JPH0133790Y2 - - Google Patents

Info

Publication number
JPH0133790Y2
JPH0133790Y2 JP4584483U JP4584483U JPH0133790Y2 JP H0133790 Y2 JPH0133790 Y2 JP H0133790Y2 JP 4584483 U JP4584483 U JP 4584483U JP 4584483 U JP4584483 U JP 4584483U JP H0133790 Y2 JPH0133790 Y2 JP H0133790Y2
Authority
JP
Japan
Prior art keywords
inlet passage
spiral
valve
partition wall
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4584483U
Other languages
Japanese (ja)
Other versions
JPS59152140U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4584483U priority Critical patent/JPS59152140U/en
Publication of JPS59152140U publication Critical patent/JPS59152140U/en
Application granted granted Critical
Publication of JPH0133790Y2 publication Critical patent/JPH0133790Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は内燃機関に用いるヘリカル型吸気ポー
トの流路制御装置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a flow path control device for a helical intake port used in an internal combustion engine.

従来技術 ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内に開閉弁
を設けて機関高速高負荷運転時に開閉弁を開弁す
るようにしたヘリカル型吸気ポートが本出願人に
より既に提案されている。このヘリカル型吸気ポ
ートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送りこまれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部
内に送り込まれるために吸入空気の流路断面積が
増大し、斯くして充填効率を向上することができ
る。しかしながらこのヘリカル型吸気ポートは燃
料供給源として気化器を用いた内燃機関に適して
おり、吸気ポート内に燃料を噴射するようにした
内燃機関では上述のヘリカル型吸気ポートをその
まま適用しても噴射燃料を応答性よく機関シリン
ダ内に供給するのが因難である。
BACKGROUND OF THE INVENTION A helical intake port typically consists of a spiral formed around an intake valve and an inlet passageway tangentially connected to the spiral and extending substantially straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency. However, this helical intake port is suitable for internal combustion engines that use a carburetor as a fuel supply source, and in internal combustion engines that inject fuel into the intake port, even if the above-mentioned helical intake port is applied as is, there will be no injection. The challenge is to supply fuel into the engine cylinders with good response.

考案の目的 本考案は吸気ポート内に燃料を噴射するように
した内燃機関に適したヘリカル型吸気ポートを提
供することにある。
Purpose of the invention The object of the invention is to provide a helical intake port suitable for an internal combustion engine that injects fuel into the intake port.

考案の構成 本考案の構成は、吸気弁周りに形成された渦巻
部と、渦巻部に接線状に接続されかつほぼまつす
ぐに延びる入口通路部とにより構成されたヘリカ
ル型吸気ポートにおいて、入口通路部から分岐さ
れて渦巻部の渦巻終端部に連通する分岐路を入口
通路部に併設し、吸気ポート上壁面から下方に突
出しかつ入口通路部から吸気弁ステム周りまで延
びる隔壁によつて分岐路が入口通路部から分離さ
れ、隔壁の長手方向中間部に分岐路と入口通路部
とを連通する連通開口を形成して連通開口により
隔壁が上流側に位置する第1隔壁部分と下流側に
位置する大2隔壁部分に分離され、連通開口内に
燃料噴射弁を配置し、第1隔壁部分によつて画定
される分岐路内に開閉弁を設けて開閉弁を機関低
負荷運転時に閉弁せしめるようにしたことにあ
る。
Structure of the invention The structure of the invention is that in a helical intake port configured by a spiral part formed around the intake valve and an inlet passage part connected tangentially to the spiral part and extending almost straight, the inlet passage A branch passage branching from the part and communicating with the spiral terminal part of the spiral part is provided in the inlet passage part, and the branch passage is formed by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage part to around the intake valve stem. A communication opening that is separated from the inlet passage and communicates the branch passage with the inlet passage is formed in a longitudinally intermediate portion of the partition, so that the communication opening allows the partition to be located downstream of the first partition part located on the upstream side. Separated into two large bulkhead portions, a fuel injection valve is disposed within the communication opening, and an on-off valve is provided within the branch path defined by the first bulkhead portion, so that the on-off valve is closed during low engine load operation. It's because I did it.

