JPS5828411B2 - Intake system for multi-cylinder internal combustion engine - Google Patents

Intake system for multi-cylinder internal combustion engine

Info

Publication number
JPS5828411B2
JPS5828411B2 JP53097600A JP9760078A JPS5828411B2 JP S5828411 B2 JPS5828411 B2 JP S5828411B2 JP 53097600 A JP53097600 A JP 53097600A JP 9760078 A JP9760078 A JP 9760078A JP S5828411 B2 JPS5828411 B2 JP S5828411B2
Authority
JP
Japan
Prior art keywords
intake port
cylinder
intake
passage
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53097600A
Other languages
Japanese (ja)
Other versions
JPS5525536A (en
Inventor
大 高橋
敏雄 棚橋
周平 豊田
勝彦 本杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP53097600A priority Critical patent/JPS5828411B2/en
Publication of JPS5525536A publication Critical patent/JPS5525536A/en
Publication of JPS5828411B2 publication Critical patent/JPS5828411B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は多気筒内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for a multi-cylinder internal combustion engine.

通常特にガソリン機関においては高速高負荷運転時にお
ける充填効率を高め、それによって十分な出力を得られ
るように吸気ポートは流体抵抗が小さなポート形状に形
成される。
Usually, particularly in gasoline engines, the intake port is formed in a port shape with small fluid resistance in order to increase charging efficiency during high-speed, high-load operation and thereby obtain sufficient output.

しかしながらこのようなポート形状(こした場合、高速
高負荷運転時には自然発生のかなり強力な乱れが燃焼室
内に生ずるので燃焼速度は十分に速められるが低速低負
荷運転時には燃焼室内lこ十分な乱れが発生せず、従が
って燃焼速度を十分に速めることができないという問題
がある。
However, with such a port shape, during high-speed, high-load operation, a naturally occurring and quite strong turbulence will occur in the combustion chamber, so the combustion speed will be sufficiently increased; Therefore, there is a problem that the combustion rate cannot be sufficiently increased.

低速低負荷運転時Iこ強力な乱れを発生させる方法とし
て、吸気ポートをヘリカル形状にしたり或いはシュラウ
ド弁を用いて燃焼室内に強制的に旋回流を発生させる方
法があるがこれらの方法では吸入混合気流に対する抵抗
が増大するために高速高負荷運転時における充填効率が
低下するという問題がある。
There are methods to generate strong turbulence during low-speed, low-load operation by making the intake port helical or by using a shroud valve to forcefully generate a swirling flow in the combustion chamber. There is a problem in that filling efficiency during high-speed, high-load operation decreases due to increased resistance to airflow.

一方、米国特許第3505983号明細書には各気筒の
吸気管内に夫々スロットル弁を設け、各スロットル弁下
流の吸気管内を共通の連通路を介して互に連通した内燃
機関が開示されている。
On the other hand, US Pat. No. 3,505,983 discloses an internal combustion engine in which throttle valves are provided in the intake pipes of each cylinder, and the intake pipes downstream of each throttle valve are communicated with each other via a common communication path.

この内燃機関では各吸気通路内の混合気が共通の連通路
を介して往来するために各気筒内に供給される混合気の
空燃比を一様+こすることができる。
In this internal combustion engine, the air-fuel mixture in each intake passage flows back and forth through a common communication passage, so that the air-fuel ratio of the air-fuel mixture supplied to each cylinder can be made uniform.

しかしながらこの内燃機関では共通の連通路は単に各吸
気管内の混合気の空燃比を均一化することを目的として
おり、共通の連通路から混合気が各吸気管内に高速度で
流出することもないので低速低負荷運転時に強力な乱れ
を発生させることは困難である。
However, in this internal combustion engine, the purpose of the common communication passage is simply to equalize the air-fuel ratio of the air-fuel mixture in each intake pipe, and the air-fuel mixture does not flow out at high speed into each intake pipe from the common communication passage. Therefore, it is difficult to generate strong turbulence during low-speed, low-load operation.

