JPH0315779Y2 - - Google Patents

Info

Publication number
JPH0315779Y2
JPH0315779Y2 JP19783884U JP19783884U JPH0315779Y2 JP H0315779 Y2 JPH0315779 Y2 JP H0315779Y2 JP 19783884 U JP19783884 U JP 19783884U JP 19783884 U JP19783884 U JP 19783884U JP H0315779 Y2 JPH0315779 Y2 JP H0315779Y2
Authority
JP
Japan
Prior art keywords
intake
passage
independent
control valve
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19783884U
Other languages
Japanese (ja)
Other versions
JPS61116127U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19783884U priority Critical patent/JPH0315779Y2/ja
Publication of JPS61116127U publication Critical patent/JPS61116127U/ja
Application granted granted Critical
Publication of JPH0315779Y2 publication Critical patent/JPH0315779Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、各気筒と吸気拡大室(タンク)とを
互いに独立した吸気通路で接続して、吸気の動的
効果(吸気慣性効果)により出力の向上を図るよ
うにした多気筒エンジンの吸気装置の改良に関す
るものである。
[Detailed explanation of the invention] (Field of industrial application) This invention connects each cylinder and the intake expansion chamber (tank) with mutually independent intake passages, and utilizes the dynamic effect of intake air (intake inertia effect). The present invention relates to an improvement of an intake system for a multi-cylinder engine designed to improve output.

(従来の技術) 従来から、エンジンの吸気装置において、吸気
開始に伴つて生じる負圧波(負圧の圧力波)が吸
気通路上流側の大気または吸気拡大室への開口端
で反射され正圧波(正圧の圧力波)となつて吸気
ポート方向に戻されることを利用し、上記正圧波
が吸気弁の閉弁寸前に吸気ポートに達して吸気を
燃焼室に押し込むようにする、いわゆる吸気の慣
性効果によつて吸気の充填効率を高めるようにす
ることは知られている。このような技術を用いよ
うとする場合に、吸気通路の形状が一定である
と、吸気通路に生じる圧力波の振動周期と吸気弁
の開閉周期とがマツチングして吸気慣性効果が高
められるのは特定回転域に限られる。
(Prior Art) Conventionally, in the intake system of an engine, a negative pressure wave (pressure wave of negative pressure) generated with the start of intake is reflected at the opening end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave ( The positive pressure wave returns to the intake port as a positive pressure wave, and the positive pressure wave reaches the intake port just before the intake valve closes, pushing the intake air into the combustion chamber. This is the so-called intake inertia. It is known to increase the filling efficiency of intake air by means of effects. When using such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage matches the opening and closing period of the intake valve, and the intake inertia effect is enhanced. Limited to a specific rotation range.

このため、従来、特開昭56−115819号公報にみ
られるように、エンジンの回転数に応じて吸気通
路の長さ等を変えるようにし、例えば、各気筒別
の吸気通路を上流部で2叉に分岐させて長い通路
と短い通路とを形成し、これらの通路の上流端を
吸気拡大室等に開口させるとともに、短い通路に
制御弁を設けて、高回転域での制御弁を開くこと
により吸気通路の有効長を短縮するようにし(上
記公報の第6図参照)、こうして低回転域と高回
転域とでそれぞれ吸気の慣性効果を高めるように
した吸気装置が提案されている。
For this reason, conventionally, as seen in JP-A-56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is divided into two parts at the upstream part. A long passage and a short passage are formed by branching, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and a control valve is provided in the short passage, and the control valve is opened in a high rotation range. An intake device has been proposed in which the effective length of the intake passage is shortened (see FIG. 6 of the above-mentioned publication), thereby increasing the inertial effect of intake air in both the low-speed range and the high-speed range.

(考案が解決しようとする問題点) ところで、上記提案例の如く吸気拡大室(タン
ク)と各気筒とを互いに独立して接続する各独立
吸気通路の途中を上記吸気拡大室に連通する第2
通路を設けるとともに、該第2通路にエンジンの
運転状態に応じて開閉する制御弁を設けた多気筒
エンジンの吸気装置においては、上記第2通路を
開閉する制御弁の閉弁時(つまり低回転域時)に
は、各独立吸気通路を伝播する圧力波が第2通路
を介して吸気拡大室に洩れるのを防止すべく第2
通路の弁座部分に対して制御弁に適度なシール性
を必要とするのは勿論のこと、この閉弁状態の制
御弁下流の第2通路部分が各吸気通路における吸
気脈動を減衰させるデツドボリユームとなること
から、低回転域で有効な吸気慣性効果を得る上で
このデツドボリユームを可及的に小さくする必要
がある。
(Problems to be Solved by the Invention) By the way, as in the above-mentioned proposed example, there is a second intake passage that connects the intake expansion chamber (tank) and each cylinder independently of each other, and the middle of each independent intake passage communicates with the intake expansion chamber.
In an intake system for a multi-cylinder engine in which a passage is provided and a control valve that opens and closes in accordance with the operating state of the engine is provided in the second passage, when the control valve that opens and closes the second passage is closed (that is, at low engine speeds) In order to prevent the pressure waves propagating through each independent intake passage from leaking into the intake expansion chamber via the second passage,
Needless to say, the control valve needs to have an appropriate sealing property against the valve seat portion of the passage, and the second passage downstream of the control valve in the closed state has a dead volume that damps intake pulsation in each intake passage. Therefore, it is necessary to make this dead volume as small as possible in order to obtain an effective intake inertia effect in the low rotation range.

一方、上記制御弁の開弁時(つまり高回転域
時)には、吸気拡大室から各第2通路を介して各
独立吸気通路に吸気が流通抵抗少なくスムーズに
流れることが、高回転域で吸気慣性効果を有効に
発揮する上で望まれ、特に各第2通路の独立吸気
通路との接続部の形状に考慮する必要がある。
On the other hand, when the control valve is open (that is, in a high rotation range), the intake air flows smoothly from the intake expansion chamber to each independent intake passage via each second passage with little flow resistance. This is desired in order to effectively exhibit the intake inertia effect, and it is necessary to particularly consider the shape of the connecting portion of each second passage with the independent intake passage.

