JPS589247B2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPS589247B2
JPS589247B2 JP53059895A JP5989578A JPS589247B2 JP S589247 B2 JPS589247 B2 JP S589247B2 JP 53059895 A JP53059895 A JP 53059895A JP 5989578 A JP5989578 A JP 5989578A JP S589247 B2 JPS589247 B2 JP S589247B2
Authority
JP
Japan
Prior art keywords
throttle valve
intake
load operation
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53059895A
Other languages
Japanese (ja)
Other versions
JPS54151720A (en
Inventor
許斐敏明
松井英昭
野平英隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP53059895A priority Critical patent/JPS589247B2/en
Priority to US06/026,753 priority patent/US4308837A/en
Publication of JPS54151720A publication Critical patent/JPS54151720A/en
Publication of JPS589247B2 publication Critical patent/JPS589247B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • F02M35/10085Connections of intake systems to the engine having a connecting piece, e.g. a flange, between the engine and the air intake being foreseen with a throttle valve, fuel injector, mixture ducts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for an internal combustion engine.

通常特にガソリン機関においては高速高負荷運転時にお
ける充填効率を高め、それによって十分な出力を得られ
るように吸気ポートは流体抵抗が小さなポート形状に形
成される。
Usually, particularly in gasoline engines, the intake port is formed in a port shape with small fluid resistance in order to increase charging efficiency during high-speed, high-load operation and thereby obtain sufficient output.

しかしながらこのようなポート形状にした場合、高速高
負荷運転時には自然発生のかなり強力な乱れが燃焼室内
に生ずるので燃焼速度は十分に速められるが低速低負荷
運転時には燃焼室内に十分な乱れが発生せず従って燃焼
速度を十分に速めることができないという問題がある。
However, if such a port shape is used, during high-speed, high-load operation, a naturally occurring and quite strong turbulence will occur in the combustion chamber, so the combustion speed will be sufficiently increased, but during low-speed, low-load operation, sufficient turbulence will not occur within the combustion chamber. Therefore, there is a problem that the combustion rate cannot be sufficiently increased.

低速低負荷運転時に強力な乱れを発生させる方法として
、吸気ポートをヘリカル形状にしたり或いはシュラウド
弁を用いて燃焼室内に強制的に旋回流を発生させる方法
があるがこれらの方法では吸入混合気流に対する抵抗が
増大するだめ高速高負荷運転時における充填効率が低下
するという問題がある。
There are ways to generate strong turbulence during low-speed, low-load operation by making the intake port a helical shape or by using a shroud valve to forcefully generate a swirling flow in the combustion chamber. As the resistance increases, there is a problem in that charging efficiency during high-speed, high-load operation decreases.

従って高速高負荷運転時における高い充填効率を確保し
つつ低速低負荷運転時における燃焼速度を増大せしめる
には吸気ポートを流体抵抗の小さなポート形状から形成
すると共に低速低負荷運転時に燃焼室内に強力な乱れを
発生させるようにしなければならない。
Therefore, in order to increase the combustion rate during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, the intake port should be formed with a port shape that has low fluid resistance, and at the same time, a powerful You have to try to cause some disturbance.

また低速低負荷運転時における燃焼を改善する方法とし
て燃焼室内に強力な乱れを発生させる以外に燃料の気化
を促進させることが挙げられる。
Furthermore, as a method of improving combustion during low-speed, low-load operation, in addition to generating strong turbulence within the combustion chamber, there is also a method of promoting vaporization of the fuel.

即ち、低速低負荷運転時には気化器ベンチュリ部を流れ
る空気の流速が遅く、従って噴出燃料と空気流との相対
速度が遅いだめに燃料を十分に微粒化することができず
、その結果多量の燃料が液状のままで燃焼室内に供給さ
れ、これが燃焼を悪化させしかも排気エミッションを悪
化させる一原因となっている。
That is, during low-speed, low-load operation, the flow velocity of the air flowing through the venturi section of the carburetor is slow, and the relative velocity between the ejected fuel and the airflow is slow, so the fuel cannot be atomized sufficiently, and as a result, a large amount of fuel is is supplied into the combustion chamber in a liquid state, which worsens combustion and is one of the causes of worsening exhaust emissions.

これらの問題点を解決するだめに気化器スロットル弁後
流の吸気通路内に第2スロットル弁を設け、気化器スロ
ットル弁と第2スロットル弁間の吸気通路から副吸気通
路を分岐してこの副吸気通路を第2スロットル弁緩流の
吸気通路内に再び連結するようにした内燃機関が特開昭
53−127916号公報に記載されている。
In order to solve these problems, a second throttle valve is provided in the intake passage downstream of the carburetor throttle valve, and an auxiliary intake passage is branched from the intake passage between the carburetor throttle valve and the second throttle valve. JP-A-53-127916 discloses an internal combustion engine in which the intake passage is reconnected to the slow-flow intake passage of the second throttle valve.

この内燃機関では低負荷運転時に第2スロットル弁を閉
弁することにより断面積の小さな副吸気通路から混合気
を供給し、副吸気通路から噴出する混合気によって燃焼
室内に乱れを発生せしめると共に副吸気通路内を混合気
が高速度で流れるので燃料の気化が促進される。
In this internal combustion engine, by closing the second throttle valve during low-load operation, the air-fuel mixture is supplied from the auxiliary intake passage with a small cross-sectional area, and the mixture ejected from the auxiliary intake passage causes turbulence in the combustion chamber. Since the air-fuel mixture flows in the intake passage at high speed, vaporization of the fuel is promoted.

しかしながらこの内燃機関では副吸気通路がパイプから
形成されるか、或いは吸気マニホルド壁面xに穿設され
た孔から形成されているためにパイプを用いる場合には
余分な部品が必要となるばかりでなくパイプ配管のだめ
のスペースが必要となる問題があり、吸気マニホルド壁
面内に孔を穿設する場合には複雑な加工を必要とすると
いう問題がある。
However, in this internal combustion engine, the auxiliary intake passage is formed from a pipe or from a hole drilled in the intake manifold wall x, so if a pipe is used, not only will extra parts be required. There are problems in that a space is required for the pipes, and in the case of drilling holes in the wall surface of the intake manifold, complicated machining is required.

本発明は簡単な構造でもって高速高負荷運転時における
高い充填効率を確保しつつ低速低負荷運転時に燃焼室内
に強力な乱れを発生できると共に燃料の気化を促進でき
るようにした内燃機関を提供することにある。
The present invention provides an internal combustion engine that has a simple structure and can generate strong turbulence in the combustion chamber during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, and can promote fuel vaporization. There is a particular thing.

以下、添附図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1はシリンダブロック、2はシリ
ンダブロック1内で往復動するピストン、3はシリンダ
ブロック1上に固定されたシリンダヘッド、4はピスト
ン2とシリンダヘッド3間に形成された燃焼室、5はシ
リンダヘッド3内に形成された吸気ポート、6は吸気弁
、7は排気ポート、8は排気弁、9は点火栓、10は吸
気マニホルド、11は気化器、12は気化器スロットル
弁を夫々示し、この気化器スロットル弁12は車両運転
室に配置されたアクセルペタルにより作動される。
Referring to FIG. 1, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is formed between the piston 2 and the cylinder head 3. A combustion chamber, 5 is an intake port formed in the cylinder head 3, 6 is an intake valve, 7 is an exhaust port, 8 is an exhaust valve, 9 is a spark plug, 10 is an intake manifold, 11 is a carburetor, 12 is a carburetor A throttle valve is shown, the carburetor throttle valve 12 being actuated by an accelerator pedal located in the vehicle cab.

第1図に示されるように吸気マニホルド10はスベーサ
13を介してシリンダヘッド3に固定され、このスペー
サ13の内壁底面上に切溝14が形成される。
As shown in FIG. 1, the intake manifold 10 is fixed to the cylinder head 3 via a spacer 13, and a groove 14 is formed on the bottom surface of the inner wall of the spacer 13.

この切溝14は第1図に示すようにスペーサ13に隣接
する吸気ポート5並びに吸気マニホルド10の内壁底面
部分まで延び会スペーサ13内には第2スロットル弁1
5が挿着されるが第1図に示されるように第2スロット
ル弁15が全閉位置にあるとき第2スロットル弁15の
上流と下流とがこの切溝14のみを介して連結される。
As shown in FIG. 1, this kerf 14 extends to the intake port 5 adjacent to the spacer 13 and to the bottom of the inner wall of the intake manifold 10.
5 is inserted, but when the second throttle valve 15 is in the fully closed position as shown in FIG.

第2スロットル弁15のスロットル軸16にはアーム1
7が固着され、このアーム17の先端部に負圧ダイヤフ
ラム装置18の制御ロツド19が枢着される。
The arm 1 is attached to the throttle shaft 16 of the second throttle valve 15.
7 is fixed, and a control rod 19 of a negative pressure diaphragm device 18 is pivotally attached to the tip of this arm 17.

負圧ダイヤフラム装置18はダイヤフラム20により隔
成された大気圧室21と負圧室22とを有し、この負圧
室22内にはダイヤフラム押圧用の圧縮ばね23が挿入
される。
The negative pressure diaphragm device 18 has an atmospheric pressure chamber 21 and a negative pressure chamber 22 separated by a diaphragm 20, and a compression spring 23 for pressing the diaphragm is inserted into the negative pressure chamber 22.

負圧室22は負圧導管24を介して気化器スロットル弁
12後流の吸気マニホルド10内に連結され、一方i゛
イヤフラム20に制御ロツド19が固定される。
The vacuum chamber 22 is connected via a vacuum conduit 24 into the intake manifold 10 downstream of the carburetor throttle valve 12, while a control rod 19 is fixed to the i-diaphragm 20.

気化器スロットル弁12の開度が小さな低負荷運転時に
は吸気マニホルド10内の負圧は大きく、その結果ダイ
ヤフラム20は圧縮ばね23のばね力に抗して下降する
ので第2スロットル弁15は第1図に示すような閉鎖位
置にある。
During low load operation with a small opening degree of the carburetor throttle valve 12, the negative pressure inside the intake manifold 10 is large, and as a result, the diaphragm 20 moves downward against the spring force of the compression spring 23, so that the second throttle valve 15 is in the closed position as shown.

従ってこのとき気化器11から供給された燃料は切溝1
4並びに吸気ポート5を介して燃焼室4内に供給される
Therefore, at this time, the fuel supplied from the carburetor 11 is
4 and into the combustion chamber 4 through the intake port 5.

第2図に示すように切溝14の断面積は極めて小さく、
従って混合気は高速度で切溝14内を流れるため切溝1
4内において液状燃料の気化が促進されることになる。
As shown in FIG. 2, the cross-sectional area of the kerf 14 is extremely small;
Therefore, the air-fuel mixture flows in the kerf 14 at high speed, so the kerf 1
4, vaporization of the liquid fuel is promoted.

切溝14内を通過して吸気ポート5内に噴出した混合気
は比較的高速度に維持されつつ吸気弁6を介して燃焼室
4内に流入し、燃焼室4内に強力な乱れを発生させるこ
とになる。
The air-fuel mixture that has passed through the kerf 14 and is injected into the intake port 5 flows into the combustion chamber 4 through the intake valve 6 while being maintained at a relatively high velocity, generating strong turbulence within the combustion chamber 4. I will let you do it.

その結果、燃焼速度は大巾に速められることになる。As a result, the combustion rate is greatly increased.

一方、機関高負荷運転時には吸気マニホルド10内の負
圧が小さくなるためダイヤフラム20は圧縮ばね23の
ばね力により上昇して第2スロットル弁15は全開する
On the other hand, during high-load engine operation, the negative pressure within the intake manifold 10 becomes small, so the diaphragm 20 is raised by the spring force of the compression spring 23, and the second throttle valve 15 is fully opened.

吸気通路中のスロットル弁を設けた場合にはスロットル
弁全開時においてスロットル弁並びにスロットル軸が大
きな流体抵抗となってしまうが本発明では吸気通路の断
面積が切溝14分だけ増大するために流体抵抗は極めて
小さくなり、従って高い充填効率を得ることができる。
If a throttle valve is provided in the intake passage, the throttle valve and throttle shaft will create a large fluid resistance when the throttle valve is fully opened, but in the present invention, the cross-sectional area of the intake passage increases by 14 kerfs, so the fluid resistance The resistance becomes extremely small and therefore high filling efficiency can be obtained.

第3図並びに第4図は第1図の別の実施例を示す。FIGS. 3 and 4 show an alternative embodiment to that shown in FIG.

この実施例では切溝25がスロットル軸16周りのスペ
ーサ内壁側面上に形成される。
In this embodiment, a kerf 25 is formed on the side surface of the inner wall of the spacer around the throttle shaft 16.

第2スロットル弁15は可能な限り吸気弁6の近傍に設
けることが好ましく、こうすることによって車両滅速時
に第2スロットル弁15が全閉しだ際第2スロットル弁
15後流の吸気ポート表面積が小さなために吸気ポート
内壁面上に付着した燃料が即座に気化したとしてもさほ
ど過濃とはならない。
It is preferable to provide the second throttle valve 15 as close to the intake valve 6 as possible. By doing so, when the second throttle valve 15 is fully closed when the vehicle is slowing down, the surface area of the intake port downstream of the second throttle valve 15 is increased. is small, so even if the fuel adhering to the inner wall of the intake port evaporates immediately, it will not become very concentrated.

また低負荷運転時には吸気ポート5は切溝14:25を
介してのみ吸気マニホルド10内と連結するため吸気干
渉を緩和できるばかりでなく切溝14:25内を流れる
混合気の流速を極めて高速度にすることができるので燃
料の気化を大巾に促進できるばかりでなく強力な乱れを
燃焼室内に発生させることができる。
In addition, during low-load operation, the intake port 5 is connected to the inside of the intake manifold 10 only through the groove 14:25, which not only alleviates intake interference but also increases the flow rate of the air-fuel mixture flowing inside the groove 14:25 to an extremely high speed. Not only can the vaporization of the fuel be greatly promoted, but also powerful turbulence can be generated within the combustion chamber.

このように本発面によれば加工が容易で簡単な構造の切
溝を設けるだけで全運転領域に亘って燃焼速度を速める
ことができ、斯くして安定した燃焼が得られるばかりで
なく排気エミツションが改善され、更に燃料消費率を向
上することができる。
In this way, according to the present invention, it is possible to increase the combustion rate over the entire operating range by simply providing a cut groove that is easy to process and has a simple structure.In this way, not only stable combustion can be obtained, but also exhaust gas Emissions are improved and fuel consumption can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の側面断面図、第2図は
第1図の■−■線に沿ってみた断面図、第3図は別の実
施例の側面断面図、第4図は第3図のIT −IV線に
沿ってみた断面図である。 5・・・・・・吸気ポート、6・・・・・・吸気弁、8
・・・・・・排気弁、12・・・・・・気化器スロット
ル弁、13・・・・・・スペーサ、14,25・・・・
・・切溝、15・・・・・・第2スロットル弁、24・
・・・・・負圧ダイヤフラム装置。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a side sectional view of another embodiment, and FIG. 4 3 is a sectional view taken along the line IT-IV in FIG. 3. FIG. 5... Intake port, 6... Intake valve, 8
...exhaust valve, 12...carburizer throttle valve, 13...spacer, 14,25...
...kerf, 15...second throttle valve, 24.
... Negative pressure diaphragm device.

Claims (1)

【特許請求の範囲】[Claims] 1 気化器スロットル弁後流の吸気通路内に第2スロッ
トル弁を設けると共に該吸気通路内壁面上に上記第2ス
ロットル弁の上流と下流とを連通しかつ吸入混合気流方
向に延びる切溝を形成し、更に機関低負荷運転時に上記
第2スロットル弁を全閉すると共に機関高負荷運転時に
該第2スロットル弁を全開にするスロットル弁駆動機構
を有する内燃機関の吸気装置。
1. A second throttle valve is provided in the intake passage downstream of the carburetor throttle valve, and a groove is formed on the inner wall surface of the intake passage that communicates the upstream and downstream sides of the second throttle valve and extends in the intake air mixture flow direction. An intake system for an internal combustion engine, further comprising a throttle valve drive mechanism that fully closes the second throttle valve during low engine load operation and fully opens the second throttle valve during high engine load operation.
JP53059895A 1978-05-22 1978-05-22 Internal combustion engine intake system Expired JPS589247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53059895A JPS589247B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system
US06/026,753 US4308837A (en) 1978-05-22 1979-04-03 Intake system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53059895A JPS589247B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS54151720A JPS54151720A (en) 1979-11-29
JPS589247B2 true JPS589247B2 (en) 1983-02-19

Family

ID=13126298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53059895A Expired JPS589247B2 (en) 1978-05-22 1978-05-22 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS589247B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127916A (en) * 1977-08-16 1978-11-08 Yamaha Motor Co Ltd Suction device of engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127916A (en) * 1977-08-16 1978-11-08 Yamaha Motor Co Ltd Suction device of engine

Also Published As

Publication number Publication date
JPS54151720A (en) 1979-11-29

Similar Documents

Publication Publication Date Title
JPS6060007B2 (en) Intake system for counterflow multi-cylinder internal combustion engine
JPS5947128B2 (en) Internal combustion engine intake system
US4308837A (en) Intake system of an internal combustion engine
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
JPS6041210B2 (en) engine intake system
JPS5840647B2 (en) Internal combustion engine intake system
JPS6234927B2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5845573B2 (en) Internal combustion engine intake passage device
JPS5840007B2 (en) Internal combustion engine intake system
JPS589253B2 (en) Internal combustion engine intake system
JPS589247B2 (en) Internal combustion engine intake system
JPS5820370B2 (en) Internal combustion engine intake system
JPS631445B2 (en)
JPS6039855B2 (en) Internal combustion engine intake system
JPS5828411B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5830095Y2 (en) Internal combustion engine intake passage structure
JPS5827055Y2 (en) Intake system of multi-cylinder internal combustion engine
JPS63201336A (en) Multiple throttle type internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS6242101Y2 (en)
JPS6060008B2 (en) Internal combustion engine intake system
JPS614821A (en) Intake device for internal-combustion engine
JPS5918530B2 (en) Internal combustion engine intake system