本発明は簡単な構造でもつも高速高負荷運転時における
高い充填効率を確保できしかも必要時に強力な乱れを燃
焼室内に発生することのできる内燃機関の吸気装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an intake system for an internal combustion engine that has a simple structure but can ensure high charging efficiency during high-speed, high-load operation, and can also generate strong turbulence in the combustion chamber when necessary.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1は機関本体、2a。2b、2c
、2dは夫々1番気筒、2番気筒、3香気筒、4番気筒
、3a 、3b、3c 、3dは吸気弁、4a、4b、
4c、4dは排気弁、5 a s5b、5c、5dは吸
気ポート、5a、6b。
Referring to FIG. 1, 1 is the main body of the engine, and 2a. 2b, 2c
, 2d are the 1st cylinder, 2nd cylinder, 3rd cylinder, 4th cylinder, 3a, 3b, 3c, 3d are intake valves, 4a, 4b,
4c, 4d are exhaust valves, 5a s5b, 5c, 5d are intake ports, 5a, 6b.

6c 、 6ctは排気ポートを夫々示す。6c and 6ct indicate exhaust ports, respectively.

第1図並びに第2図に示されるように各吸気ポー)5a
As shown in Figures 1 and 2, each intake port) 5a
.

5b、5c、5dはヘリカル状に形成される。5b, 5c, and 5d are formed in a helical shape.

第2図は第1図の■−■線に沿ってみた2番気筒2bの
断面図を示し、第2図において7はシリンダブロック、
8はシリンダブロックT内で往復動するピストン、9は
シリンダブロック7上に固締されたシリンダヘッド、1
0は2番気筒の燃焼室を夫々示す。
FIG. 2 shows a sectional view of the second cylinder 2b taken along the line ■-■ in FIG. 1, and in FIG. 2, 7 is a cylinder block;
8 is a piston that reciprocates within the cylinder block T, 9 is a cylinder head fixed on the cylinder block 7, 1
0 indicates the combustion chamber of the second cylinder.

なお図には示さないが燃焼室10内には点火栓が配置さ
れる。
Although not shown in the figure, an ignition plug is disposed within the combustion chamber 10.

第1図並びに第2図を参照すると、一対の気化器ハウジ
ング11.12が機関本体1に取付けられ、これら気化
器ハウジング11.12には夫々可変ベンチュリ型気化
器本体13.14が設けられる。
Referring to FIGS. 1 and 2, a pair of carburetor housings 11.12 are attached to engine body 1, and each carburetor housing 11.12 is provided with a variable venturi type carburetor body 13.14.

気化器ハウジング11.12内の各混合気通路15.1
6は一対の混合気枝通路17.18:19.20に夫々
分岐され、これら各混合気枝通路17.1B、19.2
0は夫々ヘリカル吸気ポート5a、5b、5c、5dに
連結される。
Each mixture passage 15.1 in the carburetor housing 11.12
6 is branched into a pair of mixture branch passages 17.18:19.20, respectively, and these mixture branch passages 17.1B, 19.2
0 are connected to helical intake ports 5a, 5b, 5c, and 5d, respectively.

また、これら各混合気枝通路17,18,19,20内
には夫々気化器スロットル弁21,22,23゜24が
配置され、これら各スロットル弁21゜22.23,2
4はリンク機構により互いに連結されて同時に開弁制御
されるがこれを第1図では簡略化して共通のスロットル
軸25に固定されているように示す。
Further, carburetor throttle valves 21, 22, 23° 24 are arranged in each of these mixture branch passages 17, 18, 19, 20, respectively.
4 are connected to each other by a link mechanism and are controlled to open the valves at the same time, but this is simplified in FIG. 1 and shown as being fixed to a common throttle shaft 25.

第2図に示すように可変ベンチュリ型気化器本体13は
可動サクションピストン26と可動ニードル27並びに
計量ジェット28とを有し、よく知られているように可
動サクションピストン26はスロットル弁22の上流で
かつサクションピストン26下流の混合気通路15内の
負圧が常時一定員圧になるように上下動する。
As shown in FIG. 2, the variable venturi carburetor body 13 has a movable suction piston 26, a movable needle 27 and a metering jet 28, and as is well known, the movable suction piston 26 is located upstream of the throttle valve 22. In addition, the suction piston 26 moves up and down so that the negative pressure in the air-fuel mixture passage 15 downstream of the suction piston 26 is always maintained at a constant pressure.