本考案はかかる要求を満たすべくなされたもの
で、その目的とするところは、各第2通路に対す
る制御弁の設置位置および該各第2通路の独立吸
気通路との接続部の形状を適切に設定することに
より、制御弁の適度なシール性を確保しながら、
制御弁の閉弁時に吸気脈動を減衰させるデツドボ
リユームを可及的に小さくするとともに、制御弁
の閉弁時に第2通路から独立吸気通路への吸気の
流れをスムーズなものとして、低回転域と高回転
域とでそれぞれ吸気慣性効果を有効に発揮させる
ことにある。
The present invention has been made to meet such requirements, and its purpose is to appropriately set the installation position of the control valve for each second passage and the shape of the connection part of each second passage with the independent intake passage. By doing so, while ensuring appropriate sealing performance of the control valve,
The dead volume that dampens intake pulsation when the control valve is closed is made as small as possible, and the flow of intake air from the second passage to the independent intake passage is made smooth when the control valve is closed. The aim is to effectively exert the intake inertia effect in each rotation range.

(問題点を解決するための手段) 上記の目的を達成するため、本考案の解決手段
は、タンク内部の少なくとも一つの空間と各気筒
とを互いに独立した気筒別の各独立吸気通路で接
続するとともに、該各独立吸気通路の途中をタン
ク内部の空間に連通する第2通路を設け、該各第
2通路にエンジンの運転状態に応じて開閉する制
御弁を設けた多気筒エンジンの吸気装置を対象と
する。これに対し、上記各制御弁を、第2通路の
独立吸気通路との接続部にその開弁状態で弁体が
独立吸気通路に張出すように設置する。さらに、
上記接続部の形状を、閉弁状態の制御弁と独立吸
気通路との間の間隔が独立吸気通路下流側で大き
く、かつこの下流側部分が滑らかなR状の曲面に
なるように設定する構成としたものである。
(Means for solving the problem) In order to achieve the above object, the solution of the present invention connects at least one space inside the tank and each cylinder through independent intake passages for each cylinder, which are independent from each other. In addition, a second passage is provided in the middle of each of the independent intake passages to communicate with a space inside the tank, and each of the second passages is provided with a control valve that opens and closes depending on the operating state of the engine. set to target. On the other hand, each of the control valves is installed at the connection portion of the second passage with the independent intake passage so that the valve body projects into the independent intake passage when the valve is open. moreover,
The shape of the connecting portion is set such that the distance between the closed control valve and the independent intake passage is large on the downstream side of the independent intake passage, and this downstream portion forms a smooth R-shaped curved surface. That is.

(作用) 上記の構成により、本考案では、エンジン回転
数が設定値未満の低回転域では、制御弁により各
第2通路を閉じておくと、各気筒から伝播する負
圧数が各独立吸気通路を経てタンクで正圧の圧力
波に反転して反射されるので、吸気慣性効果を得
るための通路長がタンクから各気筒までの比較的
長いものとなり、このことにより低回転域での吸
気の慣性効果が高められる。一方、エンジン回転
数が設定値以上の高回転域では、制御弁により各
第2通路を開くと、各気筒が各独立吸気通路途中
の第2通路を介してタンク内部の空間に連通し、
この経路を経て各気筒から伝播する負圧波が正圧
の圧力波に反転して反射されるこことになつて、
吸気慣性効果を得るための吸気通路の有効長が短
くなり、高回転域での吸気慣性効果が高められる
ことになる。
(Function) With the above configuration, in the present invention, when each second passage is closed by the control valve in the low engine speed range where the engine speed is less than the set value, the number of negative pressures propagating from each cylinder is reduced to each independent intake air. Since the positive pressure wave is reversed and reflected at the tank via the passage, the passage length from the tank to each cylinder is relatively long in order to obtain the intake inertia effect, and this makes the intake air flow in the low rotation range The inertial effect of On the other hand, in a high rotation range where the engine speed is higher than the set value, when each second passage is opened by the control valve, each cylinder communicates with the space inside the tank via the second passage in the middle of each independent intake passage.
The negative pressure waves propagating from each cylinder through this path are reversed and reflected into positive pressure waves, and
The effective length of the intake passage for obtaining the intake inertia effect is shortened, and the intake inertia effect in the high rotation range is enhanced.

その場合、上記制御弁が第2通路の独立吸気通
路との接続部にその閉弁時に独立吸気通路に張出
するように設置されていて、その閉弁時における
上記接続部の容積つまりデツドボリユームが可及
的に小さくなるようにしたので、低回転域におい
て各独立吸気通路での吸気脈動の減衰(圧力波の
減衰)を抑制することが可能となる。しかも、上
記接続部は、閉弁時の制御弁と独立吸気通路との
間の間隔が独立吸気通路下流側で大きく、かつこ
の下流側部分が滑らかなR(アール)状の曲面に
なるように設定されているので、上記制御弁の閉
弁時のシール性を良好に確保しながら、制御弁の
開弁時に第2通路から吸気がその接続部の下流側
部分に沿つて独立吸気通路に導かれ、該独立吸気
通路への吸気のスムーズな流入が可能となつて、
高回転的域での吸気の充填効率の向上が確保され
ることになる。
In that case, the control valve is installed at the connection part of the second passage with the independent intake passage so as to protrude into the independent intake passage when the valve is closed, and the volume of the connection part when the valve is closed, that is, the dead volume. Since it is made as small as possible, it is possible to suppress attenuation of intake pulsation (attenuation of pressure waves) in each independent intake passage in a low rotation range. Moreover, the above-mentioned connection part is designed so that the distance between the control valve and the independent intake passage when the valve is closed is large on the downstream side of the independent intake passage, and this downstream part forms a smooth R-shaped curved surface. This setting allows the intake air to be guided from the second passage to the independent intake passage along the downstream side of the connection part when the control valve is opened, while ensuring good sealing performance when the control valve is closed. This enables smooth intake air to flow into the independent intake passage,
This ensures an improvement in the intake air filling efficiency in the high rotation range.

(実施例) 以下、本考案の実施例について図面に基づいて
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第4図は本考案を4気筒4サイクルエ
ンジンに適用した場合の実施例を示す。同図にお
いて、1はシリンダブロツク2およびシリンダヘ
ツド3等からなるエンジン本体であつて、該エン
ジン本体1にはその長手方向に第1〜第4の4つ
の気筒4,4,…が直列状に形成されている。こ
の各気筒4にはそれぞれ燃焼室5が形成されてい
る。
1 to 4 show an embodiment in which the present invention is applied to a 4-cylinder, 4-stroke engine. In the figure, reference numeral 1 denotes an engine body consisting of a cylinder block 2, a cylinder head 3, etc. In the engine body 1, four cylinders 4, 4, 4, first to fourth, are arranged in series in the longitudinal direction. It is formed. A combustion chamber 5 is formed in each cylinder 4.

6は気筒別に互いに独立して設けられた独立吸
気通路であつて、該各独立吸気通路6は、シリン
ダヘツド3内に形成され独立吸気通路6の下流端
部を構成する吸気ポート7を介して各気筒4の燃
焼室5に開口している。また、8はエンジン長手
方向に平行に延びる略角筒形状のタンクよりなる
吸気拡大室であつて、該吸気拡大室8は仕切板9
によつて上下に仕切られて上側に比較的大きな容
積の第1容積室8aと下側に比較的小さな容積の
第2容積室8bとに区画されている。そして、上
記各独立吸気通路6,6…の上流端はそれぞれほ
ぼ同一通路長でもつて上記吸気拡大室8の第1容
積室8aに連通接続されている。該第1容積室8
aの一端面には外気を導入する吸気導入管10が
接続されていて、該吸気導入管10内には吸入空
気量を制御するスロツトル弁11が配設されてお
り、上記吸気導入管10により第1容積室8aに
導入された吸気を各独立吸気通路6を介して各気
筒4の燃焼室5に供給するようになされている。
また、上記吸気ポート7には吸気弁12が設けら
れている。
Reference numeral 6 denotes independent intake passages provided independently of each other for each cylinder, and each independent intake passage 6 is connected through an intake port 7 formed in the cylinder head 3 and constituting the downstream end of the independent intake passage 6. It opens into the combustion chamber 5 of each cylinder 4. Reference numeral 8 denotes an intake expansion chamber made of a substantially rectangular cylindrical tank extending parallel to the longitudinal direction of the engine.
It is partitioned vertically into a first volume chamber 8a having a relatively large volume on the upper side and a second volume chamber 8b having a relatively small volume on the lower side. The upstream ends of each of the independent intake passages 6, 6, . . . are connected to the first volume chamber 8a of the intake expansion chamber 8 with substantially the same passage length. The first volume chamber 8
An intake air introduction pipe 10 for introducing outside air is connected to one end surface of a, and a throttle valve 11 for controlling the amount of intake air is disposed inside the intake air introduction pipe 10. The intake air introduced into the first volume chamber 8a is supplied to the combustion chamber 5 of each cylinder 4 via each independent intake passage 6.
Further, the intake port 7 is provided with an intake valve 12 .

さらに、上記各独立吸気通路6の途中箇所から
第2通路13が分岐していて、該各第2通路1
3,13…の他端はそれぞれほぼ同一通路長でも
つて上記吸気拡大室8の第2容積室8bに連通接
続されており、このことから第2容積室8bによ
り第2通路13を介して各独立吸気通路6,6…
を相互に連通するようにしている。
Further, a second passage 13 branches off from a midway point of each of the independent intake passages 6, and each of the second passages 1
The other ends of 3, 13, . Independent intake passages 6, 6...
are made to communicate with each other.

また、上記各第2通路13にはそれぞれ第2通
路13を開閉する制御弁14が設けられており、
この各制御弁14は、その弁体14aが吸気拡大
室8長手方向と平行に延びるバルブシヤフト15
に一体的に連動可能に固定されていて、図示して
いないが、エンジン回転数検出手段等の出力を受
ける制御回路によりアクチユエータを介して開閉
制御され、上記第2容積室8bによる各独立吸気
通路6,6…相互間の連通をエンジン運転状態に
応じて制御し、エンジン回転数が設定値未満の低
回転域では閉じられ、エンジン回転数が設定値以
上の高回転域では開かれるように制御される。な
お、このようなエンジン回転数に応じた制御弁1
4の開閉作動は、少なくとも出力が要求される高
負荷時において行われるようにすればよく、低負
荷時には制御弁14が開丈態または閉状態に保た
れるようにしてもよい。
Further, each of the second passages 13 is provided with a control valve 14 that opens and closes the second passage 13,
Each control valve 14 has a valve shaft 15 whose valve body 14a extends parallel to the longitudinal direction of the intake expansion chamber 8.
Although not shown, the opening and closing of each independent intake passage by the second volume chamber 8b is controlled via an actuator by a control circuit that receives an output from an engine rotation speed detection means, etc. 6, 6... Control communication between them according to the engine operating state, so that they are closed in the low rotation range where the engine rotation speed is less than the set value, and are controlled to be opened in the high rotation range where the engine rotation speed is higher than the set value. be done. In addition, the control valve 1 according to such engine speed
The opening/closing operation of No. 4 may be performed at least during high loads where output is required, and the control valve 14 may be maintained in the open or closed state during low loads.

そして、このような吸気系システムにおいて、
16は、上記吸気拡大室8、各独立吸気通路6,
6…および各第2通路13,13…を形成するた
めの吸気系構造体であつて、該構造体16は、吸
気拡大室8(第1容積室8aおよび第2容積室8
b)を構成するタンク部17と、該タンク部17
のエンジン側とは反対側の側辺上部から側辺およ
び下辺にかけてタンク部17の周囲を迂回して延
び、かつその構成壁の一部つまり側壁および下壁
を利用して各独立吸気通路6,6…の上流側部分
6a,6a…をその各上流端がタンク部17(第
1容積室8a)側辺上部に開口するように一体的
に形成する一体吸気管部18,18…と、該各一
体吸気管部18,18…の下辺部からエンジン側
へ向かつて各気筒別に分岐して延び、各独立吸気
通路6,6…の下流側部分6b,6b…を形成す
る分岐吸気管部19,19…と、上記各一体吸気
管部18の分岐吸気管部19近傍においてタンク
部17(第2容積室8b)の構成壁のうちの下壁
を利用して各独立吸気通路6の途中を第2容積質
8bに連通する第2通路13を一体的に形成する
連通管部20,20…と、上記各分岐吸気管部1
9,19…の先端部を互いに連結するフランジ部
21とからなり、該フランジ部21にてエンジン
本体1に対し各分岐吸気管部19の独立吸気通路
下流側部分6bを各気筒4の吸気ポート7に合致
せしめた状態でボルト22,22…を側方から挿
入して締付けることによりエンジン本体1に固定
される。また、上記タンク部17のエンジン側の
側辺上部はエンジン側に膨出するように形成され
ており、第1容積室8aの容積を十分に確保する
よようにしている。
In such an intake system,
16 is the intake expansion chamber 8, each independent intake passage 6,
6... and each second passage 13, 13..., the structure 16 is an intake system structure for forming the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8).
b) The tank portion 17 constituting the tank portion 17
The independent intake passages 6, 17 extend around the tank part 17 from the upper part of the side opposite to the engine side to the side and lower sides, and utilize part of the constituent walls, that is, the side wall and the lower wall. integral intake pipe portions 18, 18, . A branch intake pipe section 19 extends from the lower side of each integrated intake pipe section 18, 18... toward the engine side and branches for each cylinder, forming the downstream portions 6b, 6b... of each independent intake passage 6, 6... , 19... and in the vicinity of the branched intake pipe section 19 of each integral intake pipe section 18, the lower wall of the constituent walls of the tank section 17 (second volume chamber 8b) is used to extend the middle of each independent intake passage 6. Communication pipe parts 20, 20... that integrally form the second passage 13 communicating with the second volumetric mass 8b, and each branch intake pipe part 1
9, 19..., and a flange portion 21 that connects the tip portions of each branch intake pipe portion 19 to the engine body 1 at the flange portion 21. 7, the bolts 22, 22... are inserted from the side and tightened to be fixed to the engine body 1. Further, the upper side of the tank portion 17 on the engine side is formed so as to bulge toward the engine side, so as to ensure a sufficient volume of the first volume chamber 8a.

また、上記各分岐吸気管部19の独立吸気通路
下流側部分6bおよび各吸気ポート7は、斜め上
方から燃焼室5に向つてほぼ直線状に延びて燃焼
室5に開口するように形成されている。そして、
該各分岐吸気管部19の独立吸気通路下流側部分
6bの下流端近傍上部には噴射弁装着孔23が形
成されており、燃料噴射弁24はその先端噴射口
部がシールリング23aを介して装着孔23に挿
入されて固定されている。この装着孔23及び燃
料噴射弁24の取付方向は該噴射弁24からの燃
料が燃焼室5の吸気弁12に向つて噴射されるよ
うに装着されていて、各燃料噴射弁24,24…
はエンジン長手方向に平行に配設された燃料供給
管25に連通接続されている。このことにより、
燃料噴射弁24は分岐吸気管部19にほぼ沿つて
寝た状態で取付けられることとなり、該燃料噴射
弁24の中心線の延長線l上に上記吸気拡大室8
(タンク部17)が燃料噴射弁24および燃料供
給管25に近接して位置することになる。
Further, the downstream side portion 6b of the independent intake passage and each intake port 7 of each of the branched intake pipe portions 19 are formed to extend in a substantially straight line from obliquely upward toward the combustion chamber 5 and open into the combustion chamber 5. There is. and,
An injection valve mounting hole 23 is formed in the upper part near the downstream end of the downstream side portion 6b of the independent intake passage of each branch intake pipe section 19, and the fuel injection valve 24 has its tip injection port inserted through a seal ring 23a. It is inserted into the mounting hole 23 and fixed. The installation direction of the mounting hole 23 and the fuel injection valve 24 is such that the fuel from the injection valve 24 is injected toward the intake valve 12 of the combustion chamber 5, and each fuel injection valve 24, 24...
is connected to a fuel supply pipe 25 arranged parallel to the longitudinal direction of the engine. Due to this,
The fuel injection valve 24 is installed in a lying position almost along the branch intake pipe section 19, and the intake expansion chamber 8 is located on the extension line l of the center line of the fuel injection valve 24.
(Tank portion 17) is located close to fuel injection valve 24 and fuel supply pipe 25.

さらに、上記各連通管部20の第2通路13に
制御弁14が配設されること、および吸気拡大室
8(タンク部17)が燃料噴射弁24の中心延長
線l上に位置することから、上記吸気系構造体1
6は、そのタンク部17において、上記中心延長
線lよりも下側の位置でかつ各第2通路13,1
3を含む吸気拡大室8の第2容積室8bの部分と
吸気拡大室8の第1容積室8aとの間としての上
記仕切板9の位置で吸気拡大室8の長手方向に沿
つた分割面によつて上下に分割されて形成されて
いて、タンク部17の上半部および各一体吸気管
部18,18の上半部が一体成形された上側分割
体16aと、タンク部17の下半部、一体吸気管
部18,18…の下半部、各分岐吸気管部19,
19…、各連通管部20,20…およびフランジ
部21が一体形成された下側分割体16bとから
なり、両分割体16a,16bが上記仕切板9を
介して接合され、ボルト26,26…を下方から
挿入して締付けることにより気密的に結合されて
なる。
Furthermore, since the control valve 14 is disposed in the second passage 13 of each communication pipe section 20 and the intake expansion chamber 8 (tank section 17) is located on the central extension line l of the fuel injection valve 24, , the above-mentioned intake system structure 1
6 is located at a position below the center extension line 1 in the tank portion 17 and is connected to each of the second passages 13, 1.
A dividing plane along the longitudinal direction of the intake expansion chamber 8 at the position of the partition plate 9 between the second volume chamber 8b of the intake expansion chamber 8 including the second volume chamber 8b and the first volume chamber 8a of the intake expansion chamber 8. The upper divided body 16a is formed by being divided into upper and lower parts by the upper and lower parts, and the upper half of the tank part 17 and the upper half of each integral intake pipe part 18, 18 are integrally molded, and the lower half of the tank part 17. part, the lower half part of the integral intake pipe part 18, 18..., each branch intake pipe part 19,
19..., each communicating tube part 20, 20... and a lower divided body 16b integrally formed with a flange part 21, both divided bodies 16a, 16b are joined via the partition plate 9, and bolts 26, 26 ... are inserted from below and tightened to form an airtight connection.

加えて、上記吸気系構造体12の各連通管部2
0において、上記各制御弁14は、第2通路13
の独立吸気通路6との接続部27に、独立吸気通
路6側に近接して第1図で仮想線で示す如くその
開弁状態で弁体14aのほぼ下半部が独立吸気通
路6に張出すように設置されている。また、上記
各第2通路13は第1図に示す如く独立吸気通路
6に対してその中心線pが90゜より小さい鋭角の
所定角度θでもつて交差するように連通形成され
ている。さらに、上記各第2通路13の接続部2
7の形状は、制御弁14の閉弁時に着座する第2
通路13の弁座部分13aから独立吸気通路6ま
での間隔、つまり閉弁状態の制御弁14と独立吸
気通路6との間の間隔が独立吸気通路6に対して
上流側部分27aで小さく下流側部分27bで大
きくなるように設定されているとともに、この下
流側部分27bが大きな曲率半径でもつて滑らか
なR(アール)状の曲面になるように設定されて
いる。
In addition, each communication pipe portion 2 of the intake system structure 12
0, each of the control valves 14 is connected to the second passage 13.
As shown by the imaginary line in FIG. 1, substantially the lower half of the valve body 14a is in tension with the independent intake passage 6 when the valve body 14a is in the open state, as shown by the imaginary line in FIG. It is set up to come out. Further, as shown in FIG. 1, each of the second passages 13 is formed in communication with the independent intake passage 6 so that its center line p intersects with the independent intake passage 6 at a predetermined acute angle θ smaller than 90°. Furthermore, the connecting portion 2 of each of the second passages 13 is
7 is the shape of the second seat seated when the control valve 14 is closed.
The distance from the valve seat portion 13a of the passage 13 to the independent intake passage 6, that is, the interval between the control valve 14 in the closed state and the independent intake passage 6, is smaller in the upstream portion 27a than the independent intake passage 6, and is on the downstream side. The downstream portion 27b is set to have a large radius of curvature and a smooth R-shaped curved surface.

尚、第4図に詳示するように、上記タンク部1
7(第2容積室8b)の下壁には、各第2通路1
3の第2容積室8bへの開口部間および両端部に
制御弁14のバルブシヤフト15を回転自在に支
承するボス部28,28…が一体に形成されてい
るとともに、上記各開口部周囲つまり制御弁14
の弁体14aが着座する弁座部分に上記各ボス部
28,28を一連に連続させるように環状に隆起
するリブ部29,29…が一体に形成されてお
り、このリブ部29,29…を介して一連に連な
るボス部28,28…によつて吸気拡大室8(タ
ンク部17)のエンジン長手方向の剛性を増大さ
せるようにしている。また、第4図に示す如く上
記第2通路13は第2容積室8b側からドリルで
穴明け加工されるが、この第2通路13の独立吸
気通路との接続部27を滑らかなR部に形成し
て、第2通路13の通路断面積の変化を小さくか
つ緩かなものに抑え、第2容積室8bから第2通
路13を介しての独立吸気通路6への流通抵抗お
よびその変化を小さく抑えるようにしている。
Incidentally, as shown in detail in FIG. 4, the tank section 1
7 (second volume chamber 8b), each second passage 1
Boss portions 28, 28, . Control valve 14
Rib portions 29, 29... which protrude in an annular shape so as to connect the boss portions 28, 28 in series are integrally formed on the valve seat portion on which the valve body 14a is seated, and the rib portions 29, 29... The rigidity of the intake expansion chamber 8 (tank section 17) in the longitudinal direction of the engine is increased by the boss sections 28, 28, . Further, as shown in FIG. 4, the second passage 13 is drilled from the second volume chamber 8b side, and the connection part 27 of the second passage 13 with the independent intake passage is formed into a smooth rounded part. This structure suppresses the change in the passage cross-sectional area of the second passage 13 to a small and gentle one, and reduces the flow resistance from the second volume chamber 8b to the independent intake passage 6 via the second passage 13 and its change. I'm trying to keep it down.

次に、上記実施例の作用について述べると、各
制御弁14が閉じて第2通路13の閉塞によつて
第2容積室8bによる各独立吸気通路6,6…相
互間の連通が遮断されてる状態では、各気筒4の
吸気行程で生じる負圧波が第1容積室8aまで伝
播されてここで反射され、つまり比較的長い通路
を通して上記負圧波およびその反射波が伝播する
ことにより、低回転域においてこのような圧力波
の振動周期が吸気弁開閉周期にマツチングするこ
とになり、低回転域での吸気の滑性効果が高めら
れて、吸気充填効率が高められる。一方、上記各
制御弁14が開かれ第2通路13が開放されて、
第2容積室8bにより各独立吸気通路6,6…相
互間が連通している状態では、各気筒4の吸気行
程で生じる負圧波が上記第2通路13を介して第
2容積室8bで反射されてこの負圧波および反射
波の伝播に供される通路長さが短くなることによ
り、高回転域で吸気慣性効果が高められるととも
に、この運転域では他の気筒から伝播される圧力
波も第2容積室8bを介して有効に作用すること
になり、高回転域での充填効率が大幅に高められ
る。従つて、少なくとも高負荷時に、上記低回転
域と高回転域との吸気慣性効果が得られる各回転
数の中間回転数に相当する所定回転数を境に、こ
れより低回転側で制御弁14を閉じ、これより高
回転側で制御弁14を開くようにしておくことに
より、全回転域で吸気充填効率が高められて出力
を向上させることができる。特に、高回転域での
吸気充填効率は、従来のように単に吸気通路を短
縮させて慣性効果を高めるようにした場合と比べ
ても、気筒間の圧力伝播作用でより一層高められ
ることとなる。
Next, to describe the operation of the above embodiment, each control valve 14 closes and the second passage 13 is closed, thereby cutting off communication between the independent intake passages 6, 6, . . . by the second volume chamber 8b. In this state, the negative pressure waves generated during the intake stroke of each cylinder 4 are propagated to the first volume chamber 8a and reflected there. In other words, the negative pressure waves and their reflected waves propagate through a relatively long passage, so that the low rotation range The oscillation cycle of such pressure waves matches the intake valve opening/closing cycle, thereby increasing the smoothness of the intake air in the low rotation range and increasing the intake air filling efficiency. On the other hand, each of the control valves 14 is opened and the second passage 13 is opened,
When the independent intake passages 6, 6... are in communication with each other through the second volume chamber 8b, negative pressure waves generated during the intake stroke of each cylinder 4 are reflected at the second volume chamber 8b via the second passage 13. By shortening the length of the passage provided for the propagation of negative pressure waves and reflected waves, the intake inertia effect is enhanced in the high rotation range, and in this operating range, the pressure waves propagated from other cylinders are also This effectively acts through the two-volume chamber 8b, greatly increasing the filling efficiency in the high rotation range. Therefore, at least when the load is high, the control valve 14 is activated on the lower rotation side after a predetermined rotation speed corresponding to the intermediate rotation speed between the respective rotation speeds at which the intake inertia effect between the low rotation range and the high rotation range is obtained. By closing the control valve 14 and opening the control valve 14 at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range and the output can be improved. In particular, the intake air filling efficiency in the high rotation range can be further improved by the pressure propagation effect between the cylinders, compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに
適当な第1および第2容積室8a,8bの大きさ
としては、第1容積室8aは排気量の0.5倍以上
の容量とし、第2容積室8bは排気量の1.5倍以
下の容量としておくことが望ましい。さらに、上
記第2容積室8bは第1容積室8aよりも容量を
小さくし、かつ第2容積室8bの断面積は各独立
吸気通路6の断面積よりも大きくしておくことが
望ましい。
The sizes of the first and second volume chambers 8a and 8b that are suitable for effectively exerting the above-mentioned effects are such that the first volume chamber 8a has a capacity of 0.5 times or more of the displacement, and the second volume It is desirable that the capacity of the chamber 8b is 1.5 times or less than the exhaust volume. Further, it is desirable that the second volume chamber 8b has a smaller capacity than the first volume chamber 8a, and that the cross-sectional area of the second volume chamber 8b is larger than the cross-sectional area of each independent intake passage 6.

そして、この場合、吸気系構造体16における
吸気拡大室8(第1容積室8aおよび第2容積室
8b)を構成するタンク部17と各独立吸気通路
6の上流側部分6aを構成する一体吸気管部18
と各独立吸気通路6の下流側部分6bを構成する
分岐吸気管部19と各第2通路13を構成する連
通管部20とによつて、各独立吸気通路6が吸気
拡大室8の周囲に迂回しながらかつ吸気拡大室8
(タンク部17)の構成壁の一部を利用して一体
的に形成されているとともに、各第2通路13が
吸気拡大室8(第2容積室8b)の構成壁の一部
と一体的に形成されているので、上記独立吸気通
路6の所要長さおよび吸気拡大室8の第1および
第2容積室8a,8bの各所要容積を得るに当つ
て、これら吸気系をコンパクトに小型のものに形
成することができ、よつて限られたスペース(エ
ンジンルーム)内で上記所要長さおよび所要容積
を十分に確保することができ、車載性の向上を図
ることができる。
In this case, the tank portion 17 that constitutes the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8b) in the intake system structure 16 and the integrated intake that constitutes the upstream portion 6a of each independent intake passage 6 Pipe part 18
The branch intake pipe section 19 that constitutes the downstream portion 6b of each independent intake passage 6 and the communication pipe section 20 that constitutes each second passage 13 allow each independent intake passage 6 to extend around the intake expansion chamber 8. While detouring and intake expansion chamber 8
(tank part 17), and each second passage 13 is integrally formed with a part of the wall that constitutes the intake expansion chamber 8 (second volume chamber 8b). Therefore, in order to obtain the required length of the independent intake passage 6 and the required volumes of the first and second volume chambers 8a and 8b of the intake expansion chamber 8, these intake systems can be made compact and small. Therefore, the above-mentioned required length and required volume can be sufficiently secured within a limited space (engine room), and the vehicle mountability can be improved.

また、この場合、燃料噴射弁24が上記分岐吸
気管部19の下流端近傍つまり独立吸気通路6の
下流側においてその噴射燃料をその霧化を良好に
しながら燃焼室5に応答性良く供給すべく燃焼室
5に向けて装着されている関係上、該燃料噴射弁
24の中心延長線l上に近接して吸気系構造体1
6のタンク部17(吸気拡大室8)が位置するこ
と、および上記各第2通路13に制御弁14を配
設することが必要である。そのため、本例では、
上記吸気系構造体16はそのタンク部17におい
て上記中心延長線lよりも下側即ち分岐吸気管部
19側の位置でかつ仕切板9の位置で吸気拡大室
8の長手方向に沿つた分割面で上下に上側分割体
16aと下側分割体16bとに分割され両分割体
16a,16bが仕切板9を介して結合されてな
るので、下側分割体10bをそのフランジ部21
にてエンジン本体1に側方からのボルト22によ
る締付けにより取付けたのち、該下側分割体16
bの各分岐吸気管部19の噴射弁装着孔23に燃
料噴射弁24を中心延長線l方向から挿入し燃料
供給管25を下側分割体16bに固定することに
よつて各燃料噴射弁24を取付けるとともに、下
側分割体16bの各連通管部20の第2通路13
にその上方から制御弁14の弁体14aを挿入し
てバルブシヤフト15に固定し、しかる後上記下
側分割体16bに対して仕切板9を介在させて上
側分割体16aを接合して下方からのボルト26
の締付けにより両者16a,16bを一体に結合
することによつて、良好な成形性を確保し、かつ
上側および下側分割体16a,16bの組付けを
容易に行い得るのは勿論のこと、制御弁14およ
び燃料噴射弁24の組付けを容易に行うことがで
き、良好な組付け性を確保することができる。
Further, in this case, the fuel injection valve 24 is arranged near the downstream end of the branched intake pipe section 19, that is, on the downstream side of the independent intake passage 6, in order to supply the injected fuel to the combustion chamber 5 with good responsiveness while improving its atomization. Since the fuel injector 24 is mounted facing the combustion chamber 5, the intake system structure 1 is located close to the central extension line l of the fuel injector 24.
It is necessary that the tank portion 17 (intake expansion chamber 8) of No. 6 be located therein, and that the control valve 14 be disposed in each of the second passages 13. Therefore, in this example,
The intake system structure 16 has a dividing surface along the longitudinal direction of the intake expansion chamber 8 at a position below the center extension line 1, that is, on the side of the branch intake pipe section 19 in the tank section 17, and at the position of the partition plate 9. Since the upper and lower divided bodies 16a and 16b are vertically divided into an upper divided body 16a and a lower divided body 16b, and both divided bodies 16a and 16b are connected via the partition plate 9, the lower divided body 10b is
After attaching to the engine body 1 by tightening the bolts 22 from the side, the lower divided body 16
Each fuel injection valve 24 is inserted into the injection valve mounting hole 23 of each branch intake pipe portion 19 of b from the direction of the center extension line l, and the fuel supply pipe 25 is fixed to the lower division body 16b. At the same time, the second passage 13 of each communication pipe portion 20 of the lower divided body 16b is attached.
The valve body 14a of the control valve 14 is inserted from above and fixed to the valve shaft 15, and then the upper divided body 16a is joined to the lower divided body 16b with the partition plate 9 interposed therebetween, and then inserted from below. bolt 26
By joining the two parts 16a and 16b together by tightening, it is possible to ensure good formability and to easily assemble the upper and lower divided bodies 16a and 16b. The valve 14 and the fuel injection valve 24 can be easily assembled, and good assembly performance can be ensured.

しかも、上記上側分割体16aと下側分割体1
6bとの結合は、下方からのボルト26の締付け
によつて行われるので、その良好な組付け性を確
保しながら、上述の如くタンク部17(吸気拡大
室8)におけるエンジン側の側辺上部の膨出形成
が可能となつて、吸気拡大室8の特に第1容積室
8aの容積を十分に確保できる利点もある。ま
た、上記第2容積室8bは吸気系構造体16のタ
ンク部17を仕切板9で上下に分割することによ
つて第1容積室8aに並設され、第1容積室8a
の構成壁の一部(仕切板9)を共用して形成され
ているので、上記吸気系のコンパクト化を一層図
ることができる。
Moreover, the upper divided body 16a and the lower divided body 1
6b is achieved by tightening the bolt 26 from below, while ensuring good assemblability, the upper part of the side of the tank part 17 (intake expansion chamber 8) on the engine side is secured as described above. There is also the advantage that a sufficient volume of the intake expansion chamber 8, particularly the first volume chamber 8a, can be secured. Further, the second volume chamber 8b is arranged in parallel with the first volume chamber 8a by dividing the tank portion 17 of the intake system structure 16 into upper and lower parts with a partition plate 9, and is arranged in parallel with the first volume chamber 8a.
Since a part of the constituent wall (partition plate 9) is shared, the intake system can be made more compact.

さらに、上記各制御弁14は、第2通路13の
独立吸気通路6との接続部27にその開弁状態で
弁体14aが独立吸気通路6に張出すように設置
されていることにより、その閉弁時に独立吸気通
路6に近接した状態にあつて接続部27の容積つ
まりデツドボリユームが小さいものとなる。この
ことにより、制御弁14の閉じている低回転域に
おいて、独立吸気通路6での吸気脈動が減衰する
のが小さく抑えられて、圧力波の減衰を抑制する
ことができるので、上述の低回転域での吸気慣性
効果を低下させることなく有効に発揮させること
ができる。
Further, each of the control valves 14 is installed at the connecting portion 27 of the second passage 13 with the independent intake passage 6 so that the valve body 14a extends into the independent intake passage 6 when the valve is open. When the valve is closed, the volume of the connecting portion 27, that is, the dead volume, is small when the connecting portion 27 is in a state close to the independent intake passage 6. As a result, in the low rotation range where the control valve 14 is closed, the intake pulsation in the independent intake passage 6 is suppressed from being attenuated, and the attenuation of pressure waves can be suppressed. It is possible to effectively utilize the intake inertia effect in the region without reducing it.

また、上記各第2通路13は独立吸気通路6に
対して鋭角の所定角度θでもつて連通していると
ともに、該第2通路13の独立吸気通路6との接
続部27は閉弁状態の制御弁14と独立吸気通路
6との間の間隔が独立吸気通路6に対して下流側
部分27bで大きく、かつこの下流側部分27b
が滑らかなR状の曲面に形成されているので、制
御弁14が開いている高回転域において、第2容
積室8bからの吸気が第2通路13および接続部
27特にその下流側部分27に沿つて独立吸気通
路6にスムーズに導入され、第2通路13から独
立吸気通路6への吸気の流れがスムーズとなり、
よつて高回転域での吸気慣性効果が有効に発揮さ
れて吸気の充填効率の向上を確保することができ
る。
Further, each of the second passages 13 communicates with the independent intake passage 6 at an acute predetermined angle θ, and the connection portion 27 of the second passage 13 with the independent intake passage 6 is controlled to close the valve. The distance between the valve 14 and the independent intake passage 6 is larger in the downstream portion 27b than the independent intake passage 6, and
is formed into a smooth R-shaped curved surface, so that in the high rotation range when the control valve 14 is open, the intake air from the second volume chamber 8b flows into the second passage 13 and the connecting portion 27, especially the downstream portion 27 thereof. The intake air is smoothly introduced into the independent intake passage 6 along the line, and the flow of intake air from the second passage 13 to the independent intake passage 6 is smooth.
Therefore, the intake inertia effect in the high rotation range is effectively exhibited, and improvement in intake air filling efficiency can be ensured.

尚、本考案は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記実施例の如く吸気拡大室8を第
1容積室8aと第2容積室8bとに区画して低回
転域と高回転域とでそれぞれ吸気慣性効果を得る
とともに、特に高回転域で気筒相互間の圧力波の
伝播により吸気の充填効率を一層高めるようにし
た吸気系の他に、第5図に示すように吸気拡大室
8を仕切板9で仕切らずに従来例と同様に単に低
回転域と高回転域とでそれぞれ吸気慣性効果を高
めるようにした吸気系、あるいは上記実施例にお
ける仕切板9に上下の第1容積室8aと第2容積
室8bとを連通する連通孔を設けて、さらに低回
転域で上下の両容積室8a,8b間での吸気圧力
振動を利用して吸気の充填効率を一層高めるよう
にした吸気系に対しても適用可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, as in the above embodiment, the intake expansion chamber 8 is divided into a first volume chamber 8a and a second volume chamber 8b to obtain intake inertia effects in the low rotation range and high rotation range, and particularly in the high rotation range. In addition to the intake system that further increases the filling efficiency of intake air by propagating pressure waves between cylinders, as shown in FIG. An intake system that increases the intake inertia effect in the low rotation range and high rotation range, or a communication hole in the partition plate 9 in the above embodiment that communicates the upper and lower first volume chamber 8a and second volume chamber 8b. The present invention can also be applied to an intake system in which the intake air filling efficiency is further increased by utilizing intake air pressure vibration between the upper and lower volume chambers 8a and 8b in a low rotation range.

また、本考案は以上の実施例の如く4気筒エン
ジンに限らず、他の多気筒エンジン、例えば5気
筒エンジンや6気筒エンジンにも適用することが
できるのは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the four-cylinder engine as in the embodiments described above, but can also be applied to other multi-cylinder engines, such as five-cylinder engines and six-cylinder engines.

(考案の効果) 以上説明したように、本考案によれば、タンク
内部の少なくとも一つの空間から各気筒に至る独
立吸気通路とは別に、各独立吸気通路の途中をタ
ンク内部の空間に連通する第2通路を制御弁で開
閉して、低回転域と高回転域とでそれぞれ吸気慣
性効果を得るようにした多気筒エンジンの吸気装
置において、上記第2通路の独立吸気通路との接
続部に上記制御弁をその開弁時に弁体が独立吸気
通路に張出するように設置するとともに、上記接
続部の形状を閉弁状態の制御弁と独立吸気通路と
の間の間隔が独立吸気通路下流側で大きく、かつ
この下流側部分が滑らかなR状の曲面になるよう
に設定したので、制御弁の閉弁時のシール性を良
好に確保しながら、制御弁の閉弁時に接続部の容
積つまりデツドボリユームを可及的に小さくして
低回転域での圧力波の減衰を抑制することができ
るともに、制御弁の開弁時に第2通路からの独立
吸気通路への吸気の流れをスムーズにすることが
でき、よつて低回転域と高回転域とでの吸気慣性
効果の発揮を有効に行うことができるものであ
る。
(Effects of the invention) As explained above, according to the invention, in addition to the independent intake passages leading from at least one space inside the tank to each cylinder, the middle of each independent intake passage communicates with the space inside the tank. In an intake system for a multi-cylinder engine in which the second passage is opened and closed by a control valve to obtain an intake inertia effect in a low rotation range and a high rotation range, the second passage is connected to the independent intake passage. The above-mentioned control valve is installed so that the valve body protrudes into the independent intake passage when the valve is opened, and the shape of the above-mentioned connection part is changed so that the distance between the control valve in the closed state and the independent intake passage is adjusted to the downstream side of the independent intake passage. Since the downstream part is set to have a smooth R-shaped curved surface, it ensures good sealing performance when the control valve is closed, while reducing the volume of the connection part when the control valve is closed. In other words, it is possible to reduce the dead volume as much as possible to suppress the attenuation of pressure waves in the low rotation range, and also to smooth the flow of intake air from the second passage to the independent intake passage when the control valve is opened. Therefore, the intake inertia effect can be effectively exerted in the low rotation range and the high rotation range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本考案の実施例を示し、第1
図は第3図の−線における縦断側面図、第2
図は第3図の−線における縦断側面図、第3
図は一部破断した平面図、第4図は第1図の−
線における拡大断面図である。第5図は他の実
施例を示す第1図相当図である。 1……エンジン本体、4……気筒、6……独立
吸気通路、8……吸気拡大室、8a……第1容積
室、8b……第2容積室、13……第2通路、1
4……制御弁、16……吸気系構造体、17……
タンク部、18……一体吸気管部、19……分岐
吸気管部、20……連通管部、27……接続部、
27b……下流側部分。
1 to 4 show embodiments of the present invention.
The figure is a longitudinal sectional side view taken along the - line in Figure 3.
The figure is a longitudinal sectional side view taken along the - line in Figure 3.
The figure is a partially cutaway plan view, and Figure 4 is the same as Figure 1.
FIG. FIG. 5 is a diagram corresponding to FIG. 1 showing another embodiment. 1... Engine body, 4... Cylinder, 6... Independent intake passage, 8... Intake expansion chamber, 8a... First volume chamber, 8b... Second volume chamber, 13... Second passage, 1
4... Control valve, 16... Intake system structure, 17...
Tank part, 18... Integral intake pipe part, 19... Branch intake pipe part, 20... Communication pipe part, 27... Connection part,
27b...downstream part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] タンク内部の少なくとも一つの空間と各気筒と
を互いに独立した気筒別の各独立吸気通路で接続
するとともに、該各独立吸気通路の途中をそれぞ
れタンク内部の空間に連通する第2通路を設け、
該各第2通路にエンジンの運転状態に応じて開閉
する制御弁を設けた多気筒エンジンの吸気装置に
おいて、上記各制御弁は、第2通路の独立吸気通
路との接続部にその開弁状態で弁体が独立吸気通
路に張出すように設置されているとともに、上記
接続部の形状は、閉弁状態の制御弁と独立吸気通
路との間の間隔が独立吸気通路下流側で大きく、
かつこの下流側部分が滑らかなR状の曲面になる
ように設定されていることを特徴とする多気筒エ
ンジンの吸気装置。
Connecting at least one space inside the tank and each cylinder through independent intake passages for each cylinder that are independent from each other, and providing a second passage that communicates the middle of each independent intake passage with the space inside the tank,
In the intake system for a multi-cylinder engine in which each of the second passages is provided with a control valve that opens and closes depending on the operating state of the engine, each of the control valves has an open state at the connection portion of the second passage with the independent intake passage. The valve body is installed so as to protrude into the independent intake passage, and the shape of the connection part is such that the distance between the control valve in the closed state and the independent intake passage is large on the downstream side of the independent intake passage.
An intake system for a multi-cylinder engine, characterized in that the downstream portion thereof is set to have a smooth R-shaped curved surface.
JP19783884U 1984-12-29 1984-12-29 Expired JPH0315779Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19783884U JPH0315779Y2 (en) 1984-12-29 1984-12-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19783884U JPH0315779Y2 (en) 1984-12-29 1984-12-29

Publications (2)

Publication Number Publication Date
JPS61116127U JPS61116127U (en) 1986-07-22
JPH0315779Y2 true JPH0315779Y2 (en) 1991-04-05

Family

ID=30756344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19783884U Expired JPH0315779Y2 (en) 1984-12-29 1984-12-29

Country Status (1)

Country Link
JP (1) JPH0315779Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595648B2 (en) * 2005-04-20 2010-12-08 トヨタ自動車株式会社 Variable intake system

Also Published As

Publication number Publication date
JPS61116127U (en) 1986-07-22

Similar Documents

Publication Publication Date Title
JPH0315779Y2 (en)
JPH0353451B2 (en)
JPH0343378Y2 (en)
JPS6256325B2 (en)
JP2500856B2 (en) Multi-cylinder engine intake system
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0726542B2 (en) Multi-cylinder engine intake system
JPH0343379Y2 (en)
JPH0343380Y2 (en)
JPH0320498Y2 (en)
JPH0643462Y2 (en) Engine intake system
JPS63215822A (en) Intake device for v-type engine
JPH0320495Y2 (en)
JP2500855B2 (en) Multi-cylinder engine intake system
JPH0427370B2 (en)
JPH0353455B2 (en)
JPS61157716A (en) Air intake device of multicylinder engine
JPS61116020A (en) Engine intake-air device
JPH086596B2 (en) Multi-cylinder engine intake system
JPS60222524A (en) Suction device of engine
JPS59226264A (en) Suction device for engine
JPH0232862Y2 (en)
JPS609375Y2 (en) Inertial supercharging intake system for multi-cylinder engines
JPH0559249B2 (en)
JPH0583738B2 (en)