実施例 第1図および第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体形成さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接線状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12の長手方向中間部には連通開口13が形成さ
れ、第1図および第2図に示す実施例ではこの連
通開口13によつて隔壁12が連通開口13より
も上流側に位置する第1隔壁部分12aと、連通
開口13よりも下流側に位置する第2隔壁部分1
2bに分断される。第2図に示されるように第1
隔壁部分12aはほぼ一様な巾を有し、その両側
に第1側壁面14aと第2側壁面14bとを有す
る。一方、第2隔壁部分12bは連通開口13か
らステムガイド10を越えて渦巻部Bの側壁面1
5の近傍まで延び、更にこの第2隔壁部分12b
は連通開口13から反時計回りにステムガイド1
0まで延びる第1側壁面14aと、連通開口13
から時計回りにステムガイド10まで延びる第2
側壁面14bとを有する。第2隔壁部分12bの
第1側壁面14aは連通開口13からステムガイ
ド10の側方を通つて渦巻部Bの側壁面15の近
傍まで延びて渦巻部側壁面15との間に狭窄部1
6を形成する。次いで第1側壁面14aは渦巻部
側壁面15から徐々に間隔を隔てるように弯曲し
つつステムガイド10まで延びる。一方、第2側
壁面14bは連通開口13からステムガイド10
までほぼまつすぐに延びる。
Embodiment Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston reciprocating within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder. A combustion chamber formed between the heads 3, 5 an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
1 is integrally formed with a partition wall 12 projecting downward, and this partition wall 12 forms a helical intake port 6 consisting of a spiral portion B and an inlet passage portion A tangentially connected to the spiral portion B. be done. A communication opening 13 is formed in the longitudinally intermediate portion of the partition wall 12, and in the embodiment shown in FIGS. 1 partition wall portion 12a and a second partition wall portion 1 located downstream of the communication opening 13.
It is divided into 2b. The first
The partition portion 12a has a substantially uniform width and has a first side wall surface 14a and a second side wall surface 14b on both sides thereof. On the other hand, the second partition wall portion 12b extends from the communication opening 13 beyond the stem guide 10 to the side wall surface 1 of the spiral portion B.
5, and further extends to the vicinity of this second partition wall portion 12b.
is the stem guide 1 counterclockwise from the communication opening 13.
The first side wall surface 14a extending to 0 and the communication opening 13
The second stem guide 10 extends clockwise from
It has a side wall surface 14b. The first side wall surface 14a of the second partition wall portion 12b extends from the communication opening 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and has a narrowed portion 1 between it and the spiral portion side wall surface 15.
form 6. Next, the first side wall surface 14a extends to the stem guide 10 while being curved so as to be gradually spaced apart from the spiral portion side wall surface 15. On the other hand, the second side wall surface 14b extends from the communication opening 13 to the stem guide 10.
It extends almost immediately.

第1図から第9図を参照すると、入口通路部A
の側壁面17,18はほぼ垂直配置され、一方入
口通路部Aの上壁面19は渦巻部Bに向けて徐々
に下降する。入口通路部Aの側壁面17は渦巻部
Bの側壁面15に滑らかに接続され、入口通路部
Aの上壁面19は渦巻部Bの上壁面20に滑らか
に接続される。渦巻部Bの上壁面20は渦巻部B
と入口通路部Aの接続部から狭窄部16に向けて
下降しつつ徐々に巾を狭め、次いで狭窄部16を
通過すると徐々に巾を広げる。一方、入口通路部
6の下壁面21はほぼ水平をなして渦巻部Bまで
延びる。
Referring to FIGS. 1 to 9, the inlet passage section A
The side wall surfaces 17, 18 of are arranged substantially vertically, while the upper wall surface 19 of the inlet passage section A gradually descends towards the spiral section B. The side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the upper wall surface 19 of the entrance passage section A is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral part B
The width gradually narrows while descending from the connecting part of the inlet passage part A toward the narrowed part 16, and then, after passing through the narrowed part 16, the width gradually widens. On the other hand, the lower wall surface 21 of the inlet passage section 6 is substantially horizontal and extends to the spiral section B.

一方、第1隔壁部分12aの底壁面22は上壁
面19とほぼ平行に延び、一方第2隔壁部分12
aの底壁面22は連通開口13から渦巻部Bに向
けて徐々に下降する。連通開口13の頂部には燃
料噴射弁23が配置され、この燃料噴射弁23か
ら吸気弁5のかさ部背面に向けて燃料が噴射され
る。
On the other hand, the bottom wall surface 22 of the first partition wall portion 12a extends substantially parallel to the top wall surface 19, while the second partition wall portion 12a extends substantially parallel to the top wall surface 19.
The bottom wall surface 22 of a gradually descends from the communication opening 13 toward the spiral portion B. A fuel injection valve 23 is disposed at the top of the communication opening 13, and fuel is injected from the fuel injection valve 23 toward the back surface of the bulk part of the intake valve 5.

一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、分岐路24の入口部にロータリ弁2
5が配置される。この分岐路24は第1隔壁部分
12aおよび第2隔壁部分12bによつて入口通
路部Aから分離される。分岐路24の上壁面26
はほぼ一様な巾を有し、渦巻終端部Cに向けて
徐々に下降して渦巻部Bの上壁面20に滑らかに
接続される。隔壁12の第2側壁面14bに対面
する分岐路24の側壁面27はほぼ垂直をなし、
更にこの側壁面27はほぼ入口通路部Aの側壁面
18の延長上に位置する。
On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 2 is installed at the inlet of the branch passage 24.
5 is placed. This branch 24 is separated from the inlet passage A by a first partition part 12a and a second partition part 12b. Upper wall surface 26 of branch road 24
has a substantially uniform width, gradually descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral portion B. A side wall surface 27 of the branch path 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical;
Furthermore, this side wall surface 27 is located approximately on an extension of the side wall surface 18 of the inlet passage section A.

第10図に示されるようにロータリ弁25はロ
ータリ弁ホルダ28と、ロータリ弁ホルダ28内
において回転可能に支持された弁軸29とにより
構成され、このロータリ弁ホルダ28はシリンダ
ヘツド3に穿設されたねじ孔30内に螺着され
る。弁軸29の下端部には薄板状の弁体31が一
体形成され、第1図に示されるようにこの弁体3
1は分岐路24の上壁面26から底壁面21まで
延びる。一方、弁軸29の上端部にはアーム32
が固定される。また、弁軸29の外周面上にはリ
ング溝33が形成され、このリング溝33内には
E字型位置決めリング34が嵌込まれる。更にロ
ータリ弁ホルダ28の上端部にはシール部材35
が嵌着され、このシール部材35によつて弁軸2
9のシール作用が行なわれる。
As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The screw hole 30 is screwed into the screw hole 30. A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG.
1 extends from the top wall surface 26 of the branch path 24 to the bottom wall surface 21. On the other hand, an arm 32 is attached to the upper end of the valve shaft 29.
is fixed. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a sealing member 35 is provided at the upper end of the rotary valve holder 28.
is fitted, and this sealing member 35 connects the valve shaft 2.
9 sealing action is performed.

第11図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が押入される。一方、吸気ポート6は枝
管46を介してサージタンク47に連結され、サ
ージタンク47の空気導入管48内にはアクセル
ペダル(図示せず)に連結されたスロツトル弁4
9が挿入される。
Referring to FIG. 11, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, into which a compression spring 45 for pressing the diaphragm is pushed. On the other hand, the intake port 6 is connected to a surge tank 47 via a branch pipe 46, and a throttle valve 4 connected to an accelerator pedal (not shown) is provided in an air introduction pipe 48 of the surge tank 47.
9 is inserted.

第11図に示されるように負圧ダイアフラム装
置40の負圧室44は負圧導管50を介してサー
ジタンク47内に連結される。従つてスロツトル
弁49の開度が小さな機関底負荷運転時には負圧
室44内に大きな負圧が加わるためにダイアフラ
ム41は圧縮ばね45に抗して負圧室44側に移
動し、このときロータリ弁25が回動せしめられ
てロータリ弁25が全閉する。一方、スロツトル
弁49の開度の大きな機関高負荷運転時には負圧
室44内に加わる負圧が小さくなるためにダイア
フラム41はロータリ弁25に向けて移動し、そ
れによつてロータリ弁25が全開せしめられる。
As shown in FIG. 11, the negative pressure chamber 44 of the negative pressure diaphragm device 40 is connected to a surge tank 47 via a negative pressure conduit 50. Therefore, during engine bottom load operation with a small opening degree of the throttle valve 49, a large negative pressure is applied in the negative pressure chamber 44, so the diaphragm 41 moves toward the negative pressure chamber 44 against the compression spring 45, and at this time, the rotary The valve 25 is rotated and the rotary valve 25 is fully closed. On the other hand, when the engine is operated under high load with a large opening of the throttle valve 49, the negative pressure applied to the negative pressure chamber 44 decreases, so the diaphragm 41 moves toward the rotary valve 25, thereby causing the rotary valve 25 to fully open. It will be done.

上述したように機関底負荷運転時にはロータリ
弁25が閉弁している。このとき入口通路部A内
に送り込まれた吸入空気の大部分は上壁面19,
20に沿つて進み、一部の混合気は第2図におい
て矢印Kで示すように連通開口13を通つて分岐
路24内に流入する。燃料噴射弁23からは第2
隔壁部分12bの上流端に向けて燃料が噴射さ
れ、この燃料は第2隔壁部分12bの上流端によ
り2分されて夫々入口通路部Aおよび分岐路24
内に供給される。前述したように上壁面19,2
0の巾は狭窄部16に近づくに従つて次第に狭く
なるために上壁面19,20に沿つて流れる混合
気の流路は次第に狭まり、斯くして上壁面19,
20に沿う混合気流は次第に増速される。更に、
前述したように第2隔壁部分12bの第1側壁面
14aは渦巻部Bの側壁面15の近傍まで延びて
いるので上壁面19,20に沿つて進む混合気流
は渦巻部Bの側壁面15上に押しやられ、次いで
側壁面15に沿つて進むために渦巻部B内には強
力な旋回流が発生せしめられる。次いで混合気は
旋回しつつ吸気弁5とその弁座間に形成される間
隙を通つて燃焼室4内に流入して燃焼室4内に強
力な旋回流を発生せしめる。なお、このとき連通
開口13を通つて分岐路24内に流入する吸入空
気量は少量であるのでこの吸入空気によつて旋回
流はほとんど弱められず、斯くして上述したよう
に燃焼室4内に強力な旋回流を発生せしめること
ができる。
As described above, the rotary valve 25 is closed during engine bottom load operation. At this time, most of the intake air sent into the inlet passage section A is on the upper wall surface 19,
20, a part of the air-fuel mixture flows into the branch passage 24 through the communication opening 13, as indicated by the arrow K in FIG. From the fuel injection valve 23, the second
Fuel is injected toward the upstream end of the partition wall portion 12b, and this fuel is divided into two parts by the upstream end of the second partition wall portion 12b, and is divided into two parts, respectively, into an inlet passage section A and a branch passage 24.
supplied within. As mentioned above, the upper wall surfaces 19, 2
Since the width of 0 gradually becomes narrower as it approaches the narrowed portion 16, the flow path of the air-fuel mixture flowing along the upper wall surfaces 19, 20 gradually narrows.
The air mixture flow along 20 is gradually accelerated. Furthermore,
As described above, the first side wall surface 14a of the second partition wall portion 12b extends to the vicinity of the side wall surface 15 of the spiral portion B, so that the air mixture flowing along the upper wall surfaces 19 and 20 flows onto the side wall surface 15 of the spiral portion B. , and then proceeds along the side wall surface 15, so that a strong swirling flow is generated within the spiral portion B. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4. At this time, since the amount of intake air that flows into the branch passage 24 through the communication opening 13 is small, the swirling flow is hardly weakened by this intake air, and thus, as described above, the flow inside the combustion chamber 4 is reduced. can generate a strong swirling flow.

一方、機関高負荷運転時にはロータリ弁25が
開弁するので入口通路部A内に送り込まれた混合
気は大別すると3つの流れに分流される。即ち、
第1の流れは隔壁12の第1側壁面14aと入口
通路部Aの側壁面17間に流入し、次いで渦巻部
Aの上壁面20に沿つて旋回しつつ流れる混合気
流であり、第2の流れは分岐路24を介して渦巻
部B内に流入する混合気流であり、第3の流れは
入口通路部Aの底壁面21に沿つて渦巻部B内に
流入する混合気流である。分岐路24の流れ抵抗
は第1側壁面14aと側壁面17間の流れ抵抗に
比べて小さく、従つて第2の混合気流の方が第1
の混合気流よりも多くなる。更に、渦巻部B内を
旋回しつつ流れる第1混合気流の流れ方向は第2
混合気流によつて下向きに偏向され、斯くして第
1混合気流の旋回力が弱められることになる。こ
のように流れ抵抗の小さな分岐路24からの混合
気流が増大し、更に第1混合気流の流れ方向が下
向きに偏向されるので高い充填効率が得られるこ
とになる。
On the other hand, during high-load engine operation, the rotary valve 25 opens, so that the air-fuel mixture sent into the inlet passage A is roughly divided into three streams. That is,
The first flow is a mixed gas flow that flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A, and then flows while swirling along the upper wall surface 20 of the spiral section A. The flow is a mixed air flow that flows into the swirl portion B via the branch passage 24, and the third flow is a mixed air flow that flows into the swirl portion B along the bottom wall surface 21 of the inlet passage portion A. The flow resistance of the branch passage 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second air mixture flow is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17.
will be more than the mixed air flow. Furthermore, the flow direction of the first air mixture flowing while swirling inside the swirl part B is the second
It is deflected downward by the air mixture flow, thus weakening the swirling force of the first air mixture flow. In this way, the mixed air flow from the branch passage 24 with low flow resistance is increased, and the flow direction of the first mixed air flow is further deflected downward, so that high filling efficiency can be obtained.

考案の効果 第1図および第2図に示す実施例において第1
隔壁部分12aの上流側に燃料噴射弁23を配置
するとロータリ弁25が閉弁しているときに燃料
噴射弁23から噴射された燃料の一部がロータリ
弁25に付着し、斯くして燃焼室4内への燃料の
供給が遅れるために機関の過渡応答性が悪化する
という問題を生ずる。しかしながら本考案では燃
料噴射弁23がロータリ弁25の下流側に設けら
れているのでロータリ弁23に燃料が付着する危
険性はなく、更に燃料噴射弁23が吸気ポート6
の中央部に配置されているので吸気ポート6の両
側壁面17,27に付着する燃料量も少なく、斯
くして良好な過渡応答性を確保することができ
る。
Effect of the invention In the embodiment shown in FIGS. 1 and 2, the first
When the fuel injection valve 23 is disposed upstream of the partition wall portion 12a, a part of the fuel injected from the fuel injection valve 23 adheres to the rotary valve 25 when the rotary valve 25 is closed, and thus the combustion chamber This causes a problem in that the transient response of the engine is deteriorated because the supply of fuel to the engine is delayed. However, in the present invention, since the fuel injection valve 23 is provided downstream of the rotary valve 25, there is no risk of fuel adhering to the rotary valve 23.
Since the intake port 6 is located in the center of the intake port 6, the amount of fuel adhering to both side wall surfaces 17 and 27 of the intake port 6 is small, thus ensuring good transient response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図の−線に沿つてみた本考案
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本考
案によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図および
第4図の−線に沿つてみた断面図、第6図は
第3図および第4図の−線に沿つてみた断面
図、第7図は第3図および第4図の−線に沿
つてみた断面図、第8図は第3図および第4図の
−線に沿つてみた断面図、第9図は第3図お
よび第4図の−線に沿つてみた断面図、第1
0図はロータリ弁の側面断面図、第11図はロー
タリ弁の駆動制御装置を示す図である。 4……燃焼室、6……ヘリカル型吸気ポート、
12a……第1隔壁部分、12b……第2隔壁部
分、24……分岐路、25……ロータリ弁。
Fig. 1 is a side sectional view of the internal combustion engine according to the present invention taken along the - line in Fig. 2, Fig. 2 is a plan sectional view taken along the - line in Fig. 1, and Fig. 3 is a sectional view according to the present invention taken along the - line in Fig. 2. FIG. 4 is a side view schematically showing the shape of the helical intake port, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 5 is a view taken along the - line in FIGS. 3 and 4. 6 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 7 is a sectional view taken along the - line in FIGS. 3 and 4, and FIG. 8 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 9 is a sectional view taken along the line - in FIGS. 3 and 4, and FIG.
FIG. 0 is a side sectional view of the rotary valve, and FIG. 11 is a diagram showing a drive control device for the rotary valve. 4... Combustion chamber, 6... Helical intake port,
12a...first partition part, 12b...second partition part, 24...branch path, 25...rotary valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁周りに形成された渦巻部と、該渦巻部に
接線状に接続せれかつほぼまつすぐに延びる入口
通路部とにより構成されたヘリカル型吸気ポート
において、上記入口通路部から分岐されて上記渦
巻部の渦巻終端部に連通する分岐路を上記入口通
路部に併設し、吸気ポート上壁面から下方に突出
しかつ入口通路部から吸気弁ステム周りまで延び
る隔壁によつて該分岐路が入口通路部から分離さ
れ、該隔壁の長手方向中間部に分岐路と入口通路
部とを連通する連通開口を形成して該連通開口に
より該隔壁が上流側に位置する第1隔壁部分と下
流側に位置する第2隔壁部分に分離され、該連通
開口内に燃料噴射弁を配置し、上記第1隔壁部分
によつて画定される分岐路内に開閉弁を設けて該
開閉弁を機関低負荷運転時に閉弁せしめるように
したヘリカル型吸気ポートの流路制御装置。
In a helical intake port configured with a spiral part formed around the intake valve and an inlet passage part connected tangentially to the spiral part and extending almost straight, the spiral part is branched from the inlet passage part and the spiral part is connected to the spiral part in a tangential manner and extends almost straight. A branch passage communicating with the spiral terminal end of the part is provided in the inlet passage part, and the branch passage is separated from the inlet passage part by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage part to around the intake valve stem. A communication opening is formed in a longitudinally intermediate portion of the partition wall to communicate the branch passage and the inlet passage, and the communication opening allows the partition wall to separate into a first partition wall portion located on the upstream side and a first partition wall portion located on the downstream side. Separated into two partition wall parts, a fuel injection valve is arranged in the communication opening, an on-off valve is provided in a branch path defined by the first partition part, and the on-off valve is closed during low engine load operation. A flow path control device for a helical intake port.
JP4584483U 1983-03-31 1983-03-31 Flow path control device for helical intake port Granted JPS59152140U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4584483U JPS59152140U (en) 1983-03-31 1983-03-31 Flow path control device for helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4584483U JPS59152140U (en) 1983-03-31 1983-03-31 Flow path control device for helical intake port

Publications (2)

Publication Number Publication Date
JPS59152140U JPS59152140U (en) 1984-10-12
JPH0133790Y2 true JPH0133790Y2 (en) 1989-10-13

Family

ID=30176388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4584483U Granted JPS59152140U (en) 1983-03-31 1983-03-31 Flow path control device for helical intake port

Country Status (1)

Country Link
JP (1) JPS59152140U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3808672A1 (en) * 1987-03-13 1988-09-22 Orbital Eng Pty COMBUSTION ENGINE

Also Published As

Publication number Publication date
JPS59152140U (en) 1984-10-12

Similar Documents

Publication Publication Date Title
JPS6032009B2 (en) Helical intake port
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
JPH048610B2 (en)
US4303046A (en) Intake system of a multi-cylinder internal combustion engine
JPS6238533B2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPH0133790Y2 (en)
JPS6238537B2 (en)
JPH0650093B2 (en) Internal combustion engine intake system
JPS6236139B2 (en)
JPS6039855B2 (en) Internal combustion engine intake system
JPS6231619Y2 (en)
JPS6229623Y2 (en)
JPS589253B2 (en) Internal combustion engine intake system
JPS5840648B2 (en) Internal combustion engine intake system
JPS6239672B2 (en)
JPS6236138B2 (en)
JPS6229624Y2 (en)
JPS6238530B2 (en)
JPS6335166Y2 (en)
JPS6238529B2 (en)
JPS603341Y2 (en) Internal combustion engine mixture supply system
JPS5820370B2 (en) Internal combustion engine intake system
JPS6021470Y2 (en) Helical intake port
JPS5851375Y2 (en) Internal combustion engine intake system