各スロットル弁21.22,23,24の下方には機関
本体1の長手方向に延びる共通連通路29が設けられ、
この共通連通路29から各ヘリカル吸気ポート5a、5
b、5c、5d内に通ずる4本の連通枝路30a、30
b、30c。
A common communication passage 29 extending in the longitudinal direction of the engine body 1 is provided below each throttle valve 21, 22, 23, 24,
From this common communication path 29 to each helical intake port 5a, 5
Four communication branches 30a, 30 leading into b, 5c, 5d
b, 30c.

30dがシリンダヘッド9内に形成される。30d is formed within the cylinder head 9.

これら各連通枝路30a 、30b 、30c 、30
dは対応する吸気弁背面近傍のヘリカル吸気ポート5a
、5b、5c、5d内壁面上にヘリカル吸気ポート断面
の周辺方向に向けて接線状に開口し、しかも各連通枝路
30a 、30b、30c 。
Each of these communication branches 30a, 30b, 30c, 30
d is a helical intake port 5a near the back of the corresponding intake valve
, 5b, 5c, and 5d are opened tangentially toward the periphery of the cross section of the helical intake port on the inner wall surface, and each communication branch path 30a, 30b, 30c.

30dは各吸気弁開弁時に吸気弁とその弁座間に形成さ
れる間隙に指向される。
30d is directed toward the gap formed between the intake valve and its valve seat when each intake valve is opened.

第4図は機関運転時における各気筒の吸気ポー)5a、
5b、5c、5d内の圧力変化を示す。
Figure 4 shows the intake ports of each cylinder during engine operation) 5a,
5b, 5c, and 5d are shown.

なお、第4図において横軸θはクランク角度を示し、縦
軸は吸気弁かさ部背面近傍におけるヘリカル吸気ポート
内の圧力(以下、吸気ポート内圧力と称す)を示し、各
基準線A、B、C,Dは大気圧を示す。
In FIG. 4, the horizontal axis θ indicates the crank angle, and the vertical axis indicates the pressure in the helical intake port near the back surface of the intake valve bulk (hereinafter referred to as intake port pressure), and each reference line A, B , C, and D indicate atmospheric pressure.

また、曲線E、F、G、Hは各ヘリカル吸気ポート5a
、5b、5c、5d内における吸気ポート内圧力の変化
を示し、各矢印I、J。
In addition, curves E, F, G, and H are for each helical intake port 5a.
, 5b, 5c, and 5d, and each arrow I, J shows the change in the pressure inside the intake port.

K、Lは対応するヘリカル吸気ポートの各吸気弁3a、
3b、3c、3dの開弁期間を示す。
K and L are each intake valve 3a of the corresponding helical intake port,
3b, 3c, and 3d show the opening periods.

第4図におけ61番気筒に注目すると、吸気弁が開弁じ
た直後のクランク角度範囲Mにおいて吸気ポート内圧力
は正圧となり、次いでピストンが下降しているクランク
角度範囲Nにおいて吸気ポート内圧力は負圧となり、次
いでピストンが上昇を開始すると吸気ポート内圧力は再
び正圧となることがわかる。
Focusing on cylinder No. 61 in Fig. 4, the pressure inside the intake port becomes positive pressure in the crank angle range M immediately after the intake valve opens, and then the pressure inside the intake port becomes positive pressure in the crank angle range N when the piston is descending. It can be seen that the pressure in the intake port becomes negative pressure, and then when the piston starts to rise, the pressure in the intake port becomes positive pressure again.

従って第4図において1番気筒と2番気筒のクランク角
度範囲Pに注目すると、1番気筒の吸気ポー)5a内圧
力は負圧となっているのに対して2番気筒の吸気ポート
5b内圧力は正圧となっていることがわかる。
Therefore, if we pay attention to the crank angle range P of the No. 1 and No. 2 cylinders in Fig. 4, we can see that the pressure inside the intake port 5a of the No. 1 cylinder is negative, while the pressure inside the intake port 5b of the No. 2 cylinder is negative. It can be seen that the pressure is positive.

