JPS589253B2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPS589253B2
JPS589253B2 JP53059896A JP5989678A JPS589253B2 JP S589253 B2 JPS589253 B2 JP S589253B2 JP 53059896 A JP53059896 A JP 53059896A JP 5989678 A JP5989678 A JP 5989678A JP S589253 B2 JPS589253 B2 JP S589253B2
Authority
JP
Japan
Prior art keywords
throttle valve
intake
load operation
intake passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53059896A
Other languages
Japanese (ja)
Other versions
JPS54151721A (en
Inventor
許斐敏明
松井英昭
野平英隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP53059896A priority Critical patent/JPS589253B2/en
Publication of JPS54151721A publication Critical patent/JPS54151721A/en
Publication of JPS589253B2 publication Critical patent/JPS589253B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for an internal combustion engine.

通常時にガソリン機関においては高速高負荷運転時にお
ける充填効率を高め、それによって十分な出力を得られ
るように吸気ポートは流体抵抗が小さなポート形状に形
成される。
Normally, in a gasoline engine, the intake port is formed in a port shape with small fluid resistance in order to increase charging efficiency during high-speed, high-load operation and thereby obtain sufficient output.

しかしながらこのようなポート形状にした場合、高速高
負荷運転時には、自然発生のかなり強力な乱れが燃焼室
内に生ずるので燃焼速度は十分に速められるが低速低負
荷運転時には燃焼室内に十分な乱れが発生せず、従って
燃焼速度を十分に速めることができないという問題があ
る。
However, if such a port shape is used, during high-speed, high-load operation, a naturally occurring and quite strong turbulence will occur within the combustion chamber, so the combustion speed will be sufficiently increased, but during low-speed, low-load operation, sufficient turbulence will occur within the combustion chamber. Therefore, there is a problem that the combustion rate cannot be sufficiently increased.

低速低負荷運転時に強力な乱れを発生させる方法として
、吸気ポートをヘリカル形状にしたり或いはシュラウド
弁を用いて燃焼室内に強制的に旋回流を発生させる方法
があるがこれらの方法では吸入混合気流に対する抵抗が
増大するため高速高負荷運転時における充填効率が低下
するという問題がある。
There are ways to generate strong turbulence during low-speed, low-load operation by making the intake port a helical shape or by using a shroud valve to forcefully generate a swirling flow in the combustion chamber. There is a problem in that charging efficiency decreases during high-speed, high-load operation due to increased resistance.

従って高速高負荷運転時における高い充填効率を確保し
つつ低速低負荷運転時における燃焼速度を増大せしめる
には吸気ポートを流体抵抗の小さなポート形状から形成
すると共に低速低負荷運転時に燃焼室内に強力な乱れを
発生させるようにしなければならない。
Therefore, in order to increase the combustion rate during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, the intake port should be formed with a port shape that has low fluid resistance, and at the same time, a powerful You have to try to cause some disturbance.

また低速低負荷運転時における燃焼を改善する方法とし
て燃焼室内に強力な乱れを発生させる以外に燃料の気化
を促進させることが挙げられる。
Furthermore, as a method of improving combustion during low-speed, low-load operation, in addition to generating strong turbulence within the combustion chamber, there is also a method of promoting vaporization of the fuel.

即ち、低速低負荷運転時には気化器ベンチュリ部を流れ
る空気の流速が遅く、従って噴出燃料と空気流との相対
速度が遅いために燃料を十分に微粒化することができず
、その結果多量の燃料が液状のままで燃焼室内に供給さ
れ、これが燃焼を悪化させしかも排気エミツションを悪
化させる一原因となっている。
That is, during low-speed, low-load operation, the flow rate of air flowing through the venturi section of the carburetor is slow, and therefore the relative velocity between the injected fuel and the air flow is slow, making it impossible to atomize the fuel sufficiently, and as a result, a large amount of fuel is is supplied into the combustion chamber in a liquid state, which is one of the causes of worsening combustion and exhaust emissions.

これらの問題点を解決するために気化器スロットル弁後
流の吸気通路内に第2スロットル弁を設け、気化器スロ
ットル弁と第2スロットル弁間の吸気通路から副吸気通
路を分岐してこの副吸気通路を第2スロットル弁後流の
吸気通路内に再び連結するようにした内燃機関が特開昭
54−69619号公報に記載されていた。
In order to solve these problems, a second throttle valve is provided in the intake passage downstream of the carburetor throttle valve, and a sub-intake passage is branched from the intake passage between the carburetor throttle valve and the second throttle valve. JP-A-54-69619 discloses an internal combustion engine in which the intake passage is reconnected to the intake passage downstream of the second throttle valve.

この内燃機関では低負荷運転時に第2スロットル弁を閉
弁することにより断面積の小さな副吸気通路から混合気
を供給し、副吸気通路から噴出する混合気によって燃焼
室内に乱れを発生せしめると共に副吸気通路内を混合気
が高速度で流れるので燃料の気化が促進される。
In this internal combustion engine, by closing the second throttle valve during low-load operation, the air-fuel mixture is supplied from the auxiliary intake passage with a small cross-sectional area, and the mixture ejected from the auxiliary intake passage causes turbulence in the combustion chamber. Since the air-fuel mixture flows in the intake passage at a high speed, vaporization of the fuel is promoted.

しかしながらこの内燃機関では副吸気通路がパイプから
形成されるか、或いは吸気マニホルド壁面内に穿設され
た孔から形成されているためにパイプを用いる場合には
余分な部品が必要となるばかりでなくパイプ配管のため
のスペースが必要となる問題があり、吸気マニホルド壁
面内に孔を穿設する場合には複雑な加工を必要とすると
いう問題がある。
However, in this internal combustion engine, the auxiliary intake passage is formed from a pipe or a hole drilled in the wall of the intake manifold, so if a pipe is used, not only will extra parts be required. There is a problem in that a space is required for pipe piping, and there is a problem in that complicated machining is required when drilling holes in the wall surface of the intake manifold.

本発明は簡単な構造でもって高速高負荷運転時における
高い充填効率を確保しつつ低速低負荷運転時に燃焼室内
に強力な乱れを発生できると共に燃料の気化を促進でき
るようにした内燃機関を提供することにある。
The present invention provides an internal combustion engine that has a simple structure and can generate strong turbulence in the combustion chamber during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, and can promote fuel vaporization. There is a particular thing.

以下、添付図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1はシリンダブロック、2はシリ
ンダブロック1内で往復動するピストン3はシリンダブ
ロック1上に固定されたシリンダヘッド、4はピストン
2とシリンダヘッド3間に形成された燃焼室、5はシリ
ンダヘッド3内に形成された吸気ポート、6は吸気弁、
1は排気ポート、8は排気弁、9は点火栓、10は吸気
マニホルド、11は気化器、12は気化器スロットル弁
を夫々示し、この気化器スロットル弁12は車両運転室
に配置されたアクセルペダルにより作動される。
Referring to FIG. 1, 1 is a cylinder block, 2 is a piston 3 that reciprocates within the cylinder block 1, and a cylinder head is fixed on the cylinder block 1, and 4 is a combustion chamber formed between the piston 2 and the cylinder head 3. 5 is an intake port formed in the cylinder head 3; 6 is an intake valve;
1 is an exhaust port, 8 is an exhaust valve, 9 is a spark plug, 10 is an intake manifold, 11 is a carburetor, and 12 is a carburetor throttle valve, and this carburetor throttle valve 12 is an accelerator located in the vehicle cab. Operated by pedal.

第1図に示されるように吸気マニホルド10はスペーサ
13を介してシリンダヘッド3に固定され、このスペー
サ13内には第2スロットル弁14が挿着される。
As shown in FIG. 1, the intake manifold 10 is fixed to the cylinder head 3 via a spacer 13, and a second throttle valve 14 is inserted into the spacer 13.

一方、第1図並びに第2図に示されるように吸気弁ステ
ム6a周りの吸気ポート5の容積が拡大され、それによ
って吸気弁ステム6aをとり囲むように環状をなす空間
、即ち渦流増勢室18が形成される。
On the other hand, as shown in FIGS. 1 and 2, the volume of the intake port 5 around the intake valve stem 6a is expanded, and as a result, an annular space surrounding the intake valve stem 6a, that is, a vortex boosting chamber 18 is formed.

第2スロットル弁14のスロットル軸19にはアーム2
0が固着され、このアーム20の先端部に負圧ダイアフ
ラム装置21の制御ロツド22が枢着される。
The arm 2 is attached to the throttle shaft 19 of the second throttle valve 14.
0 is fixed, and a control rod 22 of a negative pressure diaphragm device 21 is pivotally attached to the tip of this arm 20.

負圧ダイアフラム装置21はダイアフラム23により隔
離された大気圧室24と負圧室25とを有し、この負圧
室25内にはダイアフラム押圧用圧縮ばね26が挿入さ
れる。
The negative pressure diaphragm device 21 has an atmospheric pressure chamber 24 and a negative pressure chamber 25 separated by a diaphragm 23, and a compression spring 26 for pressing the diaphragm is inserted into the negative pressure chamber 25.

負圧室25は負圧梼管21を介して気化器スロットル弁
12後流の吸気マニホルド10内に連結され、一方ダイ
アフラム23に制御ロツド22が固定される。
The vacuum chamber 25 is connected via a vacuum pipe 21 into the intake manifold 10 downstream of the carburetor throttle valve 12, while a control rod 22 is fixed to the diaphragm 23.

第1図から第3図を参照すると、第2スロットル弁14
周りの吸気通路上壁面並びに底壁面上に吸気マニホルド
10からスペーサ13を介して吸気ポート5内に延びる
一対の切溝28,29が形成される。
Referring to FIGS. 1 to 3, the second throttle valve 14
A pair of grooves 28 and 29 extending from the intake manifold 10 into the intake port 5 via the spacer 13 are formed on the upper and bottom walls of the surrounding intake passage.

これら切溝28 ,29は吸気通路軸線に対して前めに
即ち螺旋状に延びる。
These grooves 28 and 29 extend forward with respect to the axis of the intake passage, that is, in a spiral manner.

気化器スロットル弁12の開度が小さな低負荷運転時に
は吸気マニホルド10内の負圧は大きくその結果ダイア
フラム23は圧縮ばね26のばね力に抗して下降するの
で第2スロットル弁14は第1図に示すような閉鎖位置
にある。
During low-load operation with a small opening of the carburetor throttle valve 12, the negative pressure inside the intake manifold 10 is large, and as a result, the diaphragm 23 moves downward against the spring force of the compression spring 26, so that the second throttle valve 14 is opened as shown in FIG. in the closed position as shown.

従ってこのとき気化器11から供給された燃料は一対の
切溝28,29を介して吸気ポート5内に供給される。
Therefore, at this time, the fuel supplied from the carburetor 11 is supplied into the intake port 5 via the pair of grooves 28 and 29.

第1図から第3図に示されるように切溝28,29の断
面積は極めて小さく、期くして混合気は切溝28 ,2
9内を高速度で流れるために切溝28,29内において
燃料の気化が促進される。
As shown in FIGS. 1 to 3, the cross-sectional area of the kerfs 28 and 29 is extremely small, so that the air-fuel mixture flows between the kerfs 28 and 2.
Since the fuel flows in the grooves 9 at a high speed, vaporization of the fuel in the grooves 28 and 29 is promoted.

一方、切溝2B ,29は吸気通路軸線に対して斜めに
螺旋状に配置されているので切溝28,29から流出し
た混合気流に旋回流が与えられる。
On the other hand, since the kerfs 2B and 29 are arranged in a spiral shape obliquely with respect to the axis of the intake passage, a swirling flow is given to the air mixture flowing out from the kerfs 28 and 29.

この混合気流は矢印Dで示すように吸気弁ステム6a周
りを旋回しつつ燃焼室4内に流入し、斯くして燃焼室4
内に強力な旋回流を発生せしめる。
This mixture flow flows into the combustion chamber 4 while swirling around the intake valve stem 6a as shown by arrow D, and thus flows into the combustion chamber 4.
Generates a strong swirling flow inside.

一方、機関高負荷運転時には吸気マニホルド10内の負
圧が小さくなるためダイアフラム23は圧縮ばね26の
ばね力により上昇し、その結果第2スロットル弁14は
全開する。
On the other hand, during high-load engine operation, the negative pressure within the intake manifold 10 becomes small, so the diaphragm 23 is raised by the spring force of the compression spring 26, and as a result, the second throttle valve 14 is fully opened.

従ってこのときには流れ抵抗が小さくなり、期くして高
い允填効率を得ることができる。
Therefore, at this time, the flow resistance becomes small and a high filling efficiency can be obtained.

第2スロットル弁14は可能な限り吸気弁6の近傍に設
けることが好ましく、こうすることによって車両減速時
に第2スロットル弁14が全閉した際第2スロットル弁
14後流の吸気ポート表面積が小さなために吸気ポート
内壁面上に付着した燃料が即座に気化したとしてもさほ
ど過濃とはならない。
It is preferable to provide the second throttle valve 14 as close to the intake valve 6 as possible. By doing so, when the second throttle valve 14 is fully closed during vehicle deceleration, the surface area of the intake port downstream of the second throttle valve 14 is small. Therefore, even if the fuel adhering to the inner wall surface of the intake port evaporates immediately, it will not become very concentrated.

また低負荷運転時には吸気ポート5は切溝28,29を
介してのみ吸気マニホルド10内と連結するため吸気干
渉を緩和できるばかりでなく切溝28 ,29内を流れ
る混合気の流速を極めて高速度にすることができるので
燃料の気化を大巾に促進することができ、更に吸気ポー
ト内に強力な旋回流を発生せしめることによって燃焼室
内に強力な旋回流を発住させることができる。
In addition, during low-load operation, the intake port 5 is connected to the inside of the intake manifold 10 only through the grooves 28 and 29, which not only alleviates intake interference but also increases the flow rate of the air-fuel mixture flowing in the grooves 28 and 29 to an extremely high speed. As a result, the vaporization of the fuel can be greatly promoted, and furthermore, by generating a strong swirling flow within the intake port, a strong swirling flow can be generated within the combustion chamber.

このように本発明によれば加工が容易で簡単な構造の切
溝を設けることによって全運転領域に亘って燃焼速度を
速めることができ、斯くして安定した燃焼が得られるば
かりでなく排気エミツションが改善され、更に燃料消費
率を向上することができる。
As described above, according to the present invention, by providing grooves that are easy to process and have a simple structure, it is possible to increase the combustion rate over the entire operating range, thereby not only achieving stable combustion but also reducing exhaust emissions. is improved, and the fuel consumption rate can be further improved.

【図面の簡単な説明】 第1図は本発明に係る内燃機関の側面断面図、第2図は
第1図の■一v線に沿つてみた断面図、第3図は第1図
のVI−Vl線に沿つてみた断面図である。 5・・・・・・吸気ポート、6・・・・・・吸気弁、8
・・・・・・排気弁、12・・・・・・気化器スロット
ル弁、13・・・・・・スペーサ、14・・・・・・第
2スロットル弁、21・・・・・・負圧ダイアフラム装
置、28,29・・・・・・切溝。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a side sectional view of an internal combustion engine according to the present invention, FIG. 2 is a sectional view taken along line 1-v in FIG. It is a sectional view taken along the -Vl line. 5... Intake port, 6... Intake valve, 8
...Exhaust valve, 12...Carburizer throttle valve, 13...Spacer, 14...Second throttle valve, 21...Negative Pressure diaphragm device, 28, 29...cut groove.

Claims (1)

【特許請求の範囲】[Claims] 1 気化器スロットル弁後流の吸気通路内に第2スロッ
トル弁を設けると共に該第2スロットル弁の上流と下流
とを連通しかつ吸気通路内壁面に沿って混合気の流れ方
向に対し傾卵して延びる螺旋状切溝を吸気通路内壁面上
に形成し、更に機関低負荷運転時に上記第2スロットル
弁を全閉すると共に機関高負荷運転時に該第2スロット
ル弁を全開にするスロットル弁駆動機構を具備する内燃
機関の吸気装置。
1. A second throttle valve is provided in the intake passage downstream of the carburetor throttle valve, and the upstream and downstream sides of the second throttle valve are connected, and the valve is tilted with respect to the flow direction of the air-fuel mixture along the inner wall surface of the intake passage. A throttle valve drive mechanism is provided, in which a spiral cut groove is formed on the inner wall surface of the intake passage, and further fully closes the second throttle valve during low engine load operation and fully opens the second throttle valve during high engine load operation. An intake system for an internal combustion engine comprising:
JP53059896A 1978-05-22 1978-05-22 Internal combustion engine intake system Expired JPS589253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53059896A JPS589253B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53059896A JPS589253B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS54151721A JPS54151721A (en) 1979-11-29
JPS589253B2 true JPS589253B2 (en) 1983-02-19

Family

ID=13126329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53059896A Expired JPS589253B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS589253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353339U (en) * 1986-09-19 1988-04-09

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151031A (en) * 1981-03-16 1982-09-18 Yamaha Motor Co Ltd Intake device of multi-cylinder engine
CA1210656A (en) * 1981-05-07 1986-09-02 Yasuyuki Sugiura Intake port structure for internal combustion engines
US10767551B2 (en) * 2017-03-03 2020-09-08 Mazda Motor Corporation Intake port structure for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469619A (en) * 1977-11-14 1979-06-04 Yamaha Motor Co Ltd Control method for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469619A (en) * 1977-11-14 1979-06-04 Yamaha Motor Co Ltd Control method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353339U (en) * 1986-09-19 1988-04-09

Also Published As

Publication number Publication date
JPS54151721A (en) 1979-11-29

Similar Documents

Publication Publication Date Title
JPS6060007B2 (en) Intake system for counterflow multi-cylinder internal combustion engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5823224A (en) Helical type suction port
JPS5947128B2 (en) Internal combustion engine intake system
US4308837A (en) Intake system of an internal combustion engine
JPH048610B2 (en)
JPS5840647B2 (en) Internal combustion engine intake system
JPS5922046B2 (en) Internal combustion engine intake system
JPS6041210B2 (en) engine intake system
JPS631446B2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS589253B2 (en) Internal combustion engine intake system
JPS5845573B2 (en) Internal combustion engine intake passage device
JPS5840007B2 (en) Internal combustion engine intake system
JPS5820370B2 (en) Internal combustion engine intake system
JPS589247B2 (en) Internal combustion engine intake system
JPS631445B2 (en)
JPS6039855B2 (en) Internal combustion engine intake system
JPS5830095Y2 (en) Internal combustion engine intake passage structure
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS6060008B2 (en) Internal combustion engine intake system
JPS5918530B2 (en) Internal combustion engine intake system
JPS6242101Y2 (en)
JPH0133790Y2 (en)