JPH0343380Y2 - - Google Patents

Info

Publication number
JPH0343380Y2
JPH0343380Y2 JP1985016471U JP1647185U JPH0343380Y2 JP H0343380 Y2 JPH0343380 Y2 JP H0343380Y2 JP 1985016471 U JP1985016471 U JP 1985016471U JP 1647185 U JP1647185 U JP 1647185U JP H0343380 Y2 JPH0343380 Y2 JP H0343380Y2
Authority
JP
Japan
Prior art keywords
intake
pressure
passage
negative pressure
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985016471U
Other languages
Japanese (ja)
Other versions
JPS61132438U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985016471U priority Critical patent/JPH0343380Y2/ja
Publication of JPS61132438U publication Critical patent/JPS61132438U/ja
Application granted granted Critical
Publication of JPH0343380Y2 publication Critical patent/JPH0343380Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、吸気系の気柱の固有振動数を変化さ
せる圧力応動式の切換手段を備えたエンジンの吸
気装置の改良に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an improvement of an engine intake system equipped with a pressure-responsive switching means for changing the natural frequency of an air column in an intake system.

(従来の技術) 従来から、エンジンの吸気装置において、吸気
開始に伴つて生じる負圧波(負圧の圧力波)が吸
気通路上流側の大気または吸気拡大室への開口端
で反射され正圧波(正圧の圧力液)となつて吸気
ポート方向に戻されることを利用し、上記正圧波
が吸気弁の閉弁寸前に吸気ポートに達して吸気を
燃焼室に押し込むようにする、いわゆる吸気の慣
性効果によつて吸気の充填効率を高めるようにす
ることは知られている。このような技術を用いよ
うとする場合に、吸気通路の形状が一定である
と、吸気通路に生じる圧力波の振動周期と吸気弁
の開閉周期とがマツチングして吸気慣性効果が高
められるのは特定回転域に限られる。
(Prior Art) Conventionally, in the intake system of an engine, a negative pressure wave (pressure wave of negative pressure) generated with the start of intake is reflected at the opening end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave ( The so-called intake inertia takes advantage of the fact that the positive pressure wave (positive pressure liquid) is returned toward the intake port, and the positive pressure wave reaches the intake port just before the intake valve closes, pushing the intake air into the combustion chamber. It is known to increase the filling efficiency of intake air by means of effects. When using such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage matches the opening and closing period of the intake valve, and the intake inertia effect is enhanced. Limited to a specific rotation range.

このため、従来、特開昭56−115819号公報にみ
られるように、エンジンの回転数に応じて吸気通
路の長さ等を変えるようにし、例えば、各気筒別
の吸気通路を上流部で2叉に分岐させて長い通路
と短い通路とを形成し、これらの通路の上流端を
吸気拡大室等に開口させると共に上記短い通路に
制御弁を設けて、高回転域でこの制御弁を開くこ
とにより吸気通路の有効長を短縮するようにし
(上記公報の第6図参照)、こうして吸気系の気柱
の固有振動数を変化させて、低回転域と高回転域
とで各々吸気の慣性効果を高めるようにした吸気
装置が提案されている。
For this reason, conventionally, as seen in JP-A-56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is divided into two parts at the upstream part. A long passage and a short passage are formed by branching, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and a control valve is provided in the short passage, and this control valve is opened in a high rotation range. In this way, the effective length of the intake passage is shortened (see Figure 6 of the above-mentioned publication), and the natural frequency of the air column in the intake system is changed to reduce the inertial effect of the intake air in the low and high rotation ranges. An intake device has been proposed that increases the

(考案が解決しようとする問題点) ところで、上記提案例の如き吸気装置において
エンジンの運転状態に応じて吸気系の気柱の固有
振動数を変化させる切換手段としての制御弁は、
通常スロツトル弁下流の吸気負圧を作動圧力とす
るダイヤフラム装置等の圧力応動部材を用いて開
閉作動することが行われている。
(Problems to be Solved by the Invention) By the way, in an intake system such as the above-mentioned proposed example, the control valve as a switching means for changing the natural frequency of the air column of the intake system according to the operating state of the engine is as follows:
Normally, the throttle valve is opened and closed using a pressure-responsive member such as a diaphragm device whose operating pressure is intake negative pressure downstream of the throttle valve.

ところが、スロツトル弁開度が大きく吸気があ
まり絞られない高負荷域においては、スロツトル
弁下流の吸気負圧が大気圧に近付くために、圧力
応動部材は吸気負圧を確実に導入することができ
ないことがあり、切換手段の切換作動(圧力応動
部材による制御弁の開閉作動)を正確且つ確実に
行なうことができないという問題がある。
However, in high load ranges where the throttle valve opening is large and the intake air is not throttled much, the intake negative pressure downstream of the throttle valve approaches atmospheric pressure, making it impossible for the pressure-responsive member to reliably introduce the intake negative pressure. Therefore, there is a problem in that the switching operation of the switching means (the opening/closing operation of the control valve by the pressure responsive member) cannot be performed accurately and reliably.

本考案はかかる点に鑑みてなされたものであ
り、その目的とするところは、スロツトル弁開度
が大きく吸気があまり絞られない高負荷域におい
ても、上記切換手段の正確且つ安定した作動を確
保することにある。
The present invention was devised in view of these points, and its purpose is to ensure accurate and stable operation of the switching means, even in a high load range where the throttle valve opening is large and the intake air is not throttled much. It's about doing.

(問題点を解決するための手段) 上記の目的を達成するため、本考案の解決手段
は、気筒に新気を導入するための独立吸気通路
と、該独立吸気通路の上流側に接続され該独立吸
気通路で生じた負圧の圧力波を正圧の圧力波に変
換せしめる吸気拡大室と、吸気系の気柱の固有振
動数を少なくとも2つの状態に変化させる切換手
段と、導入する正圧と負圧との差圧により上記切
換手段を作動せしめる圧力応動部材とを備えたエ
ンジンの吸気装置を対象とし、上流端が上記吸気
拡大室に接続されていると共に下流端が上記圧力
応動部材に接続されており上記吸気拡大室の正圧
を上記圧力応動部材に供給するための正圧通路
と、上流端が上記独立吸気通路に接続されている
と共に下流端が上記圧力応動部材に接続されてお
り上記独立吸気通路の負圧を上記圧力応動部材に
供給するための負圧通路と、該負圧通路に介装さ
れており上記独立吸気通路側から流入した負圧を
貯溜し且つ貯溜した負圧を上記圧力応動部材側に
流出させる負圧リザーブタンクとを備えている構
成とするものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes an independent intake passage for introducing fresh air into the cylinder, and an intake passage connected to the upstream side of the independent intake passage. An intake expansion chamber that converts a negative pressure wave generated in an independent intake passage into a positive pressure wave, a switching means that changes the natural frequency of the air column of the intake system into at least two states, and a positive pressure to be introduced. and a pressure-responsive member that operates the switching means based on the differential pressure between the air pressure and the negative pressure, the upstream end of which is connected to the intake expansion chamber, and the downstream end of which is connected to the pressure-responsive member. a positive pressure passage connected to the intake expansion chamber for supplying the positive pressure of the intake expansion chamber to the pressure responsive member; an upstream end connected to the independent intake passage and a downstream end connected to the pressure responsive member; a negative pressure passage for supplying the negative pressure of the independent intake passage to the pressure responsive member; and a negative pressure passage that is interposed in the negative pressure passage and stores the negative pressure flowing from the independent intake passage. The structure includes a negative pressure reserve tank that allows pressure to flow out to the pressure responsive member side.

(作用) 上記の構成により、吸気拡大室の正圧を圧力応
動部材に供給するための正圧通路と、独立吸気通
路の負圧を圧力応動部材に供給するための負圧通
路と、負圧通路に介設され独立吸気通路側から流
入した負圧を貯溜し且つ貯溜した負圧を圧力応動
部材側に流出させる負圧リザーブタンクとを備え
ているため、吸気拡大室ではエンジの高負荷域に
おいても負圧の圧力波が殆ど生成されないので、
正圧が吸気拡大室から正圧通路を通つて確実に圧
力応動部材に供給されると共に、吸気の慣性効果
の作用領域で独立吸気通路で生成された負圧は負
圧リザーブタンクに貯溜され、負圧リザーブタン
クに貯溜された負圧が圧力応動部材に供給され
る。従つて、独立吸気通路の負圧が大気圧に近づ
き独立吸気通路から負圧が得難くなるエンジンの
高負荷域においても負圧リザーブタンクから圧力
応動部材に確実に負圧が供給される。
(Function) With the above configuration, there is a positive pressure passage for supplying the positive pressure of the intake expansion chamber to the pressure responsive member, a negative pressure passage for supplying the negative pressure of the independent intake passage to the pressure responsive member, and a negative pressure passage for supplying the negative pressure of the independent intake passage to the pressure responsive member. The intake expansion chamber is equipped with a negative pressure reserve tank that stores the negative pressure that flows in from the independent intake passage and drains the stored negative pressure to the pressure-responsive member side. Since almost no negative pressure waves are generated even in
The positive pressure is reliably supplied from the intake expansion chamber to the pressure responsive member through the positive pressure passage, and the negative pressure generated in the independent intake passage in the action area of the inertial effect of the intake air is stored in a negative pressure reserve tank. Negative pressure stored in the negative pressure reserve tank is supplied to the pressure responsive member. Therefore, negative pressure is reliably supplied from the negative pressure reserve tank to the pressure responsive member even in a high engine load range where the negative pressure in the independent intake passage approaches atmospheric pressure and it is difficult to obtain negative pressure from the independent intake passage.

(実施例) 以下、本考案の実施例について図面に基づいて
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第3図は本考案を4気筒4サイクルエ
ンジンに適用した場合の第1実施例を示す。同図
において、1はシリンダブロツク2およびシリン
タヘツド3等からなるエンジン本体であつて、該
エンジン本体1にはその長手方向に第1〜第4の
4つの気筒4が直列に形成されており、各気筒4
には各々燃焼室5が形成されている。
1 to 3 show a first embodiment in which the present invention is applied to a four-cylinder, four-cycle engine. In the figure, reference numeral 1 denotes an engine body consisting of a cylinder block 2, a cylinder head 3, etc. In the engine body 1, four cylinders 4, first to fourth cylinders, are formed in series in the longitudinal direction. cylinder 4
A combustion chamber 5 is formed in each.

6は気筒別に互いに独立して設けられた独立吸
気装置であつて、各独立吸気通路6は、シリンダ
ヘツド3内に形成され独立吸気通路6の下流端部
を構成する吸気ポート7を介して各気筒4の燃焼
室5に開口している。また、8はエンジン長手方
向に平行に延びる略角筒形状のタンクよりなる吸
気拡大室であつて、該吸気拡大室8は仕切板9に
よつて上下に仕切られて上側に位置する比較的大
きな容積の第1容積室8aと下側に位置する比較
的小さな容積の第2容積室8bとに区画されてい
る。そして、上記各独立吸気通路6の流端部は
各々ほぼ同一通路長でもつて上記吸気拡大室8の
第1容積室8aに連通接続されている。該第1容
積室8aの一端面には外気を導入する吸気導入管
10が接続されていて、該吸気導入管10内には
吸入空気量を制御するスロツトル弁11が配設さ
れていると共に、該スロツトル弁11上流には図
示していないが吸気を過給する過給機(例えば排
気ターボ過給機、過給ポンプ室)が配設されてお
り、過給機で加圧されスロツトル弁11が絞られ
て第1容積室8aに導入された吸気は各独立吸気
通路6を介して各気筒4の燃焼室5に供給され
る。また、上記吸気ポート7には吸気弁12が設
けられている。
Reference numeral 6 denotes an independent intake device provided independently for each cylinder, and each independent intake passage 6 is connected to each cylinder via an intake port 7 formed in the cylinder head 3 and constituting the downstream end of the independent intake passage 6. It opens into the combustion chamber 5 of the cylinder 4. Reference numeral 8 denotes an intake expansion chamber made of a substantially rectangular cylindrical tank extending parallel to the longitudinal direction of the engine. It is divided into a first volume chamber 8a with a large volume and a second volume chamber 8b with a relatively small volume located below. The flow end portions of each of the independent intake passages 6 are connected to the first volume chamber 8a of the intake expansion chamber 8 with substantially the same passage length. An intake pipe 10 for introducing outside air is connected to one end surface of the first volume chamber 8a, and a throttle valve 11 for controlling the amount of intake air is disposed inside the intake pipe 10. Although not shown, a supercharger (for example, an exhaust turbo supercharger, a supercharging pump chamber) for supercharging intake air is provided upstream of the throttle valve 11, and the throttle valve 11 is pressurized by the supercharger. The intake air that has been throttled and introduced into the first volume chamber 8a is supplied to the combustion chamber 5 of each cylinder 4 via each independent intake passage 6. Further, the intake port 7 is provided with an intake valve 12 .

上記各独立吸気通路6の途中部から第2通路1
3が分岐していて、該各第2通路13,13、…
の他端は各々ほぼ同一通路長でもつて上記吸気拡
大室8の第2容積室8bに連通接続されており、
これにより第2容積室8bによつて第2通路13
を介して各独立吸気通路6,6…は相互に連通し
ている。
The second passage 1 from the middle of each independent intake passage 6
3 are branched, and the respective second passages 13, 13,...
The other ends are connected to the second volume chamber 8b of the intake expansion chamber 8 with substantially the same passage length, and
As a result, the second passage 13 is expanded by the second volume chamber 8b.
The independent intake passages 6, 6, . . . communicate with each other via the respective independent intake passages 6, 6, .

また、上記各第2通路13には第2通路13を
開閉する切換手段としてと制御弁14が各々設け
られており、この各制御弁14は、吸気拡大室8
長手方向と平行に延びるバルブシヤフト15に一
体的に連動可能に固定されている。該バルブシヤ
フト15の軸端部にはバルブレバー22が固定さ
れており、該バルブレバー22には上記制御弁1
4を開閉作動させる圧力応動部材としてのダイヤ
フラム装置16が連結されている。該ダイヤフラ
ム装置16は、上記バルブレバー22にロツド2
1を介して連結されたダイヤフラム18と、該ダ
イヤフラム18によつて区画形成された第1室1
9及び第2室20と、該第1室19内に縮装さ
れ、ダイヤフラム18を制御弁14が開弁する方
向に付勢するスプリング24を備えている。上記
第1室19は負圧通路23を介して吸気負圧が作
用する独立吸気通路6の下流側部分6bに連通さ
れていると共に、上記第2室20は正圧通路25
を介して正圧が作用する上記第1容積室8aに連
通されており、ダイヤフラム装置16の第1及び
第2室19,20に対して、その作動圧力として
独立吸気通路6からの負圧と第1容積室8aから
の正圧とが制御弁14の閉弁方向に一致して導入
されるようになつている。
Further, each second passage 13 is provided with a control valve 14 as a switching means for opening and closing the second passage 13, and each control valve 14 is connected to the intake expansion chamber 8.
It is integrally and interlockably fixed to a valve shaft 15 extending parallel to the longitudinal direction. A valve lever 22 is fixed to the shaft end of the valve shaft 15, and the control valve 1 is connected to the valve lever 22.
A diaphragm device 16 as a pressure-responsive member for opening and closing 4 is connected thereto. The diaphragm device 16 is connected to the valve lever 22 by a rod 2.
1, and a first chamber 1 defined by the diaphragm 18.
9 and a second chamber 20, and a spring 24 which is compressed into the first chamber 19 and biases the diaphragm 18 in the direction in which the control valve 14 opens. The first chamber 19 is communicated via a negative pressure passage 23 with the downstream portion 6b of the independent intake passage 6 on which intake negative pressure acts, and the second chamber 20 is connected to the positive pressure passage 25.
The first and second chambers 19 and 20 of the diaphragm device 16 are in communication with the negative pressure from the independent intake passage 6 as their operating pressure. Positive pressure from the first volume chamber 8a is introduced in the same direction as the control valve 14 in its closing direction.

上記負圧通路23の途中部には独立吸気通路6
から導入された負圧を蓄える負圧リザーブタンク
26が介設されていて、該負圧リザーブタンク2
6の独立吸気通路6側の接続口には独立吸気通路
6から負圧リザーブタンク26への負圧の流入の
みを許容し、その逆方向への負圧の流出を阻子す
る逆止弁27が配設されている。これにより、負
圧リザーブタンク26には吸気の慣性効果の作用
域において独立吸気通路6で生成された負圧が貯
溜され、該負圧リザーブタンク26に貯留された
負圧は負圧通路23を通つて第1室19に供給さ
れる。
An independent intake passage 6 is located in the middle of the negative pressure passage 23.
A negative pressure reserve tank 26 is interposed to store the negative pressure introduced from the negative pressure reserve tank 2.
A check valve 27 is provided at the connection port on the independent intake passage 6 side of 6 to allow only the inflow of negative pressure from the independent intake passage 6 to the negative pressure reserve tank 26, and to block the outflow of negative pressure in the opposite direction. is installed. As a result, the negative pressure generated in the independent intake passage 6 is stored in the negative pressure reserve tank 26 in the area where the inertial effect of intake air acts, and the negative pressure stored in the negative pressure reserve tank 26 is transferred to the negative pressure passage 23. The first chamber 19 is supplied through the first chamber 19 .

また、上記負圧リザーブタンク26と第1室1
9との間の負圧通路23には、第1室19を負圧
リザーブタンク26に連通させる負圧位置と第1
室19を大気に開放し且つ負圧リザーブタンク2
6側の負圧通路23を閉塞して負圧リザーブタン
ク26を密閉状態に保つ大気開放位置とをとる第
1三方電磁弁28が介設されている。
In addition, the negative pressure reserve tank 26 and the first chamber 1
The negative pressure passage 23 between the first chamber 19 and the negative pressure reserve tank 26 has a negative pressure position and a first
The chamber 19 is opened to the atmosphere and the negative pressure reserve tank 2 is opened.
A first three-way solenoid valve 28 is interposed to close the negative pressure passage 23 on the 6 side and take an open position to the atmosphere to keep the negative pressure reserve tank 26 in a sealed state.

一方、上記正圧通路25の途中部には、第1容
積室8aから第2室20への正圧の流入のみを許
容し、その逆方向への正圧の流出を阻止する逆止
弁29が介設されている。また、上記逆止弁29
と第2室20との間の正圧通路25には、第2室
20を第1容積室8aに連通させる正圧位置と第
2室20を大気に開放し且つ第1容積室8a側の
正圧通路25を閉塞する大気開放位置とをとる第
2三方電磁弁30が介設されている。
On the other hand, a check valve 29 is provided in the middle of the positive pressure passage 25 to allow only positive pressure to flow from the first volume chamber 8a to the second chamber 20, and to prevent positive pressure from flowing in the opposite direction. is interposed. In addition, the check valve 29
The positive pressure passage 25 between the second chamber 20 and the second chamber 20 has a positive pressure position that communicates the second chamber 20 with the first volume chamber 8a, and a positive pressure passage that opens the second chamber 20 to the atmosphere and connects the second chamber 20 with the first volume chamber 8a. A second three-way solenoid valve 30 is interposed, which takes an atmosphere open position and closes the positive pressure passage 25.

そして、第1及び第2の三方電磁弁28,30
にはコントロールユニツト31が接続されてお
り、該コントロールユニツト31は、エンジン回
転数を検出する回転数センサ32からの信号を受
け、エンジン回転数に応じて第1及び第2三方電
磁弁28,30を作動制御する。具体的にはコン
トロールユニツト31は以下のように制御する。
すなわち、低回転時(例えば5000rpm以下のと
き)には第1三方電磁弁28を負圧位置に、第2
三方電磁弁30を正圧位置に各々位置づけること
により、第1室19に負圧リザーブタンク26内
の負圧を導くと共に第2室20に第1容積室8a
内の正圧を導き、この閉弁方向作用力としての各
圧力によりダイヤフラム18をスプリング24の
ばね力に抗して閉弁方向(矢印方向)に偏倚さ
せ、ロツド21を介して制御弁14を閉作動せし
める一方、高回転時(例えば5000rpm以上のと
き)には第1及び第2三方電磁弁28,30を共
に大気開放位置に位置づけることにより、第1室
19及び第2室を共に大気に開放し、これによつ
て、ダイヤフラム18をスプリング24のばね力
により開弁方向に復帰させ、ロツド21を介して
制御弁14を開作動せしめる。従つて、以上説明
した各手段によつてエンジン運転状態に応じて各
気筒4の独立吸気通路の有効長を変えて気柱の固
有振動数を変化させる切換機構33が構成されて
いる。なお、このようなエンジン回転数に応じた
制御弁14の開閉作動は、少なくともエンジン出
力が要求される高負荷域において行われるように
すればよく、低負荷時には制御弁14が開弁状態
または閉弁状態に保たれるようにしてもよい。
And the first and second three-way solenoid valves 28, 30
A control unit 31 is connected to the engine, and the control unit 31 receives a signal from a rotation speed sensor 32 that detects the engine rotation speed, and controls the first and second three-way solenoid valves 28 and 30 according to the engine rotation speed. control the operation. Specifically, the control unit 31 controls as follows.
That is, during low rotation (for example, below 5000 rpm), the first three-way solenoid valve 28 is placed in the negative pressure position, and the second
By positioning the three-way solenoid valves 30 in positive pressure positions, the negative pressure in the negative pressure reserve tank 26 is introduced into the first chamber 19, and the first volume chamber 8a is introduced into the second chamber 20.
The diaphragm 18 is biased in the valve closing direction (in the direction of the arrow) against the spring force of the spring 24 by the pressure acting in the valve closing direction, and the control valve 14 is closed via the rod 21. On the other hand, by positioning both the first and second three-way solenoid valves 28 and 30 to the atmosphere open position during high rotation (for example, 5000 rpm or more), both the first chamber 19 and the second chamber are exposed to the atmosphere. As a result, the diaphragm 18 is returned to the valve opening direction by the spring force of the spring 24, and the control valve 14 is opened via the rod 21. Therefore, the switching mechanism 33 that changes the effective length of the independent intake passage of each cylinder 4 and changes the natural frequency of the air column according to the engine operating condition is configured by each of the means described above. Note that the opening/closing operation of the control valve 14 according to the engine speed may be performed at least in a high load range where engine output is required, and the control valve 14 may be in the open or closed state at low loads. It may be maintained in a valve state.

そして、このような吸気系システムにおいて、
35は、上記吸気拡大室8、各独立吸気通路6,
6…及び各第2通路13,13…を形成するため
の吸気系構造体であつて、該構造体35は、吸気
拡大室8(第1容積室8a及び第2容積室8b)
を構成するタンク部36と、該タンク部36のエ
ンジン側とは反対側の側辺上部から側辺及び下辺
にかけてタンク部36の周囲を迂回して延び、且
つその構成壁の一部つまり側壁及び下壁を利用し
て各独立吸気通路6,6…の上流側部分6a,6
a…をその各上流端がタンク部36(第1容積室
8a)側辺上部に開口するように一体的に形成す
る一体吸気管部37,37…と、該各一体吸気管
部37,37…の下辺部からエンジン側へ向かつ
て各気筒別に分岐して延び、各独立吸気通路6,
6…の下流側部分6b,6b…を形成する分岐吸
気管部38,38…と、上記各一体吸気管部37
の分岐吸気管部38近傍においてタンク部36
(第2容積室8b)の構成壁のうちの下壁を利用
して各独立吸気通路6の途中を第2容積室8bに
連通する第2通路13を一体的に形成する連通管
部39,39…と、上記各分岐吸気管部38,3
8…の先端部を互いに連結するフランジ部40と
からなり、該フランジ部40にてエンジン本体1
に対し各分岐吸気管部38の独立吸気通路下流側
部分6bを各気筒4の吸気ポート7に合致せしめ
た状態でボルト41,41……を側方から挿入し
て締付けることによりエンジン本体1に固定され
る。また、上記タンク部36のエンジン側の側辺
上部はエンジン側に膨出するように形成されてお
り、第1容積室8aの容積を十分に確保するよう
にしている。
In such an intake system,
35 is the intake expansion chamber 8, each independent intake passage 6,
6... and each of the second passages 13, 13... The structure 35 is an intake system structure for forming the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8b).
The tank part 36 that constitutes the tank part 36 extends from the upper side of the tank part 36 opposite to the engine side to the side and lower sides of the tank part 36, bypassing the periphery of the tank part 36, and a part of its constituent wall, that is, the side wall and Upstream portions 6a, 6 of each independent intake passage 6, 6... using the lower wall
integral intake pipe portions 37, 37, which are integrally formed so that their upstream ends open at the upper side of the tank portion 36 (first volume chamber 8a); and the respective integral intake pipe portions 37, 37. ... branching and extending for each cylinder from the lower side toward the engine side, each independent intake passage 6,
The branch intake pipe portions 38, 38, . . . forming the downstream portions 6b, 6b, .
The tank portion 36 near the branch intake pipe portion 38 of
A communication pipe portion 39 that integrally forms a second passage 13 that communicates the middle of each independent intake passage 6 with the second volume chamber 8b by using the lower wall of the constituent walls of the second volume chamber 8b; 39... and each of the above-mentioned branch intake pipe sections 38, 3
8, and a flange portion 40 that connects the tips of the engine body 1 with the flange portion 40.
On the other hand, with the independent intake passage downstream portion 6b of each branch intake pipe section 38 aligned with the intake port 7 of each cylinder 4, bolts 41, 41... are inserted from the side and tightened to connect the engine body 1. Fixed. Further, the upper part of the engine-side side of the tank portion 36 is formed to bulge toward the engine to ensure a sufficient volume of the first volume chamber 8a.

また、上記各分岐吸気管部38の独立吸気通路
下流側部分6b及び各吸気ポート7は、斜め上方
から燃焼室5に向つてほぼ直線状に延びて燃焼室
5に開口するように形成されている。そして、該
各分岐吸気管部38の独立吸気通路下流側部分6
bの下流端近傍上部には噴射弁装着孔42が形成
されており、燃料噴射弁43はその先端噴射口部
がシールリング42aを介して装着孔42に挿入
されて固定されている。この装着孔42及び燃料
噴射弁43の取付方向は該噴射弁43からの燃料
が燃料室5の吸気弁12に向つて噴射されるよう
に装着されていて、各燃料噴射弁43,43…は
エンジン長手方向に平行に配設された燃料供給管
44に連通接続されている。このことにより、燃
料噴射弁43は分岐吸気管部38にほぼ沿つて寝
た状態で取付けられることとなり、該燃料噴射弁
43の中心線の延長線g上に上記吸気拡大室8
(タンク部36)が燃料噴射弁43及び燃料供給
管44に近接して位置することになる。
Further, the downstream side portion 6b of the independent intake passage and each intake port 7 of each of the branched intake pipe portions 38 are formed to extend substantially linearly from diagonally upward toward the combustion chamber 5 and open into the combustion chamber 5. There is. The downstream portion 6 of the independent intake passage of each branch intake pipe portion 38
An injection valve mounting hole 42 is formed in the upper part near the downstream end of the fuel injection valve 43, and the tip injection port of the fuel injection valve 43 is inserted and fixed into the mounting hole 42 via a seal ring 42a. The installation direction of the mounting hole 42 and the fuel injection valve 43 is such that the fuel from the injection valve 43 is injected toward the intake valve 12 of the fuel chamber 5, and each fuel injection valve 43, 43... It is communicatively connected to a fuel supply pipe 44 arranged parallel to the longitudinal direction of the engine. As a result, the fuel injection valve 43 is installed in a lying state almost along the branch intake pipe section 38, and the intake expansion chamber 8 is located on the extension line g of the center line of the fuel injection valve 43.
(Tank portion 36) is located close to fuel injection valve 43 and fuel supply pipe 44.

さらに、上記各連通管部39の第2通路13に
制御弁14が配設されること、及び吸気拡大室8
(タンク部36)が燃料噴射弁43の中心延長線
g上に位置することから、上記吸気系構造体35
は、そのタンク部36において、上記中心延長線
gよりも下側の位置で且つ各第2通路13,13
…を含む吸気拡大室8の第2容積室8bの部分と
吸気拡大室8の第1容積室8aとの間としての上
記仕切板9の位置で吸気拡大室8の長手方向に沿
つた分割面によつて上下に分割されて形成されて
いて、タンク部36の上半部及び各一体吸気管部
37,37…の上半部が一体成形された上側分割
体35aと、タンク部36の下半部、一体吸気管
部37,37…の下半部、各分岐吸気管部38,
38…、各連通管部39,39…及びフランジ部
40が一体成形された下側分割体35bとからな
り、両分割体35a,35bが上記仕切板9を介
して接合され、ボルト45,45…を下方から挿
入して締付けることにより気密的に結合されてな
る。
Further, a control valve 14 is disposed in the second passage 13 of each communication pipe section 39, and the intake expansion chamber 8
(Tank portion 36) is located on the center extension line g of the fuel injection valve 43, so the intake system structure 35
is located at a position below the center extension line g in the tank portion 36 and at each of the second passages 13, 13.
A dividing plane along the longitudinal direction of the intake expansion chamber 8 at the position of the partition plate 9 between the second volume chamber 8b of the intake expansion chamber 8 including... and the first volume chamber 8a of the intake expansion chamber 8. The upper divided body 35a is formed by being divided into upper and lower parts by the tank part 36, and the upper half part of the tank part 36 and the upper half part of each integral intake pipe part 37, 37... are integrally molded, and the lower part of the tank part 36 half part, lower half part of integral intake pipe parts 37, 37..., each branch intake pipe part 38,
38..., each communicating tube part 39, 39... and a lower divided body 35b integrally formed with a flange part 40, both divided bodies 35a, 35b are joined via the partition plate 9, and bolts 45, 45 ... are inserted from below and tightened to form an airtight connection.

次に、上記実施例の作用について述べるに、切
換機構33により各制御弁14が閉じて第2通路
13の閉塞によつて第2容積室8bによる各独立
吸気通路6,6…相互間の連通が遮断されている
状態では、各気筒4の吸気行程で生じる負圧波が
第1容積室8aまで伝播されてここで反射され、
つまり比較的長い通路を通して上記負圧波及びそ
の反射波が伝播することにより、低回転域におい
てこのような圧力波の振動周期(固有振動数)が
吸気弁開閉周期にマツチングすることになり、低
回転域での吸気の慣性効果が高められて、吸気充
填効率が高められる。一方、切換機構33により
上記各制御弁14が開かれ第2通路13が開放さ
れて、第2容積室8bにより各独立吸気通路6,
6…相互間が連通している状態では、各気筒4の
吸気行程で生じる負圧波が上記第2通路13を介
して第2容積室8bで反射されてこの負圧波及び
反射波の伝播に供される通路長さが短くなること
により、高回転域で吸気弁開閉周期に圧力波の振
動周期(固有振動数)がマツチングして吸気慣性
効果が高められると共に、この運転域では他の気
筒から伝播される圧力波も第2容積室8bを介し
て有効に作用することになり、高回転域での充填
効率が大幅に高められる。従つて、少なくとも高
負荷域に、上記低回転域と高回転域との吸気慣性
効果が得られる各回転数の中間回転数に相当する
所定回転数を境に、これよりも低回転側で制御弁
14を閉じ、これよりも高回転側で制御弁14を
開くようにしておくことにより、全回転域で吸気
充填効率が高められて出力を向上させることがで
きる。特に、高回転域での吸気充填効率は、従来
のように単に吸気通路を短縮させて慣性効果を高
めるようにした場合と比べても、気筒間の圧力伝
播作用でより一層高められることとなる。
Next, to describe the operation of the above embodiment, each control valve 14 is closed by the switching mechanism 33, and the second passage 13 is closed, thereby allowing the second volume chamber 8b to communicate with the independent intake passages 6, 6... In the state in which the intake stroke of each cylinder 4 is blocked, the negative pressure wave generated in the intake stroke of each cylinder 4 is propagated to the first volume chamber 8a and reflected there.
In other words, as the negative pressure waves and their reflected waves propagate through a relatively long passage, the oscillation period (natural frequency) of these pressure waves matches the intake valve opening/closing period in the low rotation range. The inertia effect of the intake air in the area is enhanced, and the intake air filling efficiency is increased. On the other hand, the switching mechanism 33 opens each of the control valves 14 to open the second passage 13, and each independent intake passage 6,
6... In a state where they are in communication with each other, the negative pressure waves generated during the intake stroke of each cylinder 4 are reflected in the second volume chamber 8b via the second passage 13, and the negative pressure waves and reflected waves are propagated. By shortening the passage length, the oscillation period (natural frequency) of the pressure wave matches the intake valve opening/closing period in the high rotation range, increasing the intake inertia effect. The propagated pressure waves also act effectively through the second volume chamber 8b, greatly increasing the filling efficiency in the high rotation range. Therefore, at least in the high load region, the control is performed at a lower rotation speed than a predetermined rotation speed corresponding to the intermediate rotation speed between the above-mentioned low rotation speed range and high rotation speed range where the intake inertia effect can be obtained. By closing the valve 14 and opening the control valve 14 at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range and the output can be improved. In particular, the intake air filling efficiency in the high rotation range can be further improved by the pressure propagation effect between the cylinders, compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに
適当な第1及び第2容積室8a,8bの大きさと
しては、第1容積室8aは排気量の0.5倍以上の
容量とし、第2容積室8bは排気量の1.5倍以下
の容量としておくことが望ましい。さらに、上記
第2容積室8bは第1容積室8aよりも容量を小
さくし、且つ第2容積室8bの断面積は各独立吸
気通路6の断面積よりも大きくしておくことが望
ましい。
The sizes of the first and second volume chambers 8a and 8b that are suitable for effectively exerting the above-mentioned effects are such that the first volume chamber 8a has a capacity of 0.5 times or more of the displacement, and the second volume has a capacity of 0.5 times or more of the displacement. It is desirable that the capacity of the chamber 8b is 1.5 times or less than the exhaust volume. Further, it is desirable that the second volume chamber 8b has a smaller capacity than the first volume chamber 8a, and that the cross-sectional area of the second volume chamber 8b is larger than the cross-sectional area of each independent intake passage 6.

そして、この場合、切換機構33において制御
弁14を開閉作動するダイヤフラム装置16は、
低負荷域においては、該ダイヤフラム装置16の
第1室19に独立吸気通路6からの負圧が供給さ
れ、第2室20に第1容積室8aからの正圧が供
給されて制御弁14が閉じられ、また、高負荷域
においては、スロツトル弁11の開度が大きくな
り独立吸気通路6の吸気負圧が大気圧に近付く
が、ダイヤフラム装置16の第1室19には吸気
の慣性効果の作用域において負圧を貯溜していた
負圧リザーブタンク26から負圧が供給され、第
2室20には負圧波が殆ど生成されることがない
第1容積室8aから正圧が供給されて制御弁14
が閉じられる。
In this case, the diaphragm device 16 that opens and closes the control valve 14 in the switching mechanism 33 is
In the low load range, the first chamber 19 of the diaphragm device 16 is supplied with negative pressure from the independent intake passage 6, and the second chamber 20 is supplied with positive pressure from the first volume chamber 8a, so that the control valve 14 is In the high load range, the opening degree of the throttle valve 11 increases and the intake negative pressure in the independent intake passage 6 approaches atmospheric pressure. Negative pressure is supplied from the negative pressure reserve tank 26 that stores negative pressure in the action area, and positive pressure is supplied to the second chamber 20 from the first volume chamber 8a where almost no negative pressure waves are generated. Control valve 14
is closed.

また、この場合、吸気系構造体35における吸
気拡大室8(第1容積室8a及び第2容積室8
b)を構成するタンク部36と各独立吸気通路6
の上流側部分6aを構成する一体吸気管部37と
各独立吸気通路6の下流側部分6bを構成する分
岐吸気管部38と各第2通路13を構成する連通
管部39とによつて、各独立吸気通路6が吸気拡
大室8の周囲に迂回しながら且つ吸気拡大室8
(タンク部36)の構成壁の一部を利用して一体
的に形成されていると共に、各第2通路13が吸
気拡大室8(第2容積室8b)の構成壁の一部と
一体的に形成されているので、上記独立吸気通路
6の所要長さ及び吸気拡大室8の第1及び第2容
積室8a,8bの各所要容積を得るに当つて、こ
れら吸気系をコンパクトに小型のものに形成する
ことができ、限られたスペース(エンジンルー
ム)内で上記所要長さ及び所要容積を十分に確保
することができ、車載性の向上を図ることができ
る。
Further, in this case, the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8
b) Tank portion 36 and each independent intake passage 6
The integral intake pipe section 37 that constitutes the upstream section 6a of each independent intake passage 6, the branched intake pipe section 38 that constitutes the downstream section 6b of each independent intake passage 6, and the communication pipe section 39 that constitutes each second passage 13, Each independent intake passage 6 detours around the intake expansion chamber 8 and
(tank part 36), and each second passage 13 is integrally formed with a part of the wall that constitutes the intake expansion chamber 8 (second volume chamber 8b). Therefore, in order to obtain the required length of the independent intake passage 6 and the required volumes of the first and second volume chambers 8a and 8b of the intake expansion chamber 8, these intake systems can be made compact and small. It is possible to sufficiently secure the above-mentioned required length and required volume within a limited space (engine room), and it is possible to improve vehicle mountability.

また、燃料噴射弁43が上記分岐吸気管部38
の下流端近傍つまり独立吸気通路6の下流側にお
いてその噴射燃料をその霧化を良好にしながら燃
焼室5に応答性良く供給すべく燃焼室5に向けて
装着されている関係上、該燃料噴射弁43の中心
延長線g上に近接して吸気系構造体35のタンク
部36(吸気拡大室8)が位置すること、及び上
記各第2通路13に制御弁14を配設することが
必要である。このため、上記吸気系構造体35は
そのタンク部36において上記中心延長線gより
も下側即ち分岐吸気管部38側の位置で且つ仕切
板9の位置で吸気拡大室8の長手方向に沿つた分
割面で上下に上側分割体35aと下側分割体35
bとに分割され両分割体35a,35bが仕切板
9を介して結合されてなるので、下側分割体35
bをそのフランジ部40にてエンジン本体1に側
方からのボルト41による締付けにより取付けた
のち、該下側分割体35bの各分岐吸気管部38
の噴射弁装着孔42に燃料噴射弁43の中心延長
線g方向から挿入し燃料供給管44を下側分割体
35bに固定することによつて各燃料噴射弁43
を取付けると共に、下側分割体35bの各連通管
部39の第2通路13にその上方から制御弁14
を挿入してバルブシヤフト15に固定し、しかる
後上記下側分割体35bに対して仕切板9を介在
させて上側分割体35aを嵌合して下方からのボ
ルト45の締付けにより両者35a,35bを一
体に結合することによつて、良好な成形性を確保
でき、且つ上側及び下側分割体35a,35bの
組付けを容易に行い得るのは勿論のこと、制御弁
14及び燃料噴射弁43の組付けを容易に行うこ
とができ、良好な組付け性を確保することができ
る。
Further, the fuel injection valve 43 is connected to the branch intake pipe portion 38.
The fuel injector is mounted near the downstream end of the independent intake passage 6, that is, on the downstream side of the independent intake passage 6, toward the combustion chamber 5 in order to supply the injected fuel to the combustion chamber 5 with good response while ensuring good atomization. It is necessary that the tank portion 36 (intake expansion chamber 8) of the intake system structure 35 be located close to the center extension line g of the valve 43, and that the control valve 14 be disposed in each of the second passages 13. It is. Therefore, the intake system structure 35 is located at a position below the center extension line g in the tank portion 36, that is, on the branch intake pipe portion 38 side, and along the longitudinal direction of the intake expansion chamber 8 at the position of the partition plate 9. The upper divided body 35a and the lower divided body 35 are arranged vertically on the ivy dividing surface.
The lower divided body 35
b is attached to the engine body 1 at its flange portion 40 by tightening bolts 41 from the side, and then each branch intake pipe portion 38 of the lower divided body 35b is attached.
Each fuel injection valve 43 is inserted into the injection valve mounting hole 42 from the direction of the central extension line g of the fuel injection valve 43 and fixed to the lower division body 35b.
At the same time, the control valve 14 is inserted into the second passage 13 of each communication pipe portion 39 of the lower divided body 35b from above.
are inserted and fixed to the valve shaft 15, and then the upper divided body 35a is fitted to the lower divided body 35b with the partition plate 9 interposed therebetween, and both 35a, 35b are tightened by tightening the bolts 45 from below. By joining them together, it is possible to ensure good moldability, and it is possible to easily assemble the upper and lower divided bodies 35a, 35b. can be easily assembled, and good assembly performance can be ensured.

しかも、上記上側分割体35aと下側分割体3
5bとの結合は、下方からのボルト45の締付け
によつて行われるので、その良好な組付け性を確
保しながら、上述の如くタンク部36(吸気拡大
室8)におけるエンジン側の側辺上部の膨出形成
が可能となつて、吸気拡大室8の特に第1容積室
8aの容積を十分に確保できる利点もある。ま
た、上記第2容積室8bは吸気系構造体35のタ
ンク部36を仕切板9で上下に分解することによ
つて第1容積室8aに並設され、第1容積室8a
の構成壁の一部(仕切板9)を共用して形成され
ているので、上記吸気系のコンパクト化を一層図
ることができる。
Moreover, the upper divided body 35a and the lower divided body 3
5b is achieved by tightening the bolts 45 from below, while ensuring good assemblability, the upper part of the engine side side of the tank part 36 (intake expansion chamber 8) is secured. There is also the advantage that a sufficient volume of the intake expansion chamber 8, particularly the first volume chamber 8a, can be secured. The second volume chamber 8b is arranged in parallel with the first volume chamber 8a by vertically disassembling the tank portion 36 of the intake system structure 35 with the partition plate 9, and
Since a part of the constituent wall (partition plate 9) is shared, the intake system can be made more compact.

第4図は本考案の第2実施例を示し、上記第1
実施例では吸気拡大室8を第1容積室8aと第2
容積室8bとに区画して低回転域と高回転域とで
各々吸気慣性効果を得ると共に、特に高回転域で
気筒相互間の圧力波の伝播により吸気の充填効率
を一層高めるようにしたが、第2実施例は、従来
例と同様に単に低回転域と高回転域とで各々吸気
慣性効果を高めるようにしたものの例である。
(尚、第1実施例(第1図〜第3図)と同一の部
分については同一の符号を付してその詳細な説明
は省略する)。
FIG. 4 shows a second embodiment of the present invention, and shows the first embodiment of the invention.
In the embodiment, the intake expansion chamber 8 is divided into a first volume chamber 8a and a second volume chamber 8a.
It is divided into a volume chamber 8b to obtain an intake inertia effect in each of the low rotation range and high rotation range, and to further increase the intake air filling efficiency by propagating pressure waves between cylinders, especially in the high rotation range. The second embodiment is an example in which the intake inertia effect is simply increased in the low rotation range and the high rotation range, as in the conventional example.
(The same parts as in the first embodiment (FIGS. 1 to 3) are given the same reference numerals, and detailed explanation thereof will be omitted).

すなわち、吸気系構造体35において吸気拡大
室8を構成するタンク部36の下壁に、吸気拡大
室8と各独立吸気通路6の途中部とを連通する第
2通路13,13…を開口し、該各第2通路13
にエンジンの運転状態に応じて開閉する制御弁1
4を設けて、切換機構33により、エンジンの低
回転域では制御弁14を閉状態に維持して、各気
筒4で生じる圧力波を吸気拡大室8との間で比較
的長い独立吸気通路6を介して伝播させることに
より、圧力波の振動周期と吸気弁開閉周期とがマ
ツチングして低回転域での吸気慣性効果を高め
る。一方、高回転域では制御弁14を開いて各独
立吸気通路6の途中部を第2通路13を介して吸
気拡大室8に連通させ、上記圧力波の伝播経路を
比較的短くすることにより、高回転域で圧力波の
振動周期と吸気弁開閉周期とがマツチングして吸
気慣性効果を高めるようにしたものである。
That is, in the lower wall of the tank part 36 that constitutes the intake expansion chamber 8 in the intake system structure 35, the second passages 13, 13, . , each second passage 13
A control valve 1 that opens and closes depending on the engine operating condition.
4 is provided, and the switching mechanism 33 maintains the control valve 14 in the closed state in the low engine speed range, and transfers the pressure waves generated in each cylinder 4 to the intake expansion chamber 8 through a relatively long independent intake passage 6. By propagating the pressure wave through the engine, the vibration period of the pressure wave and the intake valve opening/closing period are matched, increasing the intake inertia effect in the low rotation range. On the other hand, in the high rotation range, the control valve 14 is opened to communicate the middle part of each independent intake passage 6 to the intake expansion chamber 8 via the second passage 13, thereby making the propagation path of the pressure wave relatively short. The oscillation cycle of the pressure wave and the intake valve opening/closing cycle are matched in the high rotation range to enhance the intake inertia effect.

この場合にも、図示の如く切換機構33におけ
るダイヤフラム装置16には、その第1室19に
は独立吸気通路6の負圧が供給され、第2室20
には吸気拡大室8の正圧が各々その応動方向を閉
弁方向に一致させて導入されており、上記第1実
施例と同様に低回転域での吸気慣性効果の発揮を
確実に達成することができる。
In this case as well, as shown in the figure, the negative pressure of the independent intake passage 6 is supplied to the first chamber 19 of the diaphragm device 16 in the switching mechanism 33, and the negative pressure of the independent intake passage 6 is supplied to the diaphragm device 16 in the switching mechanism 33.
The positive pressure of the intake expansion chamber 8 is introduced into each of the valves so that the response direction matches the valve closing direction, and as in the first embodiment, the intake inertia effect is reliably achieved in the low rotation range. be able to.

尚、本考案は以上の実施例のほかに、上記第1
実施例における仕切板9に上下の第1容積室8a
と第2容積室8bとを連通す連通孔を設けて、さ
らに低回転域で上下の両容積室8a,8b間での
吸気圧力振動を利用して吸気の充填効率を一層高
めるようにした吸気系に対しても適用可能であ
る。
In addition to the above-mentioned embodiments, the present invention also includes the above-mentioned first embodiment.
The partition plate 9 in the embodiment has upper and lower first volume chambers 8a.
A communication hole is provided to communicate between the upper and lower volume chambers 8a and 8b, and the intake air filling efficiency is further increased by utilizing intake pressure vibration between the upper and lower volume chambers 8a and 8b in the low rotation range. It is also applicable to systems.

また、上記各実施例では単一のダイヤフラム装
置16にスロツトル弁11下流の吸気負圧が導入
される第1室19の過給機下流の正圧が導入され
る第2室20とを形成してスロツトル弁11下流
の吸気負圧を作動圧力とする圧力応動部材として
の機能と過給機下流の正圧を作動圧力とする圧力
応動部材としての機能とを併有させるようにした
が、各圧力応動部材を別々に設けてもよい。ま
た、この2つの圧力応動部材を、上記実施例の如
く2つの状態間の一方の状態(実施例では閉弁状
態)への維持を行うように構成する他、2つの状
態間の切換を行うように、あるいは両機能を併有
するように変更してもよい。
Furthermore, in each of the above embodiments, a single diaphragm device 16 is formed with a first chamber 19 into which intake negative pressure downstream of the throttle valve 11 is introduced, and a second chamber 20 into which positive pressure downstream of the supercharger is introduced. In this way, the function of the pressure-responsive member is that the operating pressure is the intake negative pressure downstream of the throttle valve 11, and the function of the pressure-responsive member is that the operating pressure is the positive pressure downstream of the supercharger. A separate pressure responsive member may also be provided. In addition, these two pressure-responsive members are configured to maintain one of the two states (the valve closed state in the embodiment) as in the above embodiment, and also to switch between the two states. It may be modified to have both functions.

さらに、制御弁14を開閉させる手段としては
上記実施例のようなダイヤフラム装置16以外に
も種々の圧力応動式のアクチユエータが採用でき
る。
Furthermore, as a means for opening and closing the control valve 14, various pressure-responsive actuators can be employed in addition to the diaphragm device 16 as in the above embodiment.

また、本考案は、圧力応動式の切換機構とし
て、以上の実施例の如く圧力波の伝播に供される
通路長さを切換えるもの以外に、例えば圧力波の
伝播に供される通路の断面積を可変とする等、吸
気系の気柱の固有振動数を少なくとも2つの状態
に変化させる公知の各種切換機構に対しても広く
適用可能である。
In addition to the pressure-responsive switching mechanism that switches the length of the passageway used for pressure wave propagation as in the above embodiments, the present invention also provides a The present invention can also be widely applied to various known switching mechanisms that change the natural frequency of the air column of the intake system into at least two states, such as by making the air column variable.

また、本考案は以上の実施例の如く4気筒エン
ジンに限らず、他の多気筒エンジン、例えば5気
筒エンジンや6気筒エンジンにも適用することが
できるのは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the four-cylinder engine as in the embodiments described above, but can also be applied to other multi-cylinder engines, such as five-cylinder engines and six-cylinder engines.

(考案の効果) 以上説明したように、本考案の吸気装置によれ
ば、吸気拡大室の正圧を圧力応動部材に供給する
ための正圧通路と、独立吸気通路の負圧を圧力応
動部材に供給するための負圧通路と、負圧通路に
介設され独立吸気通路側から流入した負圧を貯溜
し且つ貯溜した負圧を圧力応動部材側に流出させ
る負圧リザーブタンクとを備えているため、エン
ジンの高負荷域においては、負圧の圧力波が殆ど
生成されない吸気拡大室から正圧が正圧通路を通
つて圧力応動部材に供給されると共に、負圧リザ
ーブタンクに貯溜された負圧が負圧通路を通つて
圧力応動材に供給されるので、エンジンの高負荷
域においても吸気系の気柱の固有振動数を少なく
とも2つの状態に変化させる切換手段を確実且つ
正確に作動させたり或いは保持したりすることが
できる。
(Effect of the invention) As explained above, according to the intake device of the invention, there is a positive pressure passage for supplying the positive pressure of the intake expansion chamber to the pressure responsive member, and a negative pressure of the independent intake passage is supplied to the pressure responsive member. and a negative pressure reserve tank which is interposed in the negative pressure passage and stores the negative pressure flowing in from the independent intake passage side and causes the stored negative pressure to flow out to the pressure responsive member side. Therefore, in high engine load ranges, positive pressure is supplied from the intake expansion chamber, where almost no negative pressure waves are generated, to the pressure-responsive components through the positive pressure passage, and is also stored in the negative pressure reserve tank. Since negative pressure is supplied to the pressure-responsive material through the negative pressure passage, the switching means that changes the natural frequency of the air column in the intake system into at least two states can be operated reliably and accurately even in high engine load ranges. It can be made or held.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の実施例を例示し、第1図〜第3
図は第1実施例を示し、第1図は第3図の−
線における縦断側面図、第2図は第3図の−
線における縦断側面図、第3図は一部破断した平
面図である。第4図は第2実施例を示す第1図相
当図である。 1……エンジン本体、4……気筒、6……独立
吸気通路、8……吸気拡大室、8a……第1容積
室、8b……第2容積室、11……スロツトル
弁、13……第2通路、14……制御弁(切換手
段)、15……バルブシヤフト、16……ダイヤ
フラム装置、18……ダイヤフラム、19……第
1室、20……第2室、23……負圧通路、25
……正圧通路、26……負圧リザーブタンク、2
7……逆止弁、29……逆止弁、31……コント
ロールユニツト、32……回転数センサ、33…
…切換機構。
The drawings illustrate embodiments of the present invention, and include FIGS. 1 to 3.
The figure shows the first embodiment, and FIG. 1 is - of FIG. 3.
A longitudinal side view along the line, Figure 2 is - of Figure 3.
FIG. 3 is a partially cut away plan view. FIG. 4 is a diagram corresponding to FIG. 1 showing the second embodiment. DESCRIPTION OF SYMBOLS 1... Engine body, 4... Cylinder, 6... Independent intake passage, 8... Intake expansion chamber, 8a... First volume chamber, 8b... Second volume chamber, 11... Throttle valve, 13... Second passage, 14... Control valve (switching means), 15... Valve shaft, 16... Diaphragm device, 18... Diaphragm, 19... First chamber, 20... Second chamber, 23... Negative pressure aisle, 25
... Positive pressure passage, 26 ... Negative pressure reserve tank, 2
7... Check valve, 29... Check valve, 31... Control unit, 32... Rotation speed sensor, 33...
...Switching mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 気筒に吸気を導入するための独立吸気通路と、
該独立吸気通路の上流端に接続され該独立吸気通
路で生じた負圧の圧力波を正圧の圧力波に変換せ
しめる吸気拡大室と、吸気系の気柱の固有振動数
を少なくとも2つの状態に変化させる切換手段
と、導入する正圧と負圧との差圧により上記切換
手段を作動せしめる圧力応動部材とを備えたエン
ジンの吸気装置において、上流端が上記吸気拡大
室に接続されていると共に下流端が上記圧力応動
部材に接続されており上記吸気拡大室の正圧を上
記圧力応動部材に供給するための正圧通路と、上
流端が上記独立吸気通路に接続されていると共に
下流端が上記圧力応動部材に接続されており上記
独立吸気通路の負圧を上記圧力応動部材に供給す
るための負圧通路と、該負圧通路に介設されてお
り独立吸気通路側から流入した負圧を貯溜し且つ
貯溜した負圧を圧力応動部材側に流出させる負圧
リザーブタンクとを備えていることを特徴とする
エンジンの吸気装置。
an independent intake passage for introducing intake air into the cylinder;
an intake expansion chamber that is connected to the upstream end of the independent intake passage and converts negative pressure waves generated in the independent intake passage into positive pressure waves; and an intake expansion chamber that sets the natural frequency of the air column of the intake system to at least two states. and a pressure responsive member that operates the switching means based on the differential pressure between the introduced positive pressure and the negative pressure, the upstream end of which is connected to the intake expansion chamber. and a positive pressure passage whose downstream end is connected to the pressure responsive member and for supplying the positive pressure of the intake expansion chamber to the pressure responsive member, and whose upstream end is connected to the independent intake passage and whose downstream end is connected to the pressure responsive member. is connected to the pressure-responsive member and supplies the negative pressure of the independent intake passage to the pressure-responsive member; An intake device for an engine, comprising a negative pressure reserve tank that stores pressure and causes the stored negative pressure to flow out to a pressure responsive member.
JP1985016471U 1985-02-06 1985-02-06 Expired JPH0343380Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985016471U JPH0343380Y2 (en) 1985-02-06 1985-02-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985016471U JPH0343380Y2 (en) 1985-02-06 1985-02-06

Publications (2)

Publication Number Publication Date
JPS61132438U JPS61132438U (en) 1986-08-19
JPH0343380Y2 true JPH0343380Y2 (en) 1991-09-11

Family

ID=30503274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985016471U Expired JPH0343380Y2 (en) 1985-02-06 1985-02-06

Country Status (1)

Country Link
JP (1) JPH0343380Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612199Y2 (en) * 1987-03-18 1994-03-30 本田技研工業株式会社 Intake manifold structure for engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181931U (en) * 1982-05-31 1983-12-05 日産ディーゼル工業株式会社 Intake system for internal combustion engine with supercharger

Also Published As

Publication number Publication date
JPS61132438U (en) 1986-08-19

Similar Documents

Publication Publication Date Title
US4671217A (en) Intake system for internal combustion engine
JPH0343380Y2 (en)
JPS61157717A (en) Air intake device of multicylinder engine
JPH0315779Y2 (en)
JPH04214923A (en) Intake device for multiple cylinder engine
JPH0343378Y2 (en)
JP2529548B2 (en) Multi-cylinder engine intake system
JP2500856B2 (en) Multi-cylinder engine intake system
JPH0643462Y2 (en) Engine intake system
JPH0320495Y2 (en)
JPS6291623A (en) Intake-air device of engine
JPH0320498Y2 (en)
JPH064029Y2 (en) Multi-cylinder engine intake system
JPH0341056Y2 (en)
JPH0343379Y2 (en)
JP2500855B2 (en) Multi-cylinder engine intake system
JPH0427370B2 (en)
JPH0353455B2 (en)
JPH0121135Y2 (en)
JPS61157716A (en) Air intake device of multicylinder engine
JPH01314A (en) engine intake system
JPS61116020A (en) Engine intake-air device
JPH01346A (en) Engine exhaust gas recirculation device
JPS6357820A (en) Suction device for engine
JPH0353453B2 (en)