JPS5851375Y2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPS5851375Y2
JPS5851375Y2 JP2911379U JP2911379U JPS5851375Y2 JP S5851375 Y2 JPS5851375 Y2 JP S5851375Y2 JP 2911379 U JP2911379 U JP 2911379U JP 2911379 U JP2911379 U JP 2911379U JP S5851375 Y2 JPS5851375 Y2 JP S5851375Y2
Authority
JP
Japan
Prior art keywords
negative pressure
intake
throttle valve
valve
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2911379U
Other languages
Japanese (ja)
Other versions
JPS55130020U (en
Inventor
清 結城
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2911379U priority Critical patent/JPS5851375Y2/en
Publication of JPS55130020U publication Critical patent/JPS55130020U/ja
Application granted granted Critical
Publication of JPS5851375Y2 publication Critical patent/JPS5851375Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 本考案は内燃機関の吸気装置に関する。[Detailed explanation of the idea] The present invention relates to an intake system for an internal combustion engine.

通常特にガソリン機関においては高速高負荷運転時にお
ける充填効率を高め、それによって十分な出力を得られ
るように吸気ポートは流体抵抗が小さなポート形状に形
成される。
Usually, particularly in gasoline engines, the intake port is formed in a port shape with small fluid resistance in order to increase charging efficiency during high-speed, high-load operation and thereby obtain sufficient output.

しかしながらこのようなポート形状にした場合、高速高
負荷運転時には自然発生のかなり強力な乱れが燃焼室内
に生ずるので燃焼速度は十分に速められるが低速低負荷
運転時には燃焼室内に十分な乱れが発生せず、従がって
燃焼速度を十分に速めることができないという問題があ
る。
However, if such a port shape is used, during high-speed, high-load operation, a naturally occurring and quite strong turbulence will occur in the combustion chamber, so the combustion speed will be sufficiently increased, but during low-speed, low-load operation, sufficient turbulence will not occur within the combustion chamber. First, there is a problem that the combustion rate cannot be sufficiently increased.

低速低負荷運転時に強力な乱れを発生させる方法として
、吸気ポートをヘリカル形状にしたり或いはシュラウド
弁を用いて燃焼室内に強制的に旋回流を発生させる方法
があるがこれらの方法では吸入混合気流に対する抵抗が
増大するため高速高負荷運転時における充填効率が低下
するという問題がある。
There are ways to generate strong turbulence during low-speed, low-load operation by making the intake port a helical shape or by using a shroud valve to forcefully generate a swirling flow in the combustion chamber. There is a problem in that charging efficiency decreases during high-speed, high-load operation due to increased resistance.

従がって高速高負荷運転時における高い充填効率を確保
しつつ低速低負荷運転時における燃焼速度を増大せしめ
るには吸気ポートを流体抵抗の小さなポート形状から形
成すると共に低速低負荷運転時に燃焼室内に強力な乱れ
を発生させるようにしなげればならない。
Therefore, in order to increase the combustion rate during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, the intake port should be formed with a port shape that has low fluid resistance, and the combustion chamber should be closed during low-speed, low-load operation. must be controlled so as to generate a strong disturbance.

また低速低負荷運転時における燃焼を改善する方法とし
て燃焼室内に強力な乱れを発生させる以外に燃料の気化
を促進させることが挙げられる。
Furthermore, as a method of improving combustion during low-speed, low-load operation, in addition to generating strong turbulence within the combustion chamber, there is also a method of promoting vaporization of the fuel.

即ち、低速低負荷運転時には気化器ベンチュリ部を流れ
る空気の流速が遅く、従がって噴出燃料と空気流との相
対速度が遅いために燃料を十分に微粒化することができ
ず、その結果多量の燃料が液状のままで燃焼室内に供給
され、これが燃焼を悪化させしかも排気エミツションを
悪化させる一原因となっている。
That is, during low-speed, low-load operation, the flow rate of air flowing through the venturi section of the carburetor is slow, and therefore the relative speed between the injected fuel and the air flow is slow, making it impossible to atomize the fuel sufficiently. A large amount of fuel is supplied into the combustion chamber in liquid form, which is one of the causes of worsening combustion and exhaust emissions.

これらの問題点を解決するために気化器スロットル弁上
流の吸気通路から副吸気通路を分岐してこれを気化器ス
ロットル弁後流の吸気通路内に再び開口せしめるように
した内燃機関が提案されている。
In order to solve these problems, an internal combustion engine has been proposed in which an auxiliary intake passage is branched from the intake passage upstream of the carburetor throttle valve and opened again into the intake passage downstream of the carburetor throttle valve. There is.

この内燃機関では気化器スロットル弁の開度が小さな機
関低負荷運転時には多量の混合気が吸気通路に比べて断
面積の小さな副吸気通路を介して燃焼室内に供給される
In this internal combustion engine, when the engine is operated at low load with a small opening of the carburetor throttle valve, a large amount of air-fuel mixture is supplied into the combustion chamber through the sub-intake passage, which has a smaller cross-sectional area than the intake passage.

このとき上述したように副吸気通路は小さな断面積を有
するので混合気が副吸気通路内を高速度で流れ、斯くし
てこの際燃料の気化が促進される。
At this time, as described above, since the sub-intake passage has a small cross-sectional area, the air-fuel mixture flows at a high speed within the sub-intake passage, thus promoting vaporization of the fuel.

更に、副吸気通路から高速度で噴出する混合気流によっ
て燃焼室内には強力な乱れが発生せしめられる。
Furthermore, strong turbulence is generated within the combustion chamber due to the air-fuel mixture jetting out at high speed from the sub-intake passage.

しかしながらこの内燃機関ではアイドリンク運転時には
大部分の混合気が副吸気通路を介して燃焼室内に供給さ
れ、しかもこのとき吸気管負圧が極めて大きなために副
吸気通路から噴出する混合気の流速は極めて速くなる。
However, in this internal combustion engine, most of the air-fuel mixture is supplied into the combustion chamber through the auxiliary intake passage during idle-link operation, and at this time, the negative pressure in the intake pipe is extremely large, so the flow velocity of the air-fuel mixture ejected from the auxiliary intake passage is low. becomes extremely fast.

その結果、アイドリンク運転時に燃焼室内に発生する乱
れが強くなり過ぎてかえって燃焼が悪化するという問題
がある。
As a result, there is a problem in that the turbulence generated in the combustion chamber during idle-link operation becomes too strong, which actually worsens combustion.

本考案は機関高速高負荷運転時における高い充填効率を
確保しつつ機関低速低負荷運転時に燃焼室内に強力な乱
れを発生でき、しかもアイドリング運転時に燃焼室内に
過度に強力な乱れを発生させないようにした内燃機関を
提供することにある。
This invention is capable of generating strong turbulence in the combustion chamber when the engine is operating at low speed and low load while ensuring high charging efficiency during engine high speed and high load operation, and also prevents excessively strong turbulence from occurring within the combustion chamber during idling operation. The objective is to provide an internal combustion engine with improved performance.

以下、添附図面を参照して本考案を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1は機関本体、2は
シリンダブロック、3はシリンダブロック2内で往復動
するピストン、4はシリンダブロック2上に固定された
シリンダヘッド、5はピストン3とシリンダヘッド4間
に形成された燃焼室、6は吸気ポート、Iは吸気弁、8
は排気ポート、9は排気弁、10は点火栓、11は吸気
マニホルド、12は気化器、13は気化器スロットル弁
、14は気化器メインノズル、15は排気マニホルドを
夫々示す。
Referring to FIGS. 1 and 2, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates within the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and the cylinder head 4, 6 is an intake port, I is an intake valve, 8
1 is an exhaust port, 9 is an exhaust valve, 10 is a spark plug, 11 is an intake manifold, 12 is a carburetor, 13 is a carburetor throttle valve, 14 is a carburetor main nozzle, and 15 is an exhaust manifold.

第1図並びに第2図を参照すると、機関本体1の長手方
向に延びる分配通路16がシリンダヘッド外壁面と吸気
マニホルド11間に形成され、更にシリンダヘッド4内
に各気筒の吸気ポート6と分配通路16とを連通ずる分
配枝路17が形成される。
1 and 2, a distribution passage 16 extending in the longitudinal direction of the engine body 1 is formed between the outer wall surface of the cylinder head and the intake manifold 11, and is further provided in the cylinder head 4 with the intake port 6 of each cylinder. A distribution branch 17 is formed which communicates with the passage 16.

これら分配枝路17の開口18は吸気弁開弁時に吸気弁
とその弁座間に形成される間隙に指向され、しかもこの
開口18は燃焼室5の周辺方向に指向される。
The openings 18 of these distribution branches 17 are oriented toward the gap formed between the intake valve and its valve seat when the intake valve is open, and these openings 18 are oriented toward the periphery of the combustion chamber 5 .

一方、分配通路16の中央部は副吸気通路19を介して
スロットル弁13上流の混合気通路20内に開口する開
孔21に連結され、この副吸気通路20内には負圧ダイ
ヤフラム式流量制御弁22が設けられる。
On the other hand, the central part of the distribution passage 16 is connected to an opening 21 opening into the mixture passage 20 upstream of the throttle valve 13 via an auxiliary intake passage 19. A valve 22 is provided.

この流量制御弁22はダイヤフラム23により隔成され
た負圧室24と大気圧室25とを有し、との負圧室24
内にダイヤフラム押圧用圧縮ばね26が挿入される。
The flow rate control valve 22 has a negative pressure chamber 24 and an atmospheric pressure chamber 25 separated by a diaphragm 23.
A compression spring 26 for pressing the diaphragm is inserted therein.

また、ダイヤフラム23には弁ポート27の開閉制御を
する弁体28が連結される。
Further, a valve body 28 that controls opening and closing of the valve port 27 is connected to the diaphragm 23 .

一方、気化器12には第2図に示すようにスロットル弁
13がアイドリンク位置にあるときにはスロットル弁1
3上流の混合気通路20内に開口し、スロットル弁13
が開弁するとスロットル弁13下流の混合気通路20内
に開口する負圧ポート29が形成され、流量制御弁22
の負圧室24は負圧導管30を介してこの負圧ポート2
9に連結される。
On the other hand, when the throttle valve 13 is in the idle link position as shown in FIG.
3 opens into the upstream mixture passage 20 and opens into the throttle valve 13
When the valve opens, a negative pressure port 29 that opens into the mixture passage 20 downstream of the throttle valve 13 is formed, and the flow control valve 22
A negative pressure chamber 24 is connected to this negative pressure port 2 via a negative pressure conduit 30.
9.

一方、排気マニホルド15内と吸気マニホルド11内と
を連結する再循環排気ガス(以下、EGRという)供給
導管31内には負圧ダイヤフラム式EGR制御弁32が
設けられる。
On the other hand, a negative pressure diaphragm type EGR control valve 32 is provided in a recirculating exhaust gas (hereinafter referred to as EGR) supply conduit 31 that connects the inside of the exhaust manifold 15 and the inside of the intake manifold 11 .

このEGR制御弁32はダイヤフラム33により隔成さ
れた負圧室34と大気圧室35とを有し、との負圧室3
4内にはダイヤフラム押圧用圧縮ばね36が挿入される
This EGR control valve 32 has a negative pressure chamber 34 and an atmospheric pressure chamber 35 separated by a diaphragm 33.
A compression spring 36 for pressing the diaphragm is inserted into the spring 4 .

一方、ダイ、ヤフラム33には弁ポート37の開閉制御
をする弁体38が連結され、また負圧室34は負圧導管
39を介して負圧導管30に連結される。
On the other hand, a valve element 38 for controlling opening and closing of a valve port 37 is connected to the die and diaphragm 33, and the negative pressure chamber 34 is connected to a negative pressure conduit 30 via a negative pressure conduit 39.

第2図に示すようにスロットル弁13がアイドリング位
置にあるとき負圧ポート29にはほぼ大気圧が加わり、
従がってこのとき両数圧室24゜34内はほぼ大気圧と
なる。
As shown in FIG. 2, when the throttle valve 13 is in the idling position, almost atmospheric pressure is applied to the negative pressure port 29.
Therefore, at this time, the inside of the dual pressure chamber 24.degree. 34 becomes approximately atmospheric pressure.