更に、2番気筒と4番気筒のクランク角度範囲Qにおい
ては2番気筒の吸気ポー)5b内圧力が負圧のとき4番
気筒の吸気ポー)5d内圧力は正圧となり、3番気筒と
4番気筒のクランク角度範囲Rにおいては4番気筒の吸
気ポー)5b内圧力が負圧であるとき3番気筒の吸気ポ
ート5C内圧力は正圧となり、1番気筒と3番気筒のク
ランク角度範囲Sにおいては3番気筒の吸気ポー)5c
内圧力が負圧であるとき1番気筒の吸気ポー)5a内圧
力が正圧になることもわかる。
Furthermore, in the crank angle range Q of the 2nd and 4th cylinders, when the pressure inside the 2nd cylinder's intake port 5b is negative, the pressure inside the 4th cylinder's intake port 5d becomes positive, and the pressure inside the 3rd cylinder In the crank angle range R of the 4th cylinder, when the pressure inside the 4th cylinder's intake port 5b is negative pressure, the pressure inside the 3rd cylinder's intake port 5C is positive pressure, and the crank angle of the 1st and 3rd cylinders is In the range S, the intake port of the 3rd cylinder) 5c
It can also be seen that when the internal pressure is negative, the internal pressure of the intake port 5a of the No. 1 cylinder becomes positive.

従がって1番気筒と2番気筒に注目すると、1番気筒に
おいて吸気行程の前半に1番気筒のへりカル吸気ポー)
5a内と2番気筒のヘリカル吸気ポー)5b内との圧力
差により吸気ポート5bより連通枝路30b、共通連通
路29並びに連通枝路30aを介してヘリカル吸気ポー
ト5a内に混合気が供給されることがわかる。
Therefore, if we pay attention to the 1st and 2nd cylinders, the helical intake port of the 1st cylinder will occur in the first half of the intake stroke in the 1st cylinder.
Due to the pressure difference between the inside of the helical intake port 5a and the inside of the helical intake port 5b of the second cylinder, the air-fuel mixture is supplied from the intake port 5b to the helical intake port 5a via the communication branch 30b, the common communication passage 29, and the communication branch 30a. I understand that.

同様に2番気筒の吸気行程時には4番気筒のヘリカル吸
気ポー)5bから連通枝路30d、共通連通路29、連
通枝路30bを介してヘリカル吸気ポー)Sb内に混合
気が供給され、4番気筒の吸気行程時には3番気筒のヘ
リカル吸気ポー)5cから4番気筒のヘリカル吸気ポー
)5d内に混合気が供給され、3番気筒の吸気行程時に
は1番気筒のヘリカル吸気ポー)5aから3番気筒のヘ
リカル吸気ポート5c内に混合気が供給される。
Similarly, during the intake stroke of the No. 2 cylinder, the air-fuel mixture is supplied from the helical intake port (Sb) of the No. 4 cylinder to the helical intake port (Sb) via the communication branch path 30d, the common communication path 29, and the communication branch path 30b. During the intake stroke of cylinder No. 3, the air-fuel mixture is supplied from the helical intake port of cylinder No. 3) 5c to the helical intake port of cylinder No. 4) 5d, and during the intake stroke of cylinder No. 3, the mixture is supplied from the helical intake port of cylinder No. 1) 5a. The air-fuel mixture is supplied into the helical intake port 5c of the third cylinder.

このようにして各気筒の吸気行程時には夫々対応する連
通枝路30a 、30b 、30c 、30dから各ヘ
ノカル吸気ポート5a、5b、5c、5d内に吸気ポー
ト内圧力差によって混合気が高速度で噴出することにな
る。
In this way, during the intake stroke of each cylinder, the air-fuel mixture is injected at high speed from the corresponding communication branches 30a, 30b, 30c, 30d into the respective henocal intake ports 5a, 5b, 5c, 5d due to the pressure difference within the intake ports. I will do it.

機関運転時、各気化器本体13.14において形成され
た混合気は各混合気通路15.16を介して各ヘリカル
吸気ポート5a、5b、5C15d内に供給される。
During engine operation, the mixture formed in each carburetor body 13.14 is supplied into each helical intake port 5a, 5b, 5C15d via a respective mixture passage 15.16.

今、2番気筒2bが吸気行程時であるとするとヘリカル
吸気ポー)5b内に流入した混合気はヘリカル吸気ポー
ト内壁面に沿って進行し、第3図において矢印Zで示す
ように旋回しつつ燃焼室10内に流入して燃焼室10内
に矢印Wで示すような旋回流を発生せしめる。
Now, assuming that the No. 2 cylinder 2b is in the intake stroke, the air-fuel mixture that has flowed into the helical intake port 5b advances along the inner wall surface of the helical intake port, turning as shown by arrow Z in Fig. 3. It flows into the combustion chamber 10 and generates a swirling flow as shown by the arrow W in the combustion chamber 10.

一方吸気行程時には前述したように連通枝路30bから
混合気がヘリカル吸気ポー)5b内に高速度で噴出する
On the other hand, during the intake stroke, as described above, the air-fuel mixture is ejected from the communication branch 30b into the helical intake port 5b at high speed.

更に前述したように連通枝路30bは吸気弁3bとその
弁座間に形成される間隙に指向されているので連通枝路
30bから噴出した混合気は該間隙を通って燃焼室10
内に噴出し、この噴出混合気によって燃焼室10内に発
生している旋回流Wは増勢されることになる。
Further, as described above, since the communication branch 30b is oriented toward the gap formed between the intake valve 3b and its valve seat, the air-fuel mixture ejected from the communication branch 30b passes through the gap and enters the combustion chamber 10.
The swirling flow W generated in the combustion chamber 10 is increased by this jetted air-fuel mixture.

その結果、燃焼室10内には強力な旋回流が発生するこ
とになる。
As a result, a strong swirling flow is generated within the combustion chamber 10.

各ヘリカル吸気ポート5a、5b、5c、5a間には機
関負荷に拘わらず圧力差が生ずるために機関負荷に拘わ
らず連通枝路30a、30b。
Since a pressure difference occurs between the helical intake ports 5a, 5b, 5c, and 5a regardless of the engine load, the communication branches 30a and 30b are connected regardless of the engine load.

30C,30dから混合気が噴出し、この噴出混合気に
よって燃焼室10内の旋回流Wが増勢されることになる
The air-fuel mixture is ejected from 30C and 30d, and the swirling flow W in the combustion chamber 10 is increased by this ejected air-fuel mixture.

また一般的に知られているように吸気ポートをヘリカル
状に形成することによって高速高負荷運転時における充
填効率が低下するが本発明では高速高負荷運転時であっ
ても多量の混合気が連通枝路30a 、30b 、30
c 、30dを介して各ヘリカル吸気ポー)5a*5b
j5C。
Furthermore, as is generally known, forming the intake port in a helical shape reduces the filling efficiency during high-speed, high-load operation, but in the present invention, a large amount of air-fuel mixture is communicated even during high-speed, high-load operation. Branch roads 30a, 30b, 30
c, each helical intake port via 30d) 5a*5b
j5C.

5d内に供給されるので充填効率の低下を回避すること
ができる。
Since the fuel is supplied within 5d, a decrease in filling efficiency can be avoided.

更に第1図並びに第2図に示されるように気化器スロッ
トル弁21.22,23゜24を各ヘリカル吸気ポート
の混合気入口部近傍に配置することによって燃焼室内か
らヘリカル吸気ポート内への吹返しによる正圧が減圧さ
れることなくそのまま保持されるので各連通枝管内の圧
力差は更に長期間に亘って大きな圧力差の状態下に保持
されることになり、斯くして一層多量の混合気が連通枝
路30a 、30b 、30c 、30dから各ヘリカ
ル吸気ポー)sa、5bjscj5d内に供給されるの
でむしろ充填効率が向上されることになる。
Furthermore, as shown in FIGS. 1 and 2, by arranging the carburetor throttle valves 21, 22, 23, and 24 near the air-fuel mixture inlet of each helical intake port, the airflow from the combustion chamber into the helical intake port is reduced. Since the positive pressure caused by the return is maintained as it is without being reduced, the pressure difference in each communicating branch pipe is maintained at a large pressure difference for an even longer period of time, and thus a larger amount of mixing is achieved. Since air is supplied from the communication branches 30a, 30b, 30c, and 30d into the respective helical intake ports)sa, 5bjscj5d, the filling efficiency is rather improved.

