転
状態に対応してマフラー本体を駆動することによりエン
ジン本体の給気効率および掃気効率を向上させている。
(3) Problems to be Solved by the Invention In the above conventional system, the muffler body forming the expansion chamber is movable in the axial direction and connected to the exhaust pipe, and the muffler body is driven in accordance with the operating state of the engine. This improves the air supply efficiency and scavenging efficiency of the engine body.

ところが、比較的大きくかつ比較的大重量であるマフラ
ー本体を駆動するものであるので、大きな駆動力が必要
である。
However, since the muffler main body is relatively large and heavy, a large driving force is required.

本発明は、かかる事情に鑑みてなされたものであり、被
駆動部分を小型かつ軽量にして上記従来の問題を解決し
た2サイクルエンジンの排気制御装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an exhaust control device for a two-stroke engine that solves the above-mentioned conventional problems by making the driven portion smaller and lighter.

B1発明の構成 (1)課題を解決するための手段 本発明は、排気管の下流端には、下流側に向かうにつれ
て拡径して基本的に円錐状に形成されるとともに膨張室
内の上流端部に配設される案内筒の上2ii端が接続さ
れ、該案内筒は、下流端を排気流通方向に沿って移動可
能に構成されるとともに、エンジン運転状態に応じて前
記下流端を移動させるべく駆動部材に連結されることを
第1の特徴とする。
B1 Structure of the Invention (1) Means for Solving the Problems The present invention provides that the downstream end of the exhaust pipe is basically formed into a conical shape whose diameter increases toward the downstream side, and the upstream end in the expansion chamber The upper 2ii ends of the guide tube disposed in the section are connected, and the guide tube is configured such that its downstream end is movable along the exhaust flow direction, and the downstream end is moved according to the engine operating state. The first feature is that the drive member is connected to the drive member.

また本発明は、排気管の下流端には、下流側に向かうに
つれて拡径して基本的に円錐状に形成されるとともに膨
張室内の上流端部に配設される案内筒の上流端が接続さ
れ、該案内筒は、排気管から膨張室への排気の実質的な
拡がり角度を可変に構成されるとともに、エンジン運転
状態に応じて前記拡がり角度を変化させるべく駆動部材
に連結されることを第2の特徴とする。
Further, in the present invention, the downstream end of the exhaust pipe is connected to the upstream end of a guide cylinder which is basically formed into a conical shape with its diameter increasing toward the downstream side and is disposed at the upstream end in the expansion chamber. The guide tube is configured to be able to vary the substantial spread angle of the exhaust gas from the exhaust pipe to the expansion chamber, and is coupled to a drive member to change the spread angle in accordance with engine operating conditions. This is the second feature.

(2)  作用 上記第1の特徴によれば、円錐状の案内筒を介して膨張
室に排気を導くので、該案内筒の部分で負圧波を発生さ
せることができ、案内筒の下流端を移動させることによ
りその負圧波の発生位置をエンジン運転状態に応じて変
化させて、エンジン高負荷状態から低負荷状態まで安定
した出力特性を得ることが可能となる。
(2) Effect According to the first feature, since the exhaust gas is guided to the expansion chamber through the conical guide tube, a negative pressure wave can be generated in the guide tube, and the downstream end of the guide tube can be generated. By moving the negative pressure wave, the generation position of the negative pressure wave can be changed depending on the engine operating state, and stable output characteristics can be obtained from the engine high load state to the low engine load state.

また上記第2の特徴によれば、円錐状の案内筒を介して
膨張室に排気を導くので、該案内筒の部分で負圧波を発
生させることができ、案内筒から膨張室への排気の拡が
り角度を変化させることによりその負圧波の大きさおよ
び負圧発生部の位置をエンジン運転状態に応じて変化さ
せて、エンジン高負荷状態から低負荷状態まで安定した
出力特性を得ることが可能となる。
Further, according to the second feature, since the exhaust gas is guided to the expansion chamber through the conical guide tube, a negative pressure wave can be generated in the guide tube, and the exhaust gas from the guide tube to the expansion chamber can be generated. By changing the spread angle, the magnitude of the negative pressure wave and the position of the negative pressure generating part can be changed according to the engine operating conditions, making it possible to obtain stable output characteristics from engine high load conditions to low engine load conditions. Become.

(3)実施例 以下、図面により本発明の実施例について説明すると、
先ず本発明の第1実施例を示す第1図において、自動二
輪車に搭載される2サイクルエンジンEのエンジン本体
を構成するシリンダブロンクlの内面には、該シリンダ
ブロンクl内に摺動自在に嵌合されたピストン2により
開閉される排気ポート3が開口されており、この排気ポ
ート3の開閉時期を制御すべく排気ポート3の上部には
排気時期制御弁4が配設される。また排気ポート3には
排気管5の上流端が接続されており、該排気管5は、膨
張室6を内部に形成する管部材7を介して図示しない消
音器に接続される。
(3) Examples Examples of the present invention will be explained below with reference to the drawings.
First, in FIG. 1 showing a first embodiment of the present invention, there is a cylinder on the inner surface of a cylinder bronck l that constitutes the engine body of a two-cycle engine E mounted on a motorcycle, and is slidable inside the cylinder bronk l. An exhaust port 3 is opened and opened and closed by a piston 2 fitted in the exhaust port 3, and an exhaust timing control valve 4 is disposed above the exhaust port 3 to control the opening and closing timing of the exhaust port 3. The upstream end of an exhaust pipe 5 is connected to the exhaust port 3, and the exhaust pipe 5 is connected to a muffler (not shown) via a pipe member 7 that defines an expansion chamber 6 therein.

排気ポート3に設けられた排気時%J] flin+御
弁4はシリンダロック1に回動自在に配設された駆動軸
10に固着されており、この駆動軸10はプーリおよび
伝動ワイヤ等から成る伝動機構11を介してサーボモー
タ12に連結される。またサーボモータ12には、サー
ボモータ12の作動量すなわち排気時間制御弁4の開度
を検出するためのポテンショメータ13が付設される。
The exhaust % J] flin+ control valve 4 provided at the exhaust port 3 is fixed to a drive shaft 10 rotatably disposed on the cylinder lock 1, and this drive shaft 10 is composed of a pulley, a transmission wire, etc. It is connected to a servo motor 12 via a transmission mechanism 11 . Further, the servo motor 12 is provided with a potentiometer 13 for detecting the operating amount of the servo motor 12, that is, the opening degree of the exhaust time control valve 4.

第2図を併せて参照して、管部材7はその横断面積を排
気管5の横断面積よりも大きくして形成されるものであ
り、その上流端部には上流側に向かうにつれて縮径した
テーパ管部7aが設けられる。この管部材7により形成
される膨張室6内の上流端部には、該膨張室6内の下流
側に向かうにつれて拡径して基本的に円錐状に形成され
るとともに下流端を排気流通方向15に沿って移動可能
に構成される案内筒14が配設され、該案内筒14の上
流端は排気管5の下流端に接続される。
Referring also to FIG. 2, the pipe member 7 is formed so that its cross-sectional area is larger than that of the exhaust pipe 5, and the upstream end thereof has a diameter that decreases toward the upstream side. A tapered tube portion 7a is provided. The upstream end of the expansion chamber 6 formed by the pipe member 7 is basically formed into a conical shape whose diameter increases toward the downstream side of the expansion chamber 6, and the downstream end is connected in the exhaust flow direction. A guide tube 14 configured to be movable along the guide tube 15 is disposed, and the upstream end of the guide tube 14 is connected to the downstream end of the exhaust pipe 5.

案内筒14は、排気管5に接続される固定筒部16と、
排気流通方向15に沿って移動可能な可動筒部17とか
ら成る。固定筒部16は上流側に向かうにつれて小径と
なる円錐状に形成されるものであり、上流端を突出する
ようにして管部材7の上流端に固着され、しかも該固定
筒部16の上流端は排気管5の下流端に結合される。ま
た可動筒部17は、膨張室6内で排気流通方向15に沿
って移動可能に配設されるものであり、上流側の直管部
分17aと下流側のテーバ管部分17bとが一体に結合
されて成る。直管部分17aの内径は固定筒部16の大
径端すなわち下流端外径よりもわずかに大きく設定され
るものであり、該直管部分17aは固定筒部16の大径
端外面にm接して排気流通方向15に移動すべく固定筒
部16の膨張室6内に臨む部分を囲繞して配置される。
The guide tube 14 includes a fixed tube portion 16 connected to the exhaust pipe 5,
It consists of a movable cylinder part 17 that is movable along the exhaust flow direction 15. The fixed cylinder part 16 is formed in a conical shape whose diameter becomes smaller toward the upstream side, and is fixed to the upstream end of the tube member 7 with the upstream end protruding. is connected to the downstream end of the exhaust pipe 5. Moreover, the movable cylinder part 17 is arranged so as to be movable along the exhaust flow direction 15 within the expansion chamber 6, and an upstream straight pipe part 17a and a downstream Taber pipe part 17b are integrally connected. It consists of being done. The inner diameter of the straight tube portion 17a is set to be slightly larger than the outer diameter of the large diameter end, that is, the downstream end, of the fixed tube portion 16, and the straight tube portion 17a is in contact with the outer surface of the large diameter end of the fixed tube portion 16. The fixed cylinder portion 16 is disposed so as to surround the portion of the fixed cylinder portion 16 facing into the expansion chamber 6 so as to move in the exhaust flow direction 15 .

またテーバ管部分17bは排気流通方向15に沿う下流
側に向かうにつれて拡径する円錐状に形成されるもので
あり、その小径端すなわち上流端が直管部分17aに同
軸に結合される。
Further, the Taber pipe portion 17b is formed in a conical shape whose diameter increases toward the downstream side along the exhaust flow direction 15, and its small diameter end, that is, the upstream end thereof, is coaxially connected to the straight pipe portion 17a.

管部材7には排気流通力1i115と直交する軸線を有
する駆動軸18が回動自在に支承されており、・この駆
動軸18に固着される駆動部材19が案内筒14におけ
る可動筒部17に連結される。すなわち駆動部材19は
可動筒部17のテーバ管部分17bを跨ぐように形成さ
れており、該テーバ管部分17bが前記駆動軸18と平
行な一対の連結ビン20を介して該駆動部材19に連結
される。
A drive shaft 18 having an axis perpendicular to the exhaust flow force 1i115 is rotatably supported on the pipe member 7, and a drive member 19 fixed to the drive shaft 18 is attached to the movable cylinder portion 17 of the guide cylinder 14. Concatenated. That is, the drive member 19 is formed to straddle the Taber tube portion 17b of the movable cylinder portion 17, and the Taber tube portion 17b is connected to the drive member 19 via a pair of connecting pins 20 parallel to the drive shaft 18. be done.

而して該駆動軸18の回動による駆動部材19の揺動作
動に応じて可動筒部17が排気流通方向15に移動し、
それにより可動筒部17の下流端すなわち案内筒14の
下流端が排気流通方向15に沿って移動する。
Then, the movable cylinder portion 17 moves in the exhaust flow direction 15 in response to the swinging motion of the drive member 19 due to the rotation of the drive shaft 18,
As a result, the downstream end of the movable cylinder portion 17, that is, the downstream end of the guide cylinder 14, moves along the exhaust flow direction 15.

管部材7から突出した駆動軸18の突出端にはプーリ2
1が固着されており、このプーリ21は伝動ワイヤ等の
伝動機構22を介してサーボモータ23に連結される。
A pulley 2 is attached to the protruding end of the drive shaft 18 protruding from the pipe member 7.
1 is fixedly attached thereto, and this pulley 21 is connected to a servo motor 23 via a transmission mechanism 22 such as a transmission wire.

しかも該サーボモータ23には、サーボモータ23の作
動量すなわち膨張室6内における案内筒14下流端の位
置を検出ずべ(ポテンショメータ24が付設される。
Moreover, a potentiometer 24 is attached to the servo motor 23 to detect the operating amount of the servo motor 23, that is, the position of the downstream end of the guide cylinder 14 within the expansion chamber 6.

両サーボモータ12.23の作動は制御手段25により
制御される。また制御手段25には、エンジン回転数検
出器26で検出されたエンジン回転数NE、スロットル
開度検出器27で検出されたスロットル開度θア。、膨
張室6内の排気温度を検出する排気温検出器28により
検出される排気温度T7、冷却水温検出器29により検
出されるエンジン冷却水a”rc、大気温検出器30に
より検出された大気温度TA、大気圧検出131で検出
される大気圧PAがそれぞれ入力されるとともにポテン
ショメータ13.24によるサーボモータ12.23の
作動量検出値が入力される。さらに図示しない気化器に
おけるブリード空気量制御のためのソレノイド弁32の
作動と、オイルポンプ33の作動とが制御手段25によ
り制御される。
The operation of both servo motors 12,23 is controlled by control means 25. Further, the control means 25 includes the engine rotation speed NE detected by the engine rotation speed detector 26 and the throttle opening degree θA detected by the throttle opening degree detector 27. , the exhaust temperature T7 detected by the exhaust temperature detector 28 that detects the exhaust temperature in the expansion chamber 6, the engine cooling water a"rc detected by the cooling water temperature detector 29, and the atmosphere detected by the atmospheric temperature detector 30. The temperature TA and the atmospheric pressure PA detected by the atmospheric pressure detection 131 are inputted, as well as the detected value of the operating amount of the servo motor 12.23 by the potentiometer 13.24.Furthermore, the amount of bleed air in the carburetor (not shown) is controlled. The operation of the solenoid valve 32 and the operation of the oil pump 33 for this purpose are controlled by the control means 25.

この制御手段25では、排気時期制御弁4の開度すなわ
ちサーボモータ12の作動量がエンジン運転状態に応じ
て制御されるとともに、案内筒14の下流端位置をエン
ジン負荷に応じて移動させるべく、サーボモータ23の
作動が第3図で示す制御手順に従って制御される。
In this control means 25, the opening degree of the exhaust timing control valve 4, that is, the operating amount of the servo motor 12 is controlled according to the engine operating state, and the downstream end position of the guide tube 14 is moved according to the engine load. The operation of the servo motor 23 is controlled according to the control procedure shown in FIG.

第3図において、第1ステツプStではデータが読込ま
れ、第2ステツプS2では第4ステツプS4での補正演
算に必要な大気圧補正係数KPMが検索される。すなわ
ち第4図で示すように大気圧PAに応じて大気圧補正係
数KPAを定めたマツプが予め〈V備されており、この
マツプに征っ゛ζ大気圧補正係数に0が検索される。次
の第3ステツプS3では第4ステツプS4での補正演算
に必要な大気温補正係数KTAが検索される。すなわち
第5図で示すように大気温TAに応じて大気温補正係数
K 7Aを定めたマツプが予め準備されており、このマ
ツプに従って大気温補正係数にアえが検索される。
In FIG. 3, data is read in a first step St, and an atmospheric pressure correction coefficient KPM necessary for the correction calculation in a fourth step S4 is retrieved in a second step S2. That is, as shown in FIG. 4, a map is prepared in advance in which the atmospheric pressure correction coefficient KPA is determined according to the atmospheric pressure PA, and when this map is used, 0 is searched for in the atmospheric pressure correction coefficient. In the next third step S3, an atmospheric temperature correction coefficient KTA necessary for the correction calculation in the fourth step S4 is retrieved. That is, as shown in FIG. 5, a map in which the atmospheric temperature correction coefficient K7A is determined in accordance with the atmospheric temperature TA is prepared in advance, and a search is made for the atmospheric temperature correction coefficient according to this map.

第4ステツプS4では、上述の第2および第3ステップ
S2.S3で求めた補正係数KPA+  KTkを用い
た第(1)式により、読込んだスロットル開度θTII
が補正される。
In the fourth step S4, the above-mentioned second and third steps S2. Throttle opening degree θTII read by equation (1) using correction coefficient KPA+KTk obtained in S3
is corrected.

θTH’ ”’θTHX KPAX Krs・・・・・
・(1)さらに次の第5ステツプS5では、エンジン回
転数N、と、補正後のスロットル開度θTH’ とに基
づいてサーボモータ23の作動量が検索される。
θTH'”'θTHX KPAX Krs・・・・・・
(1) In the next fifth step S5, the operating amount of the servo motor 23 is searched based on the engine speed N and the corrected throttle opening θTH'.

すなわち、第6図で示すように、サーボモータ23の作
動量として駆動部材19の回動量θ。が前記スロットル
開度θ□′およびエンジン回転数N、に基づく三次元マ
ツプとして予め定められており、このマツプに従って前
記回動量θ8が得られる。ここでθ。は、その値が大き
くなるにつれて案内筒14の下流端が排気流通方向15
に沿う上流側に移動することを示すものである。
That is, as shown in FIG. 6, the amount of rotation θ of the drive member 19 is the amount of operation of the servo motor 23. is predetermined as a three-dimensional map based on the throttle opening θ□′ and the engine rotational speed N, and the rotation amount θ8 is obtained according to this map. Here θ. As the value increases, the downstream end of the guide tube 14 moves toward the exhaust flow direction 15.
This indicates movement upstream along the .

第6ステツプS6では、次の第7ステノブS7で行なう
補正演算に必要な排気温補正係数KT、が検索される。
In the sixth step S6, the exhaust gas temperature correction coefficient KT necessary for the correction calculation to be performed in the next seventh steno knob S7 is searched.

すなわち第7図で示すように排気温T、に応じて排気温
補正係数KTEを定めたマツプが予め4!備されており
、このマツプに従って排気温補正係数にア、が検索され
る。さらに第7ステツプS7では該補正係数に’[を用
いた次の第(2)弐に従って作動量θDが補正される。
That is, as shown in FIG. 7, the map in which the exhaust temperature correction coefficient KTE is determined according to the exhaust temperature T is 4! According to this map, the exhaust temperature correction coefficient is searched for. Furthermore, in the seventh step S7, the operating amount θD is corrected according to the following (2) 2 using '[ as the correction coefficient.

θIl′ −θ。×に7.・・・・・・(2)最後の第
8ステツプS8では、上記第(2)式で得られた作動量
θ。′が出力され、その作動量θ。
θIl′ −θ. ×7. (2) In the final eighth step S8, the operating amount θ obtained from the above equation (2). ' is output, and its operating amount θ.

分だけサーボモータ23が作動せしめられることになる
The servo motor 23 will be operated accordingly.

次にこの実箱例の作用について説明すると、エンジン運
転状態に応じて排気時期制御弁4の開度を制御すること
により、2サイクルエンジンEの出力は第8図で左下が
りの斜線で示すように増大する。また案内筒14の下流
端位置をエンジン負荷に応じて制御することにより、2
サイクルエンジンEの出力は、第8図で右下がりの斜線
で示すように増大する。すなわち、2サイクルエンジン
Eの低負荷運転域では、案内筒14の下流端が排気流通
方向15に沿う下流側にあるので、排ガスが案内筒14
により膨張室6内に導入されるのに伴って生じる負圧の
発生部位は膨張室6内の上流端部において比較的下流側
の位置となり、排気および掃気行程の時間間隔が比較的
長いのに対応して負圧発生部を排気ポート3から比較的
離れた位置とすることができ、また2サイクルエンジン
Eの高負荷運転域では、案内筒14の下流端が排気流通
方向15に沿う上流側にあるので、排ガスが案内筒14
により膨張室6内に導入されるのに伴って生じる負圧の
発生部位は膨張室6内の上流端部において比較的上流側
の位置となり、排気および掃気行程の時間間隔が比較的
短いのに対応して負圧発生部を排気ポート3に比較的近
接した位置とすることができ、このように負圧発生部の
位置を制御することによりエンジン運転状態に対応した
新気導入および燃焼ガス排出を行ない、2サイクルエン
ジンEの出力を向上することができる。
Next, to explain the operation of this example of a real box, by controlling the opening degree of the exhaust timing control valve 4 according to the engine operating condition, the output of the two-cycle engine E can be adjusted as shown by the diagonal line downward to the left in FIG. increases to In addition, by controlling the downstream end position of the guide tube 14 according to the engine load, two
The output of the cycle engine E increases as shown by the diagonal line downward to the right in FIG. That is, in the low-load operating range of the two-stroke engine E, the downstream end of the guide tube 14 is located on the downstream side along the exhaust flow direction 15, so that exhaust gas flows into the guide tube 14.
The location where the negative pressure generated as the pressure is introduced into the expansion chamber 6 is located relatively downstream at the upstream end of the expansion chamber 6, and the time interval between the exhaust and scavenge strokes is relatively long. Correspondingly, the negative pressure generating section can be located relatively far from the exhaust port 3, and in the high-load operating range of the two-cycle engine E, the downstream end of the guide tube 14 can be located on the upstream side along the exhaust flow direction 15. Since the exhaust gas is located in the guide tube 14
The site where the negative pressure generated as a result of being introduced into the expansion chamber 6 is located relatively upstream at the upstream end of the expansion chamber 6, and the time interval between the exhaust and scavenge strokes is relatively short. Correspondingly, the negative pressure generating section can be positioned relatively close to the exhaust port 3, and by controlling the position of the negative pressure generating section in this way, fresh air introduction and combustion gas exhaust can be adjusted according to the engine operating condition. By doing so, the output of the two-stroke engine E can be improved.

しかも上記出力向上のために駆動する部分は、膨張室6
内で案内筒14を構成する可動筒部17のみであり、該
可動筒部17を駆動するための駆動力は比較的小さくて
すむ。
Moreover, the part that is driven to improve the output is the expansion chamber 6.
There is only a movable cylindrical portion 17 that constitutes the guide tube 14, and the driving force for driving the movable cylindrical portion 17 is relatively small.

第9図および第1O図は本発明の第2実施例を示すもの
であり、前記第1実施例に対応する部分には同一の参照
符号を付す。
FIG. 9 and FIG. 1O show a second embodiment of the present invention, and parts corresponding to the first embodiment are given the same reference numerals.

管部材7により形成される膨張室6内の排気流通方向1
5に沿う上流端部には、排気ポート3に連なる排気管5
に接続される固定筒部36と、排気流通方向15に沿っ
て伸縮可能な可動筒部37とから成る案内筒34が配設
される。
Exhaust flow direction 1 in the expansion chamber 6 formed by the pipe member 7
At the upstream end along 5, there is an exhaust pipe 5 connected to the exhaust port 3.
A guide cylinder 34 is provided, which includes a fixed cylinder part 36 connected to the exhaust gas flow direction 15 and a movable cylinder part 37 that is expandable and retractable along the exhaust flow direction 15.

固定筒部36は上流側に向かうにつれて小径となる円錐
状に形成されるものであり、管部材7内に突入される排
気管5に固定筒部36の上流端が同軸に結合される。ま
た可動筒部37は、上流側に向かうにつれて小径となる
第1、第2および第3円錐筒部材3B、39.40が同
軸にかつ排気流通方向15に沿う相対移動可能に連結さ
れて成る。すなわち第1円錐筒部材38の上流端内径は
固定筒部36の下流端外径よりもわずかに大きく形成さ
れ、第2円錐筒部材39の上流端内径は第1円錐筒部材
38の下流端外径よりもわずかに大きく形成され、第3
円錐筒部材40の上流端内径は第2円錐筒部材39の下
流端外径よりもわずかに大きく形成されている。また固
定筒部36の下流端には半径方向外方に張出す係止鍔3
6aが設けられ、第1円錐筒部材38の上流端には前記
係止鍔36aに排気流通方向15に沿う上流側から係合
可能な係合鍔38aが半径方向内方に張出して設けられ
、第1円錐筒部材3Bの下流端には半径方向外方に張出
す係止鍔38bが設けられ、第2円錐筒部材39の上流
端には前記係止鍔381)に排気流通方向15に沿う上
流側から保合可能な係合鍔39aが半径方向内方に張出
して設けられ、第2円錐筒部材39の下流端には半径方
向外方に張出す係止鍔39bが設けられ、第3円錐筒部
材40の上流端には0j1記係止鍔39bにすし気流連
方向15に沿う上流側から保合可能な係合鍔40aが半
径方向内方に張出して設けられる。さらに第3円錐筒部
材40の下流端寄りには、−直径線方向に延びる係止棒
41の両端部が固着される。
The fixed cylindrical portion 36 is formed into a conical shape whose diameter becomes smaller toward the upstream side, and the upstream end of the fixed cylindrical portion 36 is coaxially connected to the exhaust pipe 5 that is inserted into the pipe member 7. Moreover, the movable cylinder part 37 is made up of first, second, and third conical cylinder members 3B, 39.40 whose diameters become smaller toward the upstream side and are connected coaxially and relatively movably along the exhaust flow direction 15. That is, the inner diameter of the upstream end of the first conical cylinder member 38 is formed to be slightly larger than the outer diameter of the downstream end of the fixed cylinder part 36, and the inner diameter of the upstream end of the second conical cylinder member 39 is formed to be slightly larger than the outer diameter of the downstream end of the first conical cylinder member 38. It is formed slightly larger than the diameter, and the third
The inner diameter of the upstream end of the conical cylindrical member 40 is slightly larger than the outer diameter of the downstream end of the second conical cylindrical member 39 . Further, at the downstream end of the fixed cylinder part 36, there is a locking collar 3 that extends outward in the radial direction.
At the upstream end of the first conical cylindrical member 38, an engaging flange 38a that can be engaged with the locking flange 36a from the upstream side along the exhaust flow direction 15 is provided and extends radially inward, The downstream end of the first conical cylinder member 3B is provided with a locking collar 38b that extends outward in the radial direction, and the upstream end of the second conical cylinder member 39 is provided with a locking collar 38b that extends along the exhaust flow direction 15. An engaging collar 39a that can be engaged from the upstream side is provided to protrude radially inward, a locking collar 39b that protrudes radially outward is provided at the downstream end of the second conical cylinder member 39, and a third At the upstream end of the conical cylinder member 40, an engaging collar 40a that can be engaged with the locking collar 39b from the upstream side along the sushi air flow direction 15 is provided so as to protrude radially inward. Further, both ends of a locking rod 41 extending in the -diameter direction are fixed near the downstream end of the third conical cylinder member 40.

第3円錐筒部材40には、管部材7により回動自在に支
承された駆動軸18に固着される駆動部材19が連結ビ
ン20.20を介して連結される。
A drive member 19 fixed to a drive shaft 18 rotatably supported by the tube member 7 is connected to the third conical cylinder member 40 via a connecting pin 20.20.

駆動軸18に連なるサーボモータ23は、上記第1実施
例における第3図で示した制御手順に従って制御手段2
5により制御されるものであり、2サイクルエンジンE
が高速回転になるにつれて駆動部材19が第9図の左側
に揺動するようにサーボモータ23の作動が制御される
The servo motor 23 connected to the drive shaft 18 is operated by the control means 2 according to the control procedure shown in FIG. 3 in the first embodiment.
5, the two-stroke engine E
The operation of the servo motor 23 is controlled so that the drive member 19 swings to the left in FIG. 9 as the rotation speed increases.

この第2実施例の作用について説明すると、2サイクル
エンジンEが高速回転になるにつれて駆動部材19は第
9図の左側に揺動する。それにより先ず第3円錐筒部材
40が排気流通方向15に沿う上流側に移動し、係止棒
41が第2円錐筒部材39の係止鍔39bに当接してか
らは第2円錐筒部材39も排気流通方向15に沿う上流
側に移動し、さらに係止棒41が第1円錐筒部材38の
係止鍔38bに当接すると第1円錐筒部材38も排気流
通方向15に沿う上流側に移動する。このようにして案
内筒34における可動筒部37が伸。
To explain the operation of this second embodiment, as the two-stroke engine E rotates at a high speed, the drive member 19 swings to the left in FIG. As a result, the third conical cylinder member 40 first moves upstream along the exhaust flow direction 15, and after the locking rod 41 comes into contact with the locking collar 39b of the second conical cylinder member 39, the second conical cylinder member 39 moves upstream along the exhaust flow direction 15, and when the locking rod 41 further comes into contact with the locking flange 38b of the first conical cylinder member 38, the first conical cylinder member 38 also moves upstream along the exhaust flow direction 15. Moving. In this way, the movable cylinder portion 37 in the guide cylinder 34 is extended.

縮作動することにより、案内筒34における下流端の位
置が移動し、排ガスが案内筒34内に入ったときに発生
する負圧波の大きさおよび負圧発生部位が変化する。す
なわちエンジン低負荷運転時には排気ポート3から比較
的離れた位置で比較的小さな負圧波を発生させ、またエ
ンジン高負荷運転時には排気ポート3に比較的近接した
位置で比較的大きな負圧波を発生させ、それによりエン
ジン運転状態に対応した効率のよい新気導入および燃焼
ガス排出を行なって2サイクルエンジンEの出力向上を
果たすことができる。
Due to the contraction operation, the position of the downstream end of the guide tube 34 moves, and the magnitude of the negative pressure wave generated when exhaust gas enters the guide tube 34 and the negative pressure generation site change. That is, when the engine is running at low load, a relatively small negative pressure wave is generated at a position relatively far from the exhaust port 3, and when the engine is running at high load, a relatively large negative pressure wave is generated at a position relatively close to the exhaust port 3. As a result, the output of the two-stroke engine E can be improved by efficiently introducing fresh air and exhausting combustion gas in accordance with the engine operating state.

しかもサーボモータ23で駆動すべき可動筒部37は比
較的軽いものであり、サーボモータ23の容量を大きく
しなくてもよい。
Furthermore, the movable cylinder portion 37 to be driven by the servo motor 23 is relatively light, so the capacity of the servo motor 23 does not need to be increased.

以上の第1および第2実施例では、エンジン出力向上を
図るべく、案内筒14.34の下流端を移動させること
により負圧発生位置を変化させるものであったが、これ
を言い換えると、排気管5から膨張室6への排気の実質
的な拡がり角度を可変にして膨張室6内の上流端部に配
設された案内筒14.34を、前記拡がり角度が変化す
るように駆動することでもある。すなわち第1図で示す
ように、案内筒14の下流端の位置が変化することによ
り排気管5から膨張室6への排気の実質的な拡がり角度
はα1〜α2の間で変化し、また第9図で示すように案
内筒34の下流端の位置が変化することにより排気管5
から膨張室6への排気の実質的な拡がり角度はβl−β
2の間で変化する。而して咳払がり角度を変化させるこ
とによっても膨張室6の上流端部における負圧波の大き
さおよび負圧発生部の位置を変化させて、エンジン出力
向上を果たすことができる。
In the first and second embodiments described above, the negative pressure generation position is changed by moving the downstream end of the guide tube 14.34 in order to improve the engine output. Driving the guide cylinder 14.34 disposed at the upstream end of the expansion chamber 6 so that the actual expansion angle of the exhaust gas from the pipe 5 to the expansion chamber 6 changes. There is also. That is, as shown in FIG. 1, by changing the position of the downstream end of the guide tube 14, the substantial spread angle of the exhaust gas from the exhaust pipe 5 to the expansion chamber 6 changes between α1 and α2, and As shown in FIG. 9, the position of the downstream end of the guide tube 34 changes, so that the exhaust pipe 5
The actual spread angle of the exhaust air from the expansion chamber 6 to the expansion chamber 6 is βl−β
Varies between 2. By changing the cough angle, the magnitude of the negative pressure wave at the upstream end of the expansion chamber 6 and the position of the negative pressure generating section can be changed, thereby improving the engine output.

C1発明の効果 以上のように本発明の第1の特徴によれば、u1気管の
下流端には、下流側に向かうにつれて拡径して基本的に
円錐状に形成されるとともに膨張室内の上流端部に配設
される案内筒の上流端が接続され、該案内筒は、下流端
を排気流通方向に沿って移動可能に構成されるとともに
、エンジン運転状態に応じて前記下流端を移動させるべ
く駆動部材に連結されるので、該案内筒の部分での負圧
波発生位置をエンジン運転状態に応じて変化させて、エ
ンジン高負荷状態から低負荷状態まで安定した出力特性
を得ることが可能となり、しかも案内筒は比較的軽く、
したがって駆動力が小さくてすむ。
Effects of the C1 Invention As described above, according to the first feature of the present invention, the downstream end of the u1 trachea is basically formed into a conical shape that increases in diameter toward the downstream side, and the upstream portion of the expansion chamber The upstream end of a guide tube disposed at the end is connected to the guide tube, and the guide tube is configured such that the downstream end can be moved along the exhaust flow direction, and the downstream end is moved according to the engine operating state. Since the guide cylinder is connected to the drive member, it is possible to change the position of negative pressure wave generation in the guide tube depending on the engine operating condition, and obtain stable output characteristics from engine high load conditions to low engine load conditions. , and the guide tube is relatively light.
Therefore, only a small driving force is required.

また本発明の第2の特徴によれば、排気管の下流端には
、下流側に向かうにつれて拡径して基本的に円錐状に形
成されるとともに膨張室内の上流端部に配設される案内
筒の上流端が接続され、該案内筒は、排気管から膨張室
への排気の実質的な拡がり角度を可変に構成されるとと
もに、エンジン運転状態に応じて前記拡がり角度を変化
させるべく駆動部材に連結されるので、該案内筒の部分
での負圧波発生位置および大きさをエンジン運転状態に
応じて変化させて、エンジン高負荷状態から低負荷状態
まで安定した出力特性を得ることが可能となり、しかも
案内筒は比較的軽く、したがって駆動力が小さくてすむ
According to the second feature of the present invention, the downstream end of the exhaust pipe is basically formed into a conical shape with its diameter increasing toward the downstream side, and is disposed at the upstream end in the expansion chamber. The upstream end of the guide tube is connected to the guide tube, and the guide tube is configured to be able to vary the actual divergence angle of exhaust gas from the exhaust pipe to the expansion chamber, and is driven to change the divergence angle according to engine operating conditions. Since it is connected to a member, it is possible to change the negative pressure wave generation position and magnitude in the guide cylinder portion according to the engine operating condition, and obtain stable output characteristics from engine high load conditions to low engine load conditions. Moreover, the guide cylinder is relatively light, so the driving force can be small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第8図は本発明の第1実施例を示すもので
、第1図は全体概略図、第2図は第1図の■−■線拡線
断大断面図3図は制御手段の制御手順を示すフローチャ
ート、第4図は大気圧補正係数を検索するためのマツプ
を示す図、第5図は大気温補正係数を検索するだめのマ
ツプを示す図、第6図は駆動部材作動量を検索するため
のマツプを示す図、第7図は排気温補正係数を検索する
ためのマツプを示す図、第8図は出力特性図、第9図お
よび第10図は本発明の第2実施例を示すもので、第9
図は全体概略図、第10図は第9図のX−X線断面図で
ある。 】・・・エンジン本体としてのソリンダブロソク、3・
・・排気ポート、5・・・排気管、6・・・膨張室、1
4゜34・・・案内筒、19・・・駆動部材、15・・
・排気流通方向、 α1.α2、β1.β2・・・拡がり角度、E・・・2
サイクルエンジン 第2図 第3図 第6図 エンジン回転数 第7図 第8図 エンジン回転数 第4 図 第5図 大気温
1 to 8 show a first embodiment of the present invention. FIG. 1 is an overall schematic diagram, FIG. 2 is an enlarged sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a control diagram. A flowchart showing the control procedure of the means, FIG. 4 is a map for searching the atmospheric pressure correction coefficient, FIG. 5 is a map for searching the atmospheric temperature correction coefficient, and FIG. 6 is a diagram showing the map for searching the atmospheric temperature correction coefficient. FIG. 7 is a diagram showing a map for searching the operating amount, FIG. 7 is a diagram showing the map for searching the exhaust temperature correction coefficient, FIG. 8 is an output characteristic diagram, and FIGS. This shows the second embodiment, and the ninth
The figure is an overall schematic diagram, and FIG. 10 is a sectional view taken along the line X--X in FIG. 9. ]...Solinda Blosoku as the engine body, 3.
...Exhaust port, 5...Exhaust pipe, 6...Expansion chamber, 1
4゜34... Guide tube, 19... Drive member, 15...
・Exhaust flow direction, α1. α2, β1. β2... Spreading angle, E...2
Cycle engine Figure 2 Figure 3 Figure 6 Engine speed Figure 7 Figure 8 Engine speed Figure 4 Figure 5 Atmospheric temperature

Claims (2)

【特許請求の範囲】[Claims] (1)エンジン本体の排気ポートに排気管の上流端が接
続され、該排気管の下流端には膨張室が接続される2サ
イクルエンジンの排気制御装置において、前記排気管の
下流端には、下流側に向かうにつれて拡径して基本的に
円錐状に形成されるとともに膨張室内の上流端部に配設
される案内筒の上流端が接続され、該案内筒は、下流端
を排気流通方向に沿って移動可能に構成されるとともに
、エンジン運転状態に応じて前記下流端を移動させるべ
く駆動部材に連結されることを特徴とする2サイクルエ
ンジンの排気制御装置。
(1) In an exhaust control device for a two-stroke engine, in which an upstream end of an exhaust pipe is connected to an exhaust port of an engine main body, and an expansion chamber is connected to a downstream end of the exhaust pipe, the downstream end of the exhaust pipe includes: The upstream end of a guide tube is connected to the guide tube, which is basically formed into a conical shape with its diameter increasing toward the downstream side and is disposed at the upstream end of the expansion chamber. What is claimed is: 1. An exhaust gas control device for a two-cycle engine, characterized in that the device is configured to be movable along the downstream end and is connected to a drive member to move the downstream end according to engine operating conditions.
(2)エンジン本体の排気ポートに排気管の上流端が接
続され、該排気管の下流端には膨張室が接続される2サ
イクルエンジンの排気制御装置において、前記排気管の
下流端には、下流側に向かうにつれて拡径して基本的に
円錐状に形成されるとともに膨張室内の上流端部に配設
される案内筒の上流端が接続され、該案内筒は、排気管
から膨張室への排気の実質的な拡がり角度を可変に構成
されるとともに、エンジン運転状態に応じて前記拡がり
角度を変化させるべく駆動部材に連結されることを特徴
とする2サイクルエンジンの排気制御装置。
(2) In an exhaust control device for a two-stroke engine, in which an upstream end of an exhaust pipe is connected to an exhaust port of an engine main body, and an expansion chamber is connected to a downstream end of the exhaust pipe, the downstream end of the exhaust pipe includes: The upstream end of a guide tube is connected to the guide tube, which is basically formed into a conical shape with its diameter increasing toward the downstream side and is disposed at the upstream end of the expansion chamber. 1. An exhaust gas control device for a two-stroke engine, characterized in that the exhaust gas control device is configured to vary a substantial spread angle of exhaust gas, and is connected to a drive member to change the spread angle according to engine operating conditions.
JP31780788A 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine Pending JPH02163410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31780788A JPH02163410A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31780788A JPH02163410A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Publications (1)

Publication Number Publication Date
JPH02163410A true JPH02163410A (en) 1990-06-22

Family

ID=18092259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31780788A Pending JPH02163410A (en) 1988-12-16 1988-12-16 Exhaust controller for two-cycle engine

Country Status (1)

Country Link
JP (1) JPH02163410A (en)

Similar Documents

Publication Publication Date Title
KR920006542B1 (en) Control of internal combustion engine turbo-charger waste gate valves
EP0382063A1 (en) 2-Cycle multi-cylinder engine
JPH02298629A (en) Cycle control device for engine
JP4848811B2 (en) Turbocharger control device
US9926867B1 (en) Maintaining EGR flow in a uniflow-scavenged, two-stroke cycle, opposed-piston engine
JPS5947128B2 (en) Internal combustion engine intake system
JPH02163410A (en) Exhaust controller for two-cycle engine
JPH02163411A (en) Exhaust controller for two-cycle engine
US20140150424A1 (en) Turbocharger wastegate and method for operation of a turbocharger wastegate
JPH11107789A (en) Exhaust controller
CA1084366A (en) Automotive exhaust gas recirculation valve
US5136989A (en) Two-stroke cycle internal combustion engine
JP2652442B2 (en) Exhaust control device for two-stroke engine
JPH04175422A (en) Supercharging pressure control method in internal combustion engine
EP1207288B1 (en) Method of controlling an internal combustion engine in order to produce a homogeneous combustion
Lee et al. Supercharging performance of a gasoline engine with a supercharger
JPS60216029A (en) Suction apparatus for engine
JP4241351B2 (en) Control device and control method for variable compression ratio internal combustion engine
JPS6244097Y2 (en)
JP2709952B2 (en) Exhaust control method for two-stroke engine
JPS589253B2 (en) Internal combustion engine intake system
JP2711563B2 (en) Variable cycle number engine
JP2005155506A (en) Variable compression ratio internal combustion engine and control method therefor
JPS6320811Y2 (en)
KR100391132B1 (en) Variable intake system of engine