従がってこのとき両ダイヤフラム23,33は夫々圧縮
ばね26,36のばね力により大気圧室25.35側に
移動して各弁体28,38が夫々対応する弁ポート21
Therefore, at this time, both diaphragms 23 and 33 are moved toward the atmospheric pressure chamber 25 and 35 by the spring force of the compression springs 26 and 36, respectively, and each valve body 28 and 38 is moved to the corresponding valve port 21.
.

37を閉鎖し、その結果二方では副吸気通路19が遮断
されるために混合気は吸気マニホルド11を介して燃焼
室5内に供給され、他方ではEGR供給導管31が遮断
されるためにEGRガスの供給が停止される。
37 is closed, so that on the two sides the auxiliary intake passage 19 is blocked, so that the air-fuel mixture is supplied into the combustion chamber 5 via the intake manifold 11, and on the other hand, the EGR supply conduit 31 is blocked, so that the EGR Gas supply is cut off.

次いでスロットル弁13が開弁じて低負荷運転が行なわ
れているとすると両数圧室24.34内には大きな負圧
が作用するために両ダイヤフラム23.33は圧縮ばね
26.36のばね力に抗して夫々負圧室24,34側に
移動し、斯くして両弁体28.38が夫々対応する弁ポ
ー)27.37を開口する。
Next, when the throttle valve 13 is opened and low-load operation is performed, a large negative pressure acts in both the pressure chambers 24.34, so that both diaphragms 23.33 are affected by the spring force of the compression spring 26.36. The valve bodies 28, 38 move toward the negative pressure chambers 24, 34, respectively, against this, and thus both valve bodies 28, 38 open their corresponding valve ports 27, 37, respectively.

従がってこのとき一方ではEGR供給導管31からEG
Rガスが吸気マニホルド11内に供給され、他方では気
化器12において形成された混合気の一部が副吸気通路
19並びに分配通路16を介して吸気行程下にある気筒
の吸気ポ−トロ内に分配枝路17から噴出する。
Therefore, at this time, on the one hand, the EGR supply conduit 31
R gas is supplied into the intake manifold 11, and on the other hand, a part of the air-fuel mixture formed in the carburetor 12 is fed into the intake ports of the cylinders under the intake stroke via the auxiliary intake passage 19 and the distribution passage 16. It ejects from the distribution branch 17.

第1図並びに第2図に示すように副吸気通路19、分配
通路16並びに分配枝路17の断面積はかなり少さく、
従がって混合気はこれら通路19.16.17内を高速
度で流れるためにこれら通路16.17゜17内におい
て燃料の気化が大巾に促進されることになる。
As shown in FIGS. 1 and 2, the cross-sectional areas of the sub-intake passage 19, distribution passage 16, and distribution branch passage 17 are quite small;
Therefore, since the air-fuel mixture flows through these passages 19, 16, 17 at a high speed, the vaporization of the fuel in these passages 16, 17, 17 is greatly promoted.

また、分配枝路17からは吸気ポート6内に混合気が高
速度で噴出するが前述したように分配枝路17の開口1
8は吸気弁開弁時に吸気弁7とその弁座間に形成される
間隙に指向されているので分配枝路1Tから噴出した混
合気は高速度で上記間隙を通して燃焼室5内に流入し、
斯くして燃焼室5内に第1図において矢印Wで示すよう
な強力な旋回流が発生せしめられる。
Further, the air-fuel mixture is ejected from the distribution branch 17 into the intake port 6 at high speed, but as described above, the opening 1 of the distribution branch 17
8 is directed toward the gap formed between the intake valve 7 and its valve seat when the intake valve is opened, so the air-fuel mixture ejected from the distribution branch 1T flows at high velocity into the combustion chamber 5 through the gap,
In this way, a strong swirling flow as shown by arrow W in FIG. 1 is generated within the combustion chamber 5.

その結果、燃焼速度は大巾に速められることになる。As a result, the combustion rate is greatly increased.

一方、スロットル弁13の開度が大きな高負荷運転時に
は負圧ポート29に加わる負圧は極めて小さくなるため
に両弁体28,38が夫々対応する弁ポート27.37
を閉鎖し、斯くしてEGRガスの供給が停止される。
On the other hand, during high-load operation with a large opening degree of the throttle valve 13, the negative pressure applied to the negative pressure port 29 becomes extremely small.
is closed, and the supply of EGR gas is thus stopped.

このとき気化器12において形成された混合気は流体抵
抗の小さな吸気マニホルド11並びに吸気ポート6を介
して燃焼室5内に供給され、斯くして高い充填効率を確
保することができる。
At this time, the air-fuel mixture formed in the carburetor 12 is supplied into the combustion chamber 5 through the intake manifold 11 and the intake port 6, which have low fluid resistance, thereby ensuring high charging efficiency.

以上述べたように本考案によれば機関アイドリンク運転
時には副吸気通路が遮断されるために燃焼室内に発生す
る乱れは過度に強くならず、斯くして良好な燃焼を確保
することができる。
As described above, according to the present invention, the auxiliary intake passage is blocked during engine idling operation, so the turbulence generated in the combustion chamber is not excessively strong, thus ensuring good combustion.

また、アイドリンク運転時にはEGRガスの供給が停止
されるのでこのときには燃焼室内にさほど大きな乱れを
発生せしめる必要がなく、更に特にアイドリンク運転時
のように気化器12内を流れる混合気の流速は遅く従が
って燃料の気化が良好でないときにはメインノズルから
噴出した燃料の大部分が液状の状態でスロットル弁に付
着し、開孔21から副吸気通路19内に供給される混合
気は極めて稀薄となってしまう。
In addition, since the supply of EGR gas is stopped during idle link operation, there is no need to create a large turbulence in the combustion chamber at this time, and in particular, the flow velocity of the air-fuel mixture flowing in the carburetor 12 is lower than during idle link operation. Therefore, when fuel vaporization is slow and not good, most of the fuel ejected from the main nozzle adheres to the throttle valve in a liquid state, and the air-fuel mixture supplied from the opening 21 into the sub-intake passage 19 is extremely diluted. It becomes.

従がってこれらの点からみてもアイドリンク運転時に副
吸気通路から燃焼室内への混合気の供給を停止すること
が好ましい。
Therefore, from these points of view, it is preferable to stop supplying the air-fuel mixture from the auxiliary intake passage into the combustion chamber during idle-link operation.

また流量制御弁22およびEGR制御弁32を制御する
ための負圧ポート29を1側設ければよいので気化器の
製造が容易となる。
Further, since the negative pressure port 29 for controlling the flow rate control valve 22 and the EGR control valve 32 only needs to be provided on one side, manufacturing of the carburetor becomes easy.

一方、スロットル弁が開弁した低負荷運転時には副吸気
通路を介して燃焼室に混合気が供給されるために燃焼室
内には強力な乱れが発生でき、更に高負荷運転時にはほ
とんど全部の混合気が流体抵抗の小さな吸気マニホルド
を介して燃焼室内に供給されるために高い充填効率を確
保することができる。
On the other hand, during low-load operation when the throttle valve is open, the air-fuel mixture is supplied to the combustion chamber through the auxiliary intake passage, which can cause strong turbulence within the combustion chamber, and furthermore, during high-load operation, almost all of the air-fuel mixture is supplied into the combustion chamber through the intake manifold with low fluid resistance, ensuring high charging efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る内燃機関の平面図、第2図は第1
図の側面断面図である。 6・・・・・仮気ポート、T・・・・・・吸気弁、11
・・・・・・吸気マニホルド、12・・・・・・気化器
、13・・・・・・スロットル弁、16・・・・・分配
通路、17・・・・・分装枝路、19・・・・・・副吸
気通路、22・・・・・・流量制御弁、31・・・・・
・EGR供給導管、32・・・・・・EGR制御弁。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, and Fig. 2 is a plan view of an internal combustion engine according to the present invention.
FIG. 6...Temporary air port, T...Intake valve, 11
...Intake manifold, 12... Carburizer, 13... Throttle valve, 16... Distribution passage, 17... Division branch passage, 19 ...Sub-intake passage, 22...Flow rate control valve, 31...
- EGR supply conduit, 32...EGR control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 気化器スロットル弁上流の混合気通路から副吸気通路を
分岐してこれを該スロットル弁後流の吸気ポート内に再
び開口せしめ、排気マニホルドと吸気マニホルドとを再
循環排気ガス供給導管により互に連結した内燃機関にお
いて、負圧室を具えると共に該負圧室内の負圧が予め定
められた負圧よりも大きくなったときに閉弁する流量制
御弁を上記副吸気通路内に配置し、負圧室を具えると共
にその負圧室内の負圧が予め定められた負圧よりも大き
くなったときに閉弁する再循環排気ガス制御弁を上記再
循環排気ガス供給導管内に設け、気化器スロットル弁が
アイドリンク位置にあるときにスロットル弁上流の混合
気通路内に開口しかつスロットル弁カ開弁するとスロッ
トル弁下流の混合気通路内に開口する1個の負圧ポート
を混合気通路内壁面上に設け、上記流量制御弁の負圧室
と上記再循環排気ガス制御弁の負圧室を該負圧ポートに
連結した内燃機関の吸気装置。
Branching a sub-intake passage from the mixture passage upstream of the carburetor throttle valve and opening it again into the intake port downstream of the throttle valve, and interconnecting the exhaust manifold and the intake manifold by a recirculating exhaust gas supply conduit. In the internal combustion engine, a flow control valve that is provided with a negative pressure chamber and that closes when the negative pressure in the negative pressure chamber becomes larger than a predetermined negative pressure is arranged in the sub-intake passage, A recirculation exhaust gas control valve having a pressure chamber and closing when the negative pressure in the negative pressure chamber becomes larger than a predetermined negative pressure is provided in the recirculation exhaust gas supply conduit, and One negative pressure port is installed in the mixture passage, which opens into the mixture passage upstream of the throttle valve when the throttle valve is in the idle link position, and opens into the mixture passage downstream of the throttle valve when the throttle valve is opened. An intake device for an internal combustion engine, which is provided on a wall surface and connects a negative pressure chamber of the flow control valve and a negative pressure chamber of the recirculation exhaust gas control valve to the negative pressure port.
JP2911379U 1979-03-09 1979-03-09 Internal combustion engine intake system Expired JPS5851375Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2911379U JPS5851375Y2 (en) 1979-03-09 1979-03-09 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2911379U JPS5851375Y2 (en) 1979-03-09 1979-03-09 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS55130020U JPS55130020U (en) 1980-09-13
JPS5851375Y2 true JPS5851375Y2 (en) 1983-11-22

Family

ID=28876326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2911379U Expired JPS5851375Y2 (en) 1979-03-09 1979-03-09 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS5851375Y2 (en)

Also Published As

Publication number Publication date
JPS55130020U (en) 1980-09-13

Similar Documents

Publication Publication Date Title
US4253432A (en) Intake system of an internal combustion engine of a counter-flow type
US4523560A (en) Intake device of an internal combustion engine
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
JPS581654Y2 (en) Intake system for fuel-injected internal combustion engines
US4484549A (en) 4-Cycle internal combustion engine
US4261316A (en) Intake system of a multi-cylinder internal combustion engine
US4303046A (en) Intake system of a multi-cylinder internal combustion engine
US4470391A (en) Air-fuel mixture intake construction for internal combustion engines
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5851375Y2 (en) Internal combustion engine intake system
JPS5840007B2 (en) Internal combustion engine intake system
JP2639720B2 (en) Intake control device for internal combustion engine
JPS6128828B2 (en)
JPH0413415Y2 (en)
GB2087479A (en) Ic engine mixture intake system
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5813084Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5922247Y2 (en) spark ignition internal combustion engine
JPH0133792Y2 (en)
JPS5941295Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS597539Y2 (en) Double intake internal combustion engine
JPS62223456A (en) Fuel injection type internal combustion engine
JPS6029650Y2 (en) Recirculated exhaust gas and air-fuel ratio control device
JPH0247238Y2 (en)