以上述べたようにヘリカル吸気ポートを用いたとしても
高速高負荷運転時における充填効率の低下は回避され、
またヘリカル吸気ポートにおいて混合気の旋回流を積極
的に形成すると共にこの旋回流によって生ずる燃焼室内
の旋回流が連通枝路から噴出する混合気によって増勢さ
れるために強力な旋回流を燃焼室内に発生せしめること
ができ、それによって高速高負荷運転時における高い充
填効率を確保しつつ特に低速低負荷並びに低速高負荷運
転時における燃焼速度を大巾に速めることができる。
As mentioned above, even if a helical intake port is used, a decrease in filling efficiency during high-speed, high-load operation can be avoided.
In addition, a swirling flow of the air-fuel mixture is actively formed at the helical intake port, and the swirling flow within the combustion chamber generated by this swirling flow is amplified by the air-fuel mixture jetting out from the communication branch, creating a strong swirling flow inside the combustion chamber. This makes it possible to significantly increase the combustion rate particularly during low speed, low load and low speed, high load operations while ensuring high charging efficiency during high speed, high load operation.

また、本発明では燃焼室内からヘリカル型吸気ポート内
への吹返しによる正圧が減圧するのを阻止するためにス
ロットル弁を吸気ポートの入口部に設ける必要があるが
これらスロットル弁は可変ベンチュリ型気化器のスロッ
トル弁の役割をも果している。
Furthermore, in the present invention, it is necessary to provide a throttle valve at the entrance of the intake port in order to prevent positive pressure from being blown back from the combustion chamber into the helical intake port, but these throttle valves are of the variable venturi type. It also acts as a throttle valve for the carburetor.

従って各可変ベンチュリ型気化器に対して夫々別個の新
たなスロットル弁を設ける必要がないので構造が簡単に
なるという利点がある。
Therefore, there is an advantage that the structure is simplified because there is no need to provide a separate new throttle valve for each variable venturi type carburetor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の平面図、第2図は第1
図の■−■線に沿ってみた断面側面図、第3図は第2図
のI−1線に沿ってみた断面図、第4図は各吸気ポート
内における圧力変化を示すグラフである。 3a、3b、3c、3d=吸気弁、4a、4b。 4c、4d−排気弁、5a 、 5b 、 5c 、
5d−・−吸気ポート、11.12・・・気化器ノ\ウ
ジング、13.14・・・気化器本体、21,22.2
3゜24・・・気化器スロットル弁、29・・・共通連
通路、30a 、30b、30c 、30d−一連連枝
路。
FIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
FIG. 3 is a cross-sectional side view taken along line I--1 in FIG. 2, and FIG. 4 is a graph showing pressure changes in each intake port. 3a, 3b, 3c, 3d = intake valve, 4a, 4b. 4c, 4d-exhaust valve, 5a, 5b, 5c,
5d--Intake port, 11.12... Carburetor housing, 13.14... Carburetor body, 21, 22.2
3゜24...Carburizer throttle valve, 29...Common communication passage, 30a, 30b, 30c, 30d--Series communication branch passage.

Claims (1)

【特許請求の範囲】[Claims] 1 各可変ベンチュリ型気化器が夫々少くとも一対のス
ロットル弁を具備し、各可変ベンチュリ型気化器の混合
気通路を少くとも一対の混合気枝通路に分岐して該混合
気枝通路をシリンダヘッド内に形成された対応する吸気
ポートに連結すると共に各混合気枝通路内に夫々上記ス
ロットル弁を配置し、各吸気ポートに対して該吸気ポー
トとは別個に連通枝路を設けて各連通枝路の一端部を吸
気弁かさ部背面近傍の吸気ポート内壁面上に開口せしめ
ると共Iこ各連通枝路の他端部を共通の連通路に連結し
、該共通連通路を上記連通枝路を介して吸気ポート内に
のみ連通せしめた多気筒内燃機関の吸気装置。
1. Each variable venturi type carburetor is provided with at least one pair of throttle valves, and the mixture passage of each variable venturi type carburetor is branched into at least one pair of mixture branch passages, and the mixture branch passage is connected to the cylinder head. The throttle valve is connected to a corresponding intake port formed in the air-fuel mixture branch passage, and the throttle valve is arranged in each mixture branch passage, and a communication branch passage is provided for each intake port separately from the intake port. One end of the passage is opened on the inner wall surface of the intake port near the back surface of the intake valve shank, and the other end of each communication branch is connected to a common communication passage, and the common communication passage is connected to the above-mentioned communication branch. An intake system for a multi-cylinder internal combustion engine that communicates only with the intake port through the intake port.
JP53097600A 1978-08-10 1978-08-10 Intake system for multi-cylinder internal combustion engine Expired JPS5828411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53097600A JPS5828411B2 (en) 1978-08-10 1978-08-10 Intake system for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53097600A JPS5828411B2 (en) 1978-08-10 1978-08-10 Intake system for multi-cylinder internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP56138613A Division JPS589255B2 (en) 1981-09-04 1981-09-04 Intake system for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5525536A JPS5525536A (en) 1980-02-23
JPS5828411B2 true JPS5828411B2 (en) 1983-06-15

Family

ID=14196717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53097600A Expired JPS5828411B2 (en) 1978-08-10 1978-08-10 Intake system for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351509U (en) * 1989-09-26 1991-05-20

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716853U (en) * 1980-06-25 1982-01-28
JPS57151028A (en) * 1981-03-12 1982-09-18 Yamaha Motor Co Ltd Intake control device for engine
JPS5828518A (en) * 1981-07-27 1983-02-19 Toyota Motor Corp Passage control device of helical suction port
JPS59110332U (en) * 1983-01-14 1984-07-25 株式会社新潟鐵工所 Diesel engine intake port device
JPS59201931A (en) * 1983-04-30 1984-11-15 Hino Motors Ltd Suction device for engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650102A (en) * 1979-09-27 1981-05-07 Shimadzu Corp Atmospheric gas generating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127113U (en) * 1976-03-25 1977-09-27
JPS52128808U (en) * 1976-03-26 1977-09-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650102A (en) * 1979-09-27 1981-05-07 Shimadzu Corp Atmospheric gas generating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351509U (en) * 1989-09-26 1991-05-20

Also Published As

Publication number Publication date
JPS5525536A (en) 1980-02-23

Similar Documents

Publication Publication Date Title
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
US4253432A (en) Intake system of an internal combustion engine of a counter-flow type
US4643136A (en) Inlet system for internal combustion engine
JPS5823224A (en) Helical type suction port
JPS589248B2 (en) Intake system for multi-cylinder internal combustion engine
US4261316A (en) Intake system of a multi-cylinder internal combustion engine
US4441464A (en) Intake system of a multi-cylinder internal combustion engine
JPS5848712A (en) Air inlet device of internal-combustion engine
US4303046A (en) Intake system of a multi-cylinder internal combustion engine
US4300500A (en) Intake system of a multi-cylinder internal combustion engine
JPS5828411B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPH0263092B2 (en)
JPS60233314A (en) Aspiration control device for internal-combustion engine
US4530325A (en) Suction system for internal combustion engine
JPS5840007B2 (en) Internal combustion engine intake system
US4380516A (en) Carburetor
JPS589256B2 (en) Intake system for multi-cylinder internal combustion engine
US4314529A (en) Intake system of a multi-cylinder internal combustion engine
JPS58135354A (en) Intake gas path device for engine
JPH021967B2 (en)
JPS589254B2 (en) Intake system for multi-cylinder internal combustion engine
JPH0320502Y2 (en)
JPS589255B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine