JPS5918530B2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPS5918530B2
JPS5918530B2 JP54066120A JP6612079A JPS5918530B2 JP S5918530 B2 JPS5918530 B2 JP S5918530B2 JP 54066120 A JP54066120 A JP 54066120A JP 6612079 A JP6612079 A JP 6612079A JP S5918530 B2 JPS5918530 B2 JP S5918530B2
Authority
JP
Japan
Prior art keywords
negative pressure
intake
valve
throttle valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54066120A
Other languages
Japanese (ja)
Other versions
JPS55160121A (en
Inventor
英昭 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP54066120A priority Critical patent/JPS5918530B2/en
Publication of JPS55160121A publication Critical patent/JPS55160121A/en
Publication of JPS5918530B2 publication Critical patent/JPS5918530B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for an internal combustion engine.

通常特にガソリン機関においては高速高負荷運転時にお
ける充填効率を高め、それによって十分な出力を得られ
るように吸気ボートは流体抵抗が小さなボート形状に形
成される。
Usually, particularly in gasoline engines, the intake boat is formed into a boat shape with low fluid resistance in order to increase charging efficiency during high-speed, high-load operation and thereby obtain sufficient output.

しかしながらこのようなボート形状にした場合、高速高
負荷運転時には自然発生のかなり強力な乱れが燃焼室内
に生ずるので燃焼速度は十分に速められるが低速低負荷
運転時には燃焼室内に十分な乱れが発生せず、従って燃
焼速度を十分に速めることができないという問題がある
However, when such a boat shape is used, during high-speed, high-load operation, a naturally occurring and quite strong turbulence is generated in the combustion chamber, so the combustion speed can be sufficiently increased, but during low-speed, low-load operation, sufficient turbulence does not occur within the combustion chamber. Therefore, there is a problem that the combustion rate cannot be sufficiently increased.

低速低負荷運転時に強力な乱れを発生させる方法として
、吸気ボートをヘリカル形状にしたり或いはシュラウド
弁を用いて燃焼室内に強制的に旋回流を発出させる方法
があるがこれらの方法では吸入混合気流に対する抵抗が
増大するため高速高負荷運転時における充填効率が低下
するという問題がある。
Methods of generating strong turbulence during low-speed, low-load operation include making the intake boat a helical shape or using a shroud valve to forcefully generate a swirling flow within the combustion chamber. There is a problem in that charging efficiency decreases during high-speed, high-load operation due to increased resistance.

従って高速高負荷運転時における高い充填効率を確保し
つつ低速低負荷運転時における燃焼速度を増大せしめる
には吸気ボートを流体抵抗の小さなボート形状から形成
すると共に低速低負荷運転時に燃焼室内に強力な乱れを
発生させるようにしなければならない。
Therefore, in order to increase the combustion rate during low-speed, low-load operation while ensuring high charging efficiency during high-speed, high-load operation, the intake boat must be formed into a boat shape with low fluid resistance, and at the same time, a powerful You have to try to cause some disturbance.

また低速低負荷運転時における燃焼を改善する方法とし
て燃焼室内に強力な乱れを発生させる以外に燃料の気化
を促進させることが挙げられる。
Furthermore, as a method of improving combustion during low-speed, low-load operation, in addition to generating strong turbulence within the combustion chamber, there is also a method of promoting vaporization of the fuel.

即ち、低速低負荷運転時には気化器ベンチュリ部を流れ
る空気の流速が遅く、従って噴出燃料と空気流との相対
速度が遅いために燃料を十分に微粒化することができず
、その結果多量の燃料が液状の一!−まで燃焼室内に供
給され、これが燃焼を悪化させしかも排気エミッション
を悪化させる一原因となっている。
That is, during low-speed, low-load operation, the flow rate of air flowing through the venturi section of the carburetor is slow, and therefore the relative velocity between the injected fuel and the air flow is slow, making it impossible to atomize the fuel sufficiently, and as a result, a large amount of fuel is is a liquid one! - is supplied into the combustion chamber, which is one of the causes of deteriorating combustion and deteriorating exhaust emissions.

一方、機関低速高負荷運転時にはよく知られているよう
にノッキングが発生しやすくなるのでこのノッキングの
発生を阻止するために通常低速高負荷運転時において点
火時期を遅らせるようにしている。
On the other hand, as is well known, knocking is more likely to occur when the engine is operating at low speeds and high loads, so in order to prevent this knocking, the ignition timing is usually delayed during low speed and high load operations.

しかしながらこのように点火時期を遅らせると燃料消費
率が悪化するばかりでなく機関出力が低下する。
However, delaying the ignition timing in this manner not only worsens the fuel consumption rate but also reduces engine output.

このようなノッキングの発生を阻止する他の方法として
低速高負荷運転時に燃焼室内に強力な乱れを発生せしめ
る方法がある。
Another method for preventing such knocking is to generate strong turbulence within the combustion chamber during low-speed, high-load operation.

このように吸入空気量の少ない低速低負荷運転時におけ
る燃焼速度を増大せしめ、更に吸入空気量が比較的少な
い低速高負荷運転時におけるノッキングの発生を阻止す
るには吸入空気量が少ないときに燃焼室内に強力な乱れ
を発生させることが必要とされる。
In this way, in order to increase the combustion rate during low-speed, low-load operation with a small amount of intake air, and furthermore to prevent knocking during low-speed, high-load operation with a relatively small amount of intake air, it is necessary to increase the combustion rate when the amount of intake air is small. It is necessary to create a strong disturbance in the room.

このように吸入空気量の多い機関高速高負荷運転時にお
ける高い充填効率を確保しつつ吸入空気量の少ないとき
に燃焼室内に強力な乱れを発生させることのできる内燃
機関として、気化器スロットル弁後流の各吸気枝通路内
に夫々第2スロツトル弁を設けると共に該第2スロツト
ル弁後流の各吸気枝通路内に夫々連通ずる各連通枝通路
を共通の連通路に連結し、上記第2スロツトル弁に連結
された負圧応動型スロットル弁駆動装置を具備すると共
に気化器スロットル弁と第2スロットル弁間の吸気通路
内に発生する負圧と上記共通連通路内に発生する負圧と
の圧力差に応動して該圧力差が一定となるように上記負
圧応動型スロットル升駆動装置の負王室に加える負圧を
制御する負圧制御弁を具備した内燃機関が本出願人によ
り提案されている。
In this way, as an internal combustion engine that can generate strong turbulence in the combustion chamber when the amount of intake air is small while ensuring high charging efficiency during high-speed, high-load operation of the engine with a large amount of intake air, A second throttle valve is provided in each intake branch passage of the flow, and each communication branch passage communicating with each intake branch passage downstream of the second throttle valve is connected to a common communication passage, and the second throttle valve is connected to a common communication passage. A negative pressure responsive throttle valve driving device connected to the valve is provided, and the pressure between the negative pressure generated in the intake passage between the carburetor throttle valve and the second throttle valve and the negative pressure generated in the common communication passage. The applicant has proposed an internal combustion engine equipped with a negative pressure control valve that controls the negative pressure applied to the negative output of the negative pressure-responsive throttle cell drive device in response to the pressure difference so that the pressure difference remains constant. There is.

この内燃機関は上述のように第2スロツトル弁の上流側
と下流側との圧力差が一定に保持されるように第2スロ
ットル弁開度を制御することにより第2スロツトル弁の
開度を吸入空気量の増大に応じて大きくするようにし、
それによって吸入空気量の多い機関高負荷高速運転時に
おける高い充填効率を確保しつつ吸入空気が少ないとき
に混合気を連通枝通路から噴出せしめて燃焼室内に強力
な乱れを発生させることを意図している。
As mentioned above, this internal combustion engine takes in the opening of the second throttle valve by controlling the opening of the second throttle valve so that the pressure difference between the upstream side and the downstream side of the second throttle valve is maintained constant. Increase the size according to the increase in air volume,
This is intended to ensure high charging efficiency during high-load, high-speed operation of the engine with a large amount of intake air, while also causing the air-fuel mixture to be ejected from the communicating branch passage when the amount of intake air is low, creating strong turbulence within the combustion chamber. ing.

しかしながらこの内燃機関では実際には第2スロツトル
弁上流側と下流側との圧力差を常時正確に一定に保持す
ることができないという問題がある。
However, this internal combustion engine actually has a problem in that the pressure difference between the upstream side and the downstream side of the second throttle valve cannot be maintained accurately and constant at all times.

即ち、この内燃機関では上述の負圧制御弁が制御用ダイ
ヤフラムにより隔成された高圧室と低圧室とを具備する
と共にこれら高圧室並びに低圧室が夫々第2スロツトル
弁上流側と下流側の吸気管負圧発生領域に連結され、更
に高圧室に隔壁を介して弁室を付設すると共にこの弁室
内に開口した大気連通ボートの開閉制御をする大気連通
制御弁を弁室に設けてこの大気連通制御弁を上記隔壁を
貫通せしめて制御用ダイヤフラムに連結し、また弁室を
一方では負圧応動型スロットル弁駆動装置の負王室に連
結すると共に他方では負圧導管を介して第2スロツトル
弁後流側の吸気管負圧発生領域に連結し、高圧室と低圧
室との圧力差が所定値からずれると制御用ダイヤフラム
が移動して大気連通制御弁が大気連通ボートからのエア
ブリード作用を制御し、それによって負圧応動型スロッ
トル弁駆動装置の負王室内に加わる負圧を制御して高圧
室と低圧室との圧力差が所定値になるように第2スロツ
トル弁を駆動制御するようにしている。
That is, in this internal combustion engine, the above-mentioned negative pressure control valve has a high pressure chamber and a low pressure chamber separated by a control diaphragm, and these high pressure chambers and low pressure chambers are connected to the intake air on the upstream side and downstream side of the second throttle valve, respectively. A valve chamber is connected to the negative pressure generation area of the pipe, and a valve chamber is further attached to the high pressure chamber through a partition wall, and an atmosphere communication control valve is provided in the valve chamber to control the opening and closing of an atmosphere communication boat opened in the valve chamber. The control valve is connected to the control diaphragm by passing through the partition wall, and the valve chamber is connected to the negative end of the negative pressure responsive throttle valve drive device on the one hand, and the second throttle valve through the negative pressure conduit on the other hand. It is connected to the negative pressure generation area of the intake pipe on the upstream side, and when the pressure difference between the high pressure chamber and the low pressure chamber deviates from a predetermined value, the control diaphragm moves and the atmosphere communication control valve controls the air bleed action from the atmosphere communication boat. Thereby, the negative pressure applied to the negative chamber of the negative pressure responsive throttle valve drive device is controlled, and the second throttle valve is driven and controlled so that the pressure difference between the high pressure chamber and the low pressure chamber becomes a predetermined value. ing.

そして、この負圧制御弁では高圧室と弁室間における圧
力の漏洩を阻止するためにそれら画室を分離する隔壁を
分離用ダイヤフラムから構成して大気連通制御弁の弁ロ
ッドをこの分離用ダイヤフラムの中央部に貫通固定せし
めている。
In this negative pressure control valve, in order to prevent pressure leakage between the high pressure chamber and the valve chamber, the partition wall that separates these compartments is composed of a separation diaphragm, and the valve rod of the atmospheric communication control valve is connected to the separation diaphragm. It is fixed through the center part.

しかしカから高圧室に作用する負圧は大気圧近くから−
550m71Hgであるのに対して弁室内に発生する負
圧は−100yuiHgから一150朋Hgの範囲に保
持されるために機関負荷の変化に応じて大気圧室と弁室
との圧力差は大きく変動する。
However, the negative pressure acting on the high pressure chamber from the mosquito is from near atmospheric pressure to -
550m71Hg, whereas the negative pressure generated inside the valve chamber is maintained in the range of -100yuiHg to -1150Hg, so the pressure difference between the atmospheric pressure chamber and the valve chamber fluctuates greatly depending on changes in engine load. do.

そのために上述のように分離用ダイヤフラムを設けると
機関負荷の変化に応じて分離用ダイヤフラムが大気連通
制御弁を無理やり移動させてしまうために大気連通ボー
トからのエアブリード制御作用を狂わせ、その結果第2
スロツトル弁上流側と下流側との圧力差を常時正確に一
定に保持するのが困難となる。
For this purpose, if a separation diaphragm is provided as described above, the separation diaphragm will forcibly move the atmosphere communication control valve in response to changes in the engine load, disrupting the air bleed control action from the atmosphere communication boat, and as a result, the 2
It becomes difficult to maintain a constant pressure difference between the upstream side and the downstream side of the throttle valve at all times.

本発明は吸入空気量が多いときにおける高い充填効率を
確保しつつ第2スロットル弁前後の圧力差を常時正確に
一定に維持することのできる吸気装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an intake device that can maintain a constant pressure difference across a second throttle valve at all times while ensuring high filling efficiency when the amount of intake air is large.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダブロック1上に固締されたシリンダヘッド
、4は燃焼室、5ay5b。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder head fixed on the cylinder block 1, 4 is a combustion chamber, and 5ay5b.

5c、5dは吸気ボート、6a#6bj6cj6dは吸
気弁、7a、7b、7c、7dは排気ポート、8a、8
b、8c、8dは排気弁を夫々示し、燃焼室4内には図
示しない点火栓が配置される。
5c, 5d are intake boats, 6a#6bj6cj6d are intake valves, 7a, 7b, 7c, 7d are exhaust ports, 8a, 8
b, 8c, and 8d indicate exhaust valves, and an ignition plug (not shown) is arranged in the combustion chamber 4.

なお、第2図において9a t9b t9c t9dは
夫々1番気筒、2番気筒、3番気筒、4番気筒を示す。
In addition, in FIG. 2, 9a, t9b, t9c, and t9d indicate the first cylinder, the second cylinder, the third cylinder, and the fourth cylinder, respectively.

第1図並びに第2図に示すように、吸気マニホルド10
のマニホルド集合部10 a 上には気化器スロットル
弁12を具えた気化器11が取付けられ、この気化器ス
ロットル弁12は車両運転室内に設けられたアクセルペ
タルに連結される。
As shown in FIGS. 1 and 2, the intake manifold 10
A carburetor 11 having a carburetor throttle valve 12 is mounted on the manifold gathering portion 10a of the vehicle, and this carburetor throttle valve 12 is connected to an accelerator pedal provided in the vehicle cab.

一方、吸気マニホルド10はスペーサ13を介してシリ
ンダヘッド3に固締され、このスペーサ13内に各気筒
に対応して夫々第2スロツトル弁14が設けられる。
On the other hand, the intake manifold 10 is fixed to the cylinder head 3 via a spacer 13, and a second throttle valve 14 is provided in the spacer 13 corresponding to each cylinder.

これら各第2スロツトル弁14は共通のスロットル軸1
5に固定され、第1図に示すようにこのスロットル軸1
5の端部に固定されたアーム16の先端部はダイヤプラ
ム式スロットル弁駆動装置17の制御ロッド18に連結
される。
These second throttle valves 14 share a common throttle shaft 1.
5, and this throttle shaft 1 is fixed as shown in FIG.
The tip of the arm 16 fixed to the end of the arm 5 is connected to a control rod 18 of a diaphragm type throttle valve drive device 17.

このスロットル弁駆動装置17はダイヤフラム19によ
り隔成された負圧室20と大気圧室21とを有し、ダイ
ヤフラム19に制御ロッド18が固定される。
This throttle valve drive device 17 has a negative pressure chamber 20 and an atmospheric pressure chamber 21 separated by a diaphragm 19, and a control rod 18 is fixed to the diaphragm 19.

また、負圧室20内にはダイヤフラム押圧用圧縮ばね2
2が挿入される。
In addition, a compression spring 2 for pressing the diaphragm is provided in the negative pressure chamber 20.
2 is inserted.

更に第1図に示すようにスロットル弁駆動装置17にダ
イヤフラム式負圧制御弁23が併設される。
Furthermore, as shown in FIG. 1, a diaphragm type negative pressure control valve 23 is provided alongside the throttle valve drive device 17.

この負圧制御弁23はその−・ウジフグ24内に移動可
能なダイヤフラムリテーナ25と、ダイヤフラム26に
より隔成された低圧室27と高圧室28とを有する。
This negative pressure control valve 23 has a diaphragm retainer 25 that is movable within its maggot 24, and a low pressure chamber 27 and a high pressure chamber 28 separated by a diaphragm 26.

また、ハウジング24内にはリテーナガイド室29が形
成され、このリテーナガイド室29内にダイヤフラムリ
テーナ25の小径頭部が摺動可能に嵌入する。
Further, a retainer guide chamber 29 is formed within the housing 24, and the small diameter head of the diaphragm retainer 25 is slidably fitted into this retainer guide chamber 29.

このリテーナガイド室29は負圧ポート30を介して高
圧室28に連結され、従がってリテーナガイド室29内
の負圧は高圧室28内の負圧と常時等しい。
This retainer guide chamber 29 is connected to the high pressure chamber 28 via the negative pressure port 30, and therefore the negative pressure in the retainer guide chamber 29 is always equal to the negative pressure in the high pressure chamber 28.

一方、低圧室27内には調節ねじ31によシ調節可能な
スプリングリテーナ32が設けられ、このスプリングリ
テ・−す32とダイヤフラムリテーナ25間にダイヤフ
ラム押圧用圧縮ばね33が挿入される。
On the other hand, a spring retainer 32 adjustable by an adjusting screw 31 is provided in the low pressure chamber 27, and a compression spring 33 for pressing the diaphragm is inserted between the spring retainer 32 and the diaphragm retainer 25.

更に、負圧制御弁23はそのハウジング24内にリテー
ナガイド室29と隔壁34を隔だでて配置された弁室3
5を有し、この弁室35内に大気孔36が開口する。
Further, the negative pressure control valve 23 has a retainer guide chamber 29 and a valve chamber 3 arranged in the housing 24 with a partition wall 34 separating the valve chamber 3.
5, and an air hole 36 opens in this valve chamber 35.

この弁室35内には大気孔36に対面する弁体37が挿
入され、この弁体37は圧縮ばね38のばね力によって
常時下方に向けて押圧される。
A valve body 37 facing the air hole 36 is inserted into the valve chamber 35, and the valve body 37 is constantly pressed downward by the spring force of the compression spring 38.

一方、隔壁34上には連通孔39が形成され、この連通
孔39内をダイヤフラムリテーナ25に担持された制御
ロッド40が貫通する。
On the other hand, a communication hole 39 is formed on the partition wall 34, and a control rod 40 supported by the diaphragm retainer 25 passes through the communication hole 39.

第1図に示すようにこの制御ロッド40の先端部は弁室
35内に突出可能であり、更に制御ロッド40の先端部
は弁体37に当接可能である。
As shown in FIG. 1, the tip of the control rod 40 can protrude into the valve chamber 35, and the tip of the control rod 40 can also come into contact with the valve body 37.

また、連通孔39の内壁面と制御ロッド40の外周面間
には小さな断面積を有する環状の絞りが形成される。
Furthermore, an annular diaphragm having a small cross-sectional area is formed between the inner wall surface of the communication hole 39 and the outer peripheral surface of the control rod 40 .

更に、弁室35は負圧導管41を介して負王室20に連
結され、一方高圧室28は負圧導管42を介して第2ス
ロツトル弁14の上流側に連結される。
Furthermore, the valve chamber 35 is connected to the negative royal chamber 20 via a negative pressure conduit 41, while the high pressure chamber 28 is connected to the upstream side of the second throttle valve 14 via a negative pressure conduit 42.

一方、第1図並びに第2図に示すように、スペーサ13
の下側部内にはシリンダヘッド3の長手方向に延びる共
通連通路43が形成され、この共通連通路43と各気筒
の吸気ボー)5a、5b。
On the other hand, as shown in FIGS. 1 and 2, the spacer 13
A common communication passage 43 extending in the longitudinal direction of the cylinder head 3 is formed in the lower side of the cylinder head 3, and this common communication passage 43 and the intake bows 5a, 5b of each cylinder.

5c、Sd内とを連結する4本の連通枝路44a。5c and four communication branch paths 44a connecting the insides of Sd.

44b 、44c 、44dがシリンダヘッド3内に形
成される。
44b, 44c, 44d are formed within the cylinder head 3.

これらの各連通枝路44a、44b。44c、44dは
吸気弁開弁時に吸気弁とその弁座間に形成される間隙に
指向される。
Each of these communication branches 44a, 44b. 44c and 44d are directed toward the gap formed between the intake valve and its valve seat when the intake valve is opened.

また、負圧制御弁23の低圧室27は負圧導管45を介
して共通連通路43内に連結される。
Further, the low pressure chamber 27 of the negative pressure control valve 23 is connected to the common communication path 43 via a negative pressure conduit 45.

第3図は機関運転時における各気筒の吸気ボー)5a、
5b、5c、5d内の圧力変化を示す。
Figure 3 shows the intake bow of each cylinder during engine operation) 5a,
5b, 5c, and 5d are shown.

なお、第3図において横軸θはクランク角度を示し、縦
軸は吸気弁かさ部背面近傍における吸気ポート内の圧力
(以下、吸気ポート内圧力と称す)を示し、各基準線A
、B 、C、Dは大気圧を示す。
In Fig. 3, the horizontal axis θ indicates the crank angle, and the vertical axis indicates the pressure in the intake port near the back of the intake valve bulk portion (hereinafter referred to as intake port pressure), and each reference line A
, B, C, and D indicate atmospheric pressure.

また、曲線E 、F 、G 、Hは各吸気ポート5 a
p5b 、5c 、5d内における吸気ポート内圧力
の変化を示し、各矢印I、J、に、Lは対応する吸気ポ
ートの各吸気弁6ay6b、6c、6dの開弁期間を示
す。
In addition, curves E, F, G, and H are for each intake port 5a.
5b, 5c, and 5d, and arrows I, J, and L indicate the opening period of each intake valve 6ay6b, 6c, and 6d of the corresponding intake port.

第3図における1番気筒に注目すると、吸気弁が開弁じ
た直後のクランク角度範囲Mにおいて吸気ポート内圧力
は正圧となシ、次いでピストンが下降しているクランク
角度範囲Nにおいて吸気ポート内圧力は負圧となり、次
いでピストンが上昇を開始すると吸気ポート内圧力は再
び正圧となることがわかる。
Focusing on the No. 1 cylinder in Fig. 3, the pressure inside the intake port is positive in the crank angle range M immediately after the intake valve opens, and then in the crank angle range N when the piston is descending. It can be seen that the pressure becomes negative pressure, and then when the piston starts to rise, the pressure inside the intake port becomes positive pressure again.

従って第3図において1番気筒と2番気筒のクランク角
度範囲Pに注目すると、1番気筒の吸気ポート5a内圧
力は負圧となっているのに対して2番気筒の吸気ポート
5b内圧力は正圧となっていることがわかる。
Therefore, if we pay attention to the crank angle range P of the first and second cylinders in FIG. It can be seen that the pressure is positive.

更に、2番気筒と4番気筒のクランク角度範囲Qにおい
ては2番気筒の吸気ボー)5b内圧力が負圧のとき4番
気筒の吸気ボー)5d内圧力は正圧となり、3番気筒と
4番気筒のクランク角度範囲Rにおいては4番気筒の吸
気ボー)5b内圧力が負圧であるとき3番気筒の吸気ボ
ー)5c’内圧力は正圧となり、1番気筒と3番気筒の
クランク角度範囲Sにおいては3番気筒の吸気ボー)5
c内圧力が負圧であるとき1番気筒の吸気ボー)5a内
圧力が正圧になることがわかる。
Furthermore, in the crank angle range Q of the 2nd and 4th cylinders, when the pressure inside the 2nd cylinder's intake bow) 5b is negative pressure, the pressure inside the 4th cylinder's intake bow) 5d becomes positive pressure, and the pressure inside the 3rd cylinder and In the crank angle range R of the 4th cylinder, when the pressure inside the 4th cylinder's intake bow) 5b is negative pressure, the pressure inside the 3rd cylinder's intake bow) 5c' becomes positive pressure, and the pressure inside the 1st and 3rd cylinders becomes positive. In the crank angle range S, the intake bow of the 3rd cylinder) 5
It can be seen that when the pressure inside c is negative pressure, the pressure inside intake bow 5a of cylinder No. 1 becomes positive pressure.

従って1番気筒と2番気筒に注目すると、1番気筒にお
いて吸気行程の前半に1番気筒の吸気ボー)Sa内と2
番気筒の吸気ボー)5bとの圧力差により吸気ボー)5
bより連通枝路44b、共通連通路43並びに連通枝路
44aを介して吸気ボー)Sa内に混合気が供給される
ことがわかる。
Therefore, if we pay attention to the No. 1 and No. 2 cylinders, in the first half of the intake stroke in the No. 1 cylinder, the intake bow) Sa and the
The intake bow) 5 due to the pressure difference with the intake bow) 5b of the number cylinder
It can be seen from b that the air-fuel mixture is supplied into the intake air chamber Sa via the communication branch path 44b, the common communication path 43, and the communication branch path 44a.

同様に2番気筒の吸気行程時には4番気筒の吸気ボー)
5dから連通枝路44d、共通連通路43、連通枝路4
4bを介して吸気ボート5b内に混合気が供給され、4
番気筒の吸気行程時には3番気筒の吸気ボート5cから
4番気筒の吸気ボー)Sd内に混合気が供給され、3番
気筒の吸気行程時には1番気筒の吸気ボー)5aから3
番気筒の吸気ボー)5c内に混合気が供給される。
Similarly, during the intake stroke of the 2nd cylinder, the intake bow of the 4th cylinder)
5d to communication branch path 44d, common communication path 43, communication branch path 4
The air-fuel mixture is supplied into the intake boat 5b via 4b,
During the intake stroke of the No. 3 cylinder, the air-fuel mixture is supplied from the intake boat 5c of the No. 3 cylinder to the intake boat Sd of the No. 4 cylinder, and during the intake stroke of the No. 3 cylinder, the air-fuel mixture is supplied from the intake boat 5a of the No. 1 cylinder to the
The air-fuel mixture is supplied into the intake bow 5c of the number cylinder.

このようにして各気筒の吸気行程時には夫々対応する連
通枝路44a。
In this way, during the intake stroke of each cylinder, the communication branches 44a correspond to each other.

44b、44c、44dから各吸気ボート5a。44b, 44c, and 44d to each intake boat 5a.

5b 、5c 、Sd内に吸気ボート内圧力差によって
混合気が供給されることになる。
The air-fuel mixture is supplied into 5b, 5c, and Sd due to the pressure difference within the intake boat.

上述のように吸気ポート内に発生する正圧と負圧との圧
力差によって負圧の発生している吸気ボート内に混合気
が供給されるが吸気ポート内に発生する正圧は第2スロ
ツトル弁14の開度の大きな影響を受ける。
As mentioned above, the air-fuel mixture is supplied to the intake boat where negative pressure is generated due to the pressure difference between the positive pressure and negative pressure generated in the intake port, but the positive pressure generated in the intake port is due to the second throttle. It is greatly affected by the opening degree of the valve 14.

即ち、第2スロツトル弁14の開度が大きなときは吹返
し作用により吸気ボート5a内に発生した正圧は即座に
吸気マニホルド10内に逃げてしまうために即座に減衰
し、従って第2スロツトル弁14の開度が大きな場合に
吸気ポ々)5a内に発生する正圧は極めて小さくなる。
That is, when the opening degree of the second throttle valve 14 is large, the positive pressure generated in the intake boat 5a due to the blowback action immediately escapes into the intake manifold 10 and is attenuated immediately. When the opening degree of the intake port 14 is large, the positive pressure generated within the intake port 5a becomes extremely small.

一方、第2スロツトル弁14の開度が小さなときは第2
スロツトル弁14の絞シ作用によって吸気ボー)Sa内
に発生した正圧は吸気ボート5a内にさほど減衰するこ
となく保持されることになる。
On the other hand, when the opening degree of the second throttle valve 14 is small, the second
The positive pressure generated in the intake boat 5a by the throttling action of the throttle valve 14 is maintained within the intake boat 5a without being significantly attenuated.

従って第2スロツトル弁140開度が小さなときには例
えば吸気ボー)Sb内の正圧が減衰することなく保持さ
れるので吸気行程下にある気筒の吸気ボー)5a内の負
圧との圧力差が太きくなり、斯くして連通枝路44aか
ら吸気ボート5a内に混合気が高速度で噴出せしめられ
る。
Therefore, when the opening degree of the second throttle valve 140 is small, for example, the positive pressure in the intake bow Sb is maintained without attenuation, so that the pressure difference between the negative pressure and the negative pressure in the intake bow Sb of the cylinder under the intake stroke is large. As a result, the air-fuel mixture is blown out from the communication branch 44a into the intake boat 5a at high speed.

一方、各気筒の吸気ボート5 a s 5 b p 5
c y5d内に発生する負圧は第3図に示すように変
動するが共通連通路43内に発生する負圧は各吸気ボー
ト5a、5b、5c、Sd内における圧力変動が互いに
重なり合って第4図において曲線Yで示すように圧力変
動中は極めて小さくなる。
On the other hand, each cylinder's intake boat 5 a s 5 b p 5
The negative pressure generated in the cy5d fluctuates as shown in FIG. As shown by curve Y in the figure, it becomes extremely small during pressure fluctuations.

なお、第4図において縦軸Pは共通連通路43内の圧力
を示し、横軸θはクランク角度を示し、基準線Xは大気
圧を示す。
In FIG. 4, the vertical axis P indicates the pressure within the common communication path 43, the horizontal axis θ indicates the crank angle, and the reference line X indicates atmospheric pressure.

機関運転時、気化器スロットル弁12後流の吸気マニホ
ルド10内には負圧が発生し、この負圧が負圧導管42
を介して負圧制御弁23の高圧室28に加わる。
During engine operation, negative pressure is generated within the intake manifold 10 downstream of the carburetor throttle valve 12, and this negative pressure is transferred to the negative pressure conduit 42.
It is applied to the high pressure chamber 28 of the negative pressure control valve 23 via.

一方、第2スロツトル弁14後流の吸気ボート5a、5
b、5c、5dに連結された共通連通路43内には第2
スロツトル弁14の上流側よりも大きな負圧が発生し、
この大きな負圧が負圧導管45を介して負圧制御弁23
の低圧室27に加わる。
On the other hand, the intake boats 5a, 5 downstream of the second throttle valve 14
b, 5c, and 5d, there is a second
A larger negative pressure is generated on the upstream side of the throttle valve 14,
This large negative pressure is transferred to the negative pressure control valve 23 via the negative pressure conduit 45.
is added to the low pressure chamber 27.

このとき、第2スロツトル弁14上流の吸気マニホルド
10内の圧力と共通連通路43内の圧力との圧力差、即
ち高圧室28と低圧室27との圧力差が圧縮ばね33の
ばね力により定まる設定圧力差よシ大きいとダイヤフラ
ム26が圧縮ばね33に抗して下方に移動し、その結果
弁体37が連通孔39を閉鎖すると共に大気孔36を開
口する。
At this time, the pressure difference between the pressure in the intake manifold 10 upstream of the second throttle valve 14 and the pressure in the common communication passage 43, that is, the pressure difference between the high pressure chamber 28 and the low pressure chamber 27, is determined by the spring force of the compression spring 33. When the set pressure difference is greater than the set pressure difference, the diaphragm 26 moves downward against the compression spring 33, and as a result, the valve body 37 closes the communication hole 39 and opens the atmospheric hole 36.

その結果空気がスロットル弁駆動装置17の負圧室20
内に流入して負圧室20内の負圧が小さくなるとダイヤ
フラム19は圧縮ばね22のばね力により下降し、斯く
して第2スロツトル弁14は矢印へ方向に回転する。
As a result, air flows into the negative pressure chamber 20 of the throttle valve drive device 17.
When the negative pressure in the negative pressure chamber 20 becomes smaller, the diaphragm 19 is lowered by the spring force of the compression spring 22, and the second throttle valve 14 is thus rotated in the direction of the arrow.

その結果、第2スロツトル弁14後流の負圧が小さくな
ると共に共通連通路43内の負圧が小さくなり、それに
伴って高圧室28と低圧室27との圧力差が設定圧力差
より小さくなるとダイヤフラム26は圧縮ばね33のば
ね力により上方に移動し、その結果第1図に示すように
弁体37は大気孔36を閉鎖すると共に連通孔39を開
口する。
As a result, the negative pressure downstream of the second throttle valve 14 becomes smaller and the negative pressure inside the common communication passage 43 becomes smaller, and accordingly, the pressure difference between the high pressure chamber 28 and the low pressure chamber 27 becomes smaller than the set pressure difference. The diaphragm 26 is moved upward by the spring force of the compression spring 33, and as a result, the valve body 37 closes the air hole 36 and opens the communication hole 39, as shown in FIG.

従ってこのとき負圧室20内の負圧が大きくなるために
ダイヤフラム19は圧縮ばね22に抗して上昇し、斯し
て第2スロツトル弁14は矢印Aと反対向きに回転する
Therefore, at this time, the negative pressure in the negative pressure chamber 20 increases, so the diaphragm 19 rises against the compression spring 22, and the second throttle valve 14 rotates in the opposite direction to arrow A.

第2スロツトル弁14が矢印Aど反対向きに回転すると
再び第2スロツトル弁14の後流側の負圧が大きくなる
ために弁体37が連通孔39を閉鎖すると共に大気孔3
6を開口し、その結果第2スロツトル弁14は再び矢印
A方向に回転せしめられる。
When the second throttle valve 14 rotates in the opposite direction of arrow A, the negative pressure on the downstream side of the second throttle valve 14 increases again, so that the valve body 37 closes the communication hole 39 and the air hole 3
6 is opened, and as a result, the second throttle valve 14 is rotated again in the direction of arrow A.

このような動作が繰返されて第2スロツトル弁14の上
流側と共通連通路43内の圧力差が一定に保持される。
Such operations are repeated to maintain a constant pressure difference between the upstream side of the second throttle valve 14 and the common communication passage 43.

なお、第2スロツトル弁14の上流側と共通連通路43
内との保持すべき圧力差は負圧制御弁23の圧縮ばね3
3のばね力によって任意に設定することができる。
Note that the upstream side of the second throttle valve 14 and the common communication passage 43
The pressure difference to be maintained between the inside and the inside is the compression spring 3 of the negative pressure control valve 23
It can be set arbitrarily by the spring force of 3.

上述のように第2スロツトル4jr14の上流側と共通
連通路43内の圧力差は一定に保持されるので吸入空気
量の少ないときは第2スロツトル弁14の開度は小さく
、吸入空気量が増大するとそれに伴って第2スロツトル
弁14の開弁量が増大することがわかる。
As mentioned above, the pressure difference between the upstream side of the second throttle 4jr14 and the common communication passage 43 is maintained constant, so when the amount of intake air is small, the opening degree of the second throttle valve 14 is small and the amount of intake air increases. It can be seen that the opening amount of the second throttle valve 14 increases accordingly.

一方、気化器スロットル弁12が大きく開弁じている高
負荷運転時には気化器スロットル弁12後流の吸気マニ
ホルド10内の負圧が極めて小さくなるために負圧制御
弁23の高圧室28と低圧室27との圧力差は常時、設
定圧力差より小さくなシ、斯くして弁体37は大気孔3
6を閉鎖すると共に連通孔39を開口する。
On the other hand, during high-load operation when the carburetor throttle valve 12 is wide open, the negative pressure in the intake manifold 10 downstream of the carburetor throttle valve 12 becomes extremely small, so the high pressure chamber 28 and the low pressure chamber of the negative pressure control valve 23 27 is always smaller than the set pressure difference, thus the valve body 37
6 is closed and the communicating hole 39 is opened.

従ってこのときスロットル弁駆動装置17の負圧室20
内には常時気化器スロットル弁12後流の吸気マニホル
ド10内の負圧が加わるがこの負圧は上述のように極め
て小さなためにダイヤフラム19は圧縮ばね22のばね
力によシその最下端位置まで下降し、その結果第2スロ
ツトル弁14は全開状態に保持されることになる。
Therefore, at this time, the negative pressure chamber 20 of the throttle valve drive device 17
Negative pressure in the intake manifold 10 downstream of the carburetor throttle valve 12 is always applied inside the diaphragm 19, but since this negative pressure is extremely small as mentioned above, the diaphragm 19 is pushed to its lowest position by the spring force of the compression spring 22. As a result, the second throttle valve 14 is kept fully open.

このように吸入空気量の少ないときには第2スロツトル
弁140開度は小さくなるがこのとき前述したように吸
気ポート間の正圧と負圧との圧力差が大きくなるために
例えば連通枝路44dから吸気ポー)5d内に混合気が
高速度で噴出せしめられる。
In this way, when the amount of intake air is small, the opening degree of the second throttle valve 140 becomes small, but at this time, as mentioned above, the pressure difference between the positive pressure and the negative pressure between the intake ports becomes large. The air-fuel mixture is blown out at high speed into the intake port 5d.

前述したように連通枝路44dの開口は吸気弁開弁時に
吸気弁6dとその弁座間に形成される間隙に指向されて
いるので連通枝路44dから噴出した混合気は該間隙を
通って燃焼室4内に高速度で流入する。
As mentioned above, since the opening of the communication branch 44d is oriented toward the gap formed between the intake valve 6d and its valve seat when the intake valve is opened, the air-fuel mixture ejected from the communication branch 44d passes through the gap and is combusted. It flows into the chamber 4 at a high velocity.

その結果、燃焼室4内には第2図において矢印Wで示す
ような強力な旋回流が発生せしめられ、斯くして燃焼速
度が大巾に速められることになる。
As a result, a strong swirling flow as shown by the arrow W in FIG. 2 is generated in the combustion chamber 4, and the combustion speed is thus greatly increased.

一方、吸入空気量が多くなると第2スロツトル弁14は
全開するので高い充填効率を確保することができる。
On the other hand, when the amount of intake air increases, the second throttle valve 14 opens fully, so that high filling efficiency can be ensured.

第5図並びに第6図に別の実施例を示す。Another embodiment is shown in FIGS. 5 and 6.

この実施例では共通連通路43の中央部が副吸気通路4
6を介して吸気マニホルド10a内に開口する開孔47
に連結される。
In this embodiment, the central part of the common communication passage 43 is the sub-intake passage 4.
6 into the intake manifold 10a.
connected to.

一方、第5図に示されるようにスペーサ13の上側部内
には第2の共通連通路48が形成され、この第2共通連
通路48は連通枝路49を介して第2スロツトル弁14
後流の各吸気ポー)5a 、5b 、5c 、Sd内に
連結される。
On the other hand, as shown in FIG. 5, a second common communication passage 48 is formed in the upper side of the spacer 13, and this second common communication passage 48 is connected to the second throttle valve 14 through a communication branch passage 49.
It is connected to each downstream intake port) 5a, 5b, 5c, and Sd.

この第2共通連通路48は負圧導管50を介して負圧制
御弁23の低圧室27内に連結され、斯くしてこの実施
例においても吸入空気量が少ないときは第2スロツトル
弁14の開度が小さく、一方吸入空気量が増大すると第
2スロツトル弁14は全開する。
This second common communication passage 48 is connected to the low pressure chamber 27 of the negative pressure control valve 23 via the negative pressure conduit 50, and thus, in this embodiment as well, when the amount of intake air is small, the second throttle valve 14 is closed. When the opening degree is small and the amount of intake air increases, the second throttle valve 14 is fully opened.

従って吸入空気量の少ないときは気化器11において形
成された混合気の一部は副吸気通路46、共通連通路4
3並びに連通枝路44a 、44b 、44c 、44
df介して吸気ポー)5a 、sb t5c 、5d内
に噴出する。
Therefore, when the amount of intake air is small, part of the air-fuel mixture formed in the carburetor 11 is transferred to the auxiliary intake passage 46 and the common communication passage 4.
3 and communication branches 44a, 44b, 44c, 44
It ejects into the intake ports 5a, sb t5c, and 5d through df.

第5図並びに第6図に示されるようにこれら副吸気通路
46、共通連通路43並びに連通枝路44a。
As shown in FIGS. 5 and 6, these auxiliary intake passages 46, common communication passages 43, and communication branch passages 44a.

44b、44c、44dの断面積は吸気ポート5a、5
b、5c、5dの断面積よりもはるかに小さく、従って
混合気はこれら通路内を高速度で流れるためにこの間に
燃料の気化が促進される。
The cross-sectional area of 44b, 44c, and 44d is that of the intake ports 5a and 5.
The cross-sectional areas of the passages b, 5c, and 5d are much smaller, and therefore, the air-fuel mixture flows through these passages at a high speed, promoting vaporization of the fuel during this time.

一方、各連通枝路44a 、44b、44c、44dか
ら高速度で噴出する混合気流により燃焼室4内には第6
図において矢印Wで示すような強力な旋回流が発生せし
められ、その結果燃焼度が大巾に速められることになる
On the other hand, the sixth
A strong swirling flow as shown by the arrow W in the figure is generated, and as a result, the burnup is greatly increased.

一方、吸入空気量が増大すると第2スロツトル弁14が
全開するために大部分の混合気は流れ抵抗の小さな吸気
マニホルド枝管並びに吸気ポート5a、5b、5c、5
dを弁して燃焼室4内に供給されるために高い充填効率
を確保することができる。
On the other hand, when the amount of intake air increases, the second throttle valve 14 is fully opened, and most of the air-fuel mixture flows through the intake manifold branch pipes and intake ports 5a, 5b, 5c, and 5, which have low flow resistance.
Since the fuel is supplied into the combustion chamber 4 through the valve d, high charging efficiency can be ensured.

以上述べたように本発明によれば機関高速高負荷運転時
における高い充填効率を確保しつつ機関低速低負荷運転
時における燃焼速度を大巾に速めることができる。
As described above, according to the present invention, it is possible to greatly increase the combustion rate when the engine is running at low speed and low load while ensuring high charging efficiency when the engine is running at high speed and high load.

更に機関低速高負荷運転時においても燃焼室内に強力な
乱れを発生できるのでノッキングの発生を阻止すること
ができる。
Furthermore, even when the engine is operating at low speed and high load, strong turbulence can be generated within the combustion chamber, thereby preventing knocking.

また、従来のように高圧室28と弁室35とを分離する
分離用ダイヤフラムを設ける必要がないので高圧室28
と弁室35間の圧力差、即ち第2スロツトル弁14前後
の圧力差を高圧室28内の負圧の太きざに拘わらず正確
に一定圧力差に保持することができる。
Further, since there is no need to provide a separation diaphragm that separates the high pressure chamber 28 and the valve chamber 35 as in the conventional case, the high pressure chamber 28
The pressure difference between the valve chamber 35 and the valve chamber 35, that is, the pressure difference before and after the second throttle valve 14, can be accurately maintained at a constant pressure difference regardless of the magnitude of the negative pressure in the high pressure chamber 28.

更に、負圧制御弁23の低圧室21内に加わる負圧は第
4図に示されるように変動中が小さく、従って吸気ポー
ト内に負圧が発生する毎に弁体37が激しく振動するこ
とがないので騒音を防止することができると共に寿命を
向上でき、しかも安定した第2スロツトル弁の開弁制御
を行なうことができる。
Furthermore, as shown in FIG. 4, the negative pressure applied to the low pressure chamber 21 of the negative pressure control valve 23 is small during fluctuations, so the valve body 37 vibrates violently every time negative pressure is generated in the intake port. Since there is no noise, noise can be prevented, the life can be improved, and moreover, the opening control of the second throttle valve can be performed stably.

なお、第1図においても第5図に示すような第2共通連
通路48を共通連通路43に加えて更に設け、この第2
共通連通路に負圧制御弁23の低圧室27を連結するこ
ともできる。
In addition, in FIG. 1, a second common communication path 48 as shown in FIG. 5 is further provided in addition to the common communication path 43.
The low pressure chamber 27 of the negative pressure control valve 23 can also be connected to the common communication path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図のI−I線に沿ってみた本発明に係る内
燃機関の側面断面図、第2図は第1図の一部断面平面図
、第3図は吸気ボート内負圧変化を示すグラフ、第4図
は共通連通路内の負圧変化を示すグラフ、第5図は第6
図の■−v線に沿ってみた別の実施例の側面断面図、第
6図は第5図の一部断面平面図である。 5a 、5b、5c、5d−−−吸気ボート、6ay6
b、6c、6d・・・吸気弁、10・・・吸気マニホル
ド、11・・・気化器、12・・・気化器スロットル弁
、14・・・第2スロツトル弁、17・・・スロットル
弁駆動装置、20・・・負圧室、23・・・負圧制御弁
、27・・・低圧室、28・・・高圧室、35・・・弁
室、36・・・大気孔、37・・弁体、43・・・共通
連通路、44a。 44b 、44c 、44d一連通枝路、48 ・・・
第2共通連通路。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along line I-I in FIG. 2, FIG. 2 is a partially sectional plan view of FIG. 1, and FIG. 3 is a negative pressure inside the intake boat. A graph showing changes in the negative pressure in the common communication passage.
FIG. 6 is a side sectional view of another embodiment taken along line 2--v in the figure, and FIG. 6 is a partially sectional plan view of FIG. 5. 5a, 5b, 5c, 5d---Intake boat, 6ay6
b, 6c, 6d... Intake valve, 10... Intake manifold, 11... Carburetor, 12... Carburetor throttle valve, 14... Second throttle valve, 17... Throttle valve drive Device, 20... Negative pressure chamber, 23... Negative pressure control valve, 27... Low pressure chamber, 28... High pressure chamber, 35... Valve chamber, 36... Air hole, 37... Valve body, 43... common communication path, 44a. 44b, 44c, 44d series of branches, 48...
Second common communication path.

Claims (1)

【特許請求の範囲】 1 気化器スロットル弁後流の各吸気枝通路内に夫々第
2スロツトル弁を設けると共に該第2スロツトル弁後流
の各吸気枝通路内に夫々連通する各連通枝通路を共通の
連通路に連結し、上記第2スロツトル弁に連結された負
圧応動型スロットル弁駆動装置を具備すると共に該第2
スロットル弁前後の圧力差に応動して該圧力差が一定と
なるように上記負圧応動型スロットル弁駆動装置の負圧
室に加える負圧を制御する負圧制御弁を具備する内燃機
関であって、上記負圧制御弁がダイヤフラムにより隔成
された高圧室と低圧室とを具備すると共に該高圧室並び
に低圧室を夫々上記第2スロツトル弁上流側並びに下流
側の吸気管負圧発生領域に連結し、更に上記負圧制御弁
の高圧室に隔壁を介して弁室を付設すると共に該弁室内
に開口した大気孔の開閉制御をする弁体を弁室に設けて
該弁体を上記ダイヤスラムに連結し、該弁室を一方では
上記負圧応動型スロットル弁駆動装置の負圧室に連結す
ると共に他方では上記隔壁上に形成した絞りを介して上
記高圧室に連結した内燃機関の吸気装置。 2、特許請求の範囲第1項記載の内燃機関の吸気装置に
おいて、上記共通連通路を気化器スロットル弁と第2ス
ロットル弁間の吸気通路に連結した内燃機関の吸気装置
[Scope of Claims] 1. A second throttle valve is provided in each intake branch passage downstream of the carburetor throttle valve, and each communication branch passage is provided in communication with each intake branch passage downstream of the second throttle valve. a negative pressure responsive throttle valve drive device connected to the common communication path and connected to the second throttle valve;
The internal combustion engine is provided with a negative pressure control valve that controls negative pressure applied to the negative pressure chamber of the negative pressure responsive throttle valve drive device in response to a pressure difference before and after the throttle valve so that the pressure difference becomes constant. The negative pressure control valve includes a high pressure chamber and a low pressure chamber separated by a diaphragm, and the high pressure chamber and the low pressure chamber are located in intake pipe negative pressure generation areas upstream and downstream of the second throttle valve, respectively. Further, a valve chamber is attached to the high pressure chamber of the negative pressure control valve via a partition wall, and a valve body is provided in the valve chamber for controlling the opening and closing of an air hole opened in the valve chamber, and the valve body is connected to the above-mentioned diamond. intake air of an internal combustion engine, the valve chamber being connected to the negative pressure chamber of the negative pressure responsive throttle valve drive device on the one hand and to the high pressure chamber via a throttle formed on the partition wall on the other hand; Device. 2. An intake system for an internal combustion engine according to claim 1, wherein the common communication passage is connected to the intake passage between the carburetor throttle valve and the second throttle valve.
JP54066120A 1979-05-30 1979-05-30 Internal combustion engine intake system Expired JPS5918530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54066120A JPS5918530B2 (en) 1979-05-30 1979-05-30 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54066120A JPS5918530B2 (en) 1979-05-30 1979-05-30 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS55160121A JPS55160121A (en) 1980-12-12
JPS5918530B2 true JPS5918530B2 (en) 1984-04-27

Family

ID=13306690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54066120A Expired JPS5918530B2 (en) 1979-05-30 1979-05-30 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPS5918530B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102517A (en) * 1980-12-17 1982-06-25 Toyota Motor Corp Intake device for internal combustion engine
JPS5965515A (en) * 1982-10-05 1984-04-13 Mazda Motor Corp Intake apparatus of engine
JPS59150943A (en) * 1983-02-16 1984-08-29 Mazda Motor Corp Control apparatus for engine

Also Published As

Publication number Publication date
JPS55160121A (en) 1980-12-12

Similar Documents

Publication Publication Date Title
US5551392A (en) Engine air intake system
US4972814A (en) Combustion system of an internal combustion engine
US4308830A (en) Vane in the inlet passage of an internal combustion engine
US4253432A (en) Intake system of an internal combustion engine of a counter-flow type
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
JPS589248B2 (en) Intake system for multi-cylinder internal combustion engine
US4308829A (en) Vane in the inlet passage of an internal combustion engine
JPH0670371B2 (en) Multi-cylinder engine intake system
GB1598173A (en) Internal combustion engine intake systems
JPS5848712A (en) Air inlet device of internal-combustion engine
JPS5845573B2 (en) Internal combustion engine intake passage device
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5918530B2 (en) Internal combustion engine intake system
CN101363374A (en) Engine control system
JPS5840007B2 (en) Internal combustion engine intake system
JP2639720B2 (en) Intake control device for internal combustion engine
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS589253B2 (en) Internal combustion engine intake system
JPS6060008B2 (en) Internal combustion engine intake system
JPH0574691B2 (en)
JPS5827059Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine