JPS61157716A - Air intake device of multicylinder engine - Google Patents

Air intake device of multicylinder engine

Info

Publication number
JPS61157716A
JPS61157716A JP59275487A JP27548784A JPS61157716A JP S61157716 A JPS61157716 A JP S61157716A JP 59275487 A JP59275487 A JP 59275487A JP 27548784 A JP27548784 A JP 27548784A JP S61157716 A JPS61157716 A JP S61157716A
Authority
JP
Japan
Prior art keywords
intake
passages
expansion chamber
air intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59275487A
Other languages
Japanese (ja)
Other versions
JPH0353454B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Fumio Hitase
日當瀬 文雄
Yasuhiro Yuzuriha
楪 泰浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59275487A priority Critical patent/JPS61157716A/en
Priority to US06/795,443 priority patent/US4679531A/en
Priority to EP85114229A priority patent/EP0182223B1/en
Priority to DE8585114229T priority patent/DE3560959D1/en
Priority to KR1019850008374A priority patent/KR890001733B1/en
Publication of JPS61157716A publication Critical patent/JPS61157716A/en
Publication of JPH0353454B2 publication Critical patent/JPH0353454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve air intake inertia effect over full rotating area by communicating independent air intake passages connecting an air intake expansion chamber and respective cylinders mutual in a communicating unit provided in parallel with the expansion chamber and by controlling the communication according to engine running condition. CONSTITUTION:Respective air intake ports of cylinders 4a-4d are communicated by lower stream ends of independent air intake passages 12-15, and upper stream ends of the passages are connected to an air intake expansion chamber 16 extending in parallel with the engine longitudinal direction. And on the way of respective passages 12-15, a communicating unit 12 extending in parallel with the chamber 16 and communicating to respective passages 12-15 mutually through branch holes 21 branched from respective passages 12-15 is connected. Each branch hole 21 is provided with an opening and closing valve 23 respectively and each valve 23 is controlled to open and close by a control means 25 through a valve shaft 24. This time, each opening and closing valve 23 is controlled to close in a low rotating area in which engine rotating number is less than a set value and to open in a high rotating area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各気筒と吸気拡大室とを互いに独立した吸気
通路で接続した多気筒エンジンにおいて吸気の動的効果
(吸気慣性効果)により出力の向上を図るようにした多
気筒エンジンの吸気IIIの改良に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a multi-cylinder engine in which each cylinder and an intake expansion chamber are connected to each other through an independent intake passage. This invention relates to an improvement of the intake III of a multi-cylinder engine in order to improve the performance.

(従来の技術) 従来から、エンジンの吸気装置において、吸気開始に伴
って生じる負圧波(負圧の圧力波)が吸気通路上流側の
大気または吸気拡大室への開口端で反射され正圧波(正
圧の圧力波)となって吸気ボート方向に戻されることを
利用し、上記正圧波が吸気弁の閉弁寸前に吸気ポートに
達して吸気を燃焼室に押し込むようにする。いわゆる吸
気の慣性効果によって吸気の充填効率を高めるようにし
たものがある。このような技術を用いようとする場合に
、吸気通路の形状が一定であると、吸気通路に生じる圧
力波の振動周期と吸気弁のWUm周期とがマツチングし
て吸気慣性効果が^められるのは特定回転域に限られる
(Prior Art) Conventionally, in an engine intake system, a negative pressure wave (pressure wave of negative pressure) generated with the start of intake is reflected at the open end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave ( Taking advantage of the fact that the positive pressure wave becomes a positive pressure wave and is returned toward the intake boat, the positive pressure wave reaches the intake port just before the intake valve closes and forces the intake air into the combustion chamber. Some devices are designed to increase the filling efficiency of intake air using the so-called inertia effect of intake air. When using such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage and the WUm period of the intake valve will match, resulting in an intake inertia effect. is limited to a specific rotation range.

このため、特開昭56−115819号公報にみられる
ように、エンジンの回転数に応じて吸気通路の長さ等を
変えるようにし、例えば、各気筒別の吸気通路を上流部
で2叉に分岐させて長い通路と短い通路とを形成し、こ
れらの通路の上流端を吸気拡大室等に開口させるととも
に、短い通路に開閉弁を設けて、高回転域でこの開閉弁
を開くことにより吸気通路の有効長を短縮するようにし
く上記公報の第6図参照)、こうして低回転域と高回転
域とでそれぞれ吸気の慣性効果を高めるようにした吸気
装置が提案されている。
For this reason, as seen in Japanese Patent Application Laid-Open No. 56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is divided into two at the upstream part. They are branched to form a long passage and a short passage, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and an on-off valve is provided in the short passage, and this on-off valve is opened in the high rotation range to increase the intake air. An intake device has been proposed in which the effective length of the passage is shortened (see FIG. 6 of the above-mentioned publication), thereby increasing the inertial effect of intake air in both the low rotation range and the high rotation range.

(発明が解決しようとする問題点) ところで、上記従来の吸気装置によると、多気筒エンジ
ンの場合、各気筒毎に圧力波が生じているにも拘らず、
単に高回転域では各気筒別の吸気通路の有効長を短縮す
ること等により各気筒とそれに対応する吸気通路の上流
側開口端との間の圧力伝播によって吸気慣性効果を高め
ているにすぎず、吸気の充填効率の向上に余地がある。
(Problems to be Solved by the Invention) By the way, according to the above-mentioned conventional intake system, in the case of a multi-cylinder engine, although pressure waves are generated in each cylinder,
In the high rotation range, the effective length of the intake passage for each cylinder is simply shortened to increase the intake inertia effect through pressure propagation between each cylinder and the upstream opening end of the corresponding intake passage. , there is room for improvement in intake air filling efficiency.

すなわち、他の気筒に生じる圧力波をも有効に利用する
ようにすれば、充填効率をより一層向上させ得ることが
期待できる。
That is, if pressure waves generated in other cylinders are also effectively utilized, it is expected that the filling efficiency can be further improved.

そこで、本発明はかかる点に着目してなされたもので、
各気筒別の吸気通路の有効長を変えることにより、低回
転域と高回転域とでそれぞれ吸気の慣性効果を高めるよ
うにするとともに、特に高出力が要求される高回転域で
は各気筒間でも互いに他の気筒に生じる圧力波を有効に
作用せしめ合うことにより、高回転域での吸気充填効率
をより一!!fnめで出力の向上を図ることを目的とす
る。
Therefore, the present invention has been made with attention to this point,
By changing the effective length of the intake passage for each cylinder, the inertia effect of the intake air is increased in the low rotation range and high rotation range, respectively, and in the high rotation range where high output is required, the inertia effect between each cylinder is increased. By effectively interacting with the pressure waves generated in other cylinders, the intake air filling efficiency in the high rotation range is improved! ! The purpose is to improve the output by fn.

さらに、本発明の目的は、上記のような機能を果たす吸
気系を得るに当って、この吸気系の形状構造をできるだ
けコンパクトかつ小型なものにし、車載性の向上を図る
ことにある。
A further object of the present invention is to make the shape and structure of this intake system as compact and small as possible in order to obtain an intake system that performs the above-mentioned functions, thereby improving vehicle mountability.

〈問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、吸気
拡大室と各気筒とを互いに独立した気筒別の各独立吸気
通路で接続した多気筒エンジンの吸気装置を対象とし、
これに対して、上記各独立吸気通路の途中から分岐して
各独立吸気通路を相互に連通ずる連通部と、この連通部
による各独立吸気通路相互間の連通をエンジンの運転状
態に応じて制御する制御手段とを設ける。さらに、上記
連通部を、吸気拡大室を構成する構成壁の一部によって
形成し、吸気拡大室に並設する構成とじたものである。
<Means for Solving the Problems> In order to achieve the above object, the solving means of the present invention is a multi-cylinder engine in which the intake expansion chamber and each cylinder are connected by independent intake passages for each cylinder. Targeting the intake device,
On the other hand, there is a communication section that branches off from the middle of each independent intake passage and communicates each independent intake passage with each other, and the communication between each independent intake passage through this communication section is controlled according to the operating state of the engine. A control means is provided. Further, the communication portion is formed by a part of a wall constituting the intake expansion chamber, and is arranged in parallel with the intake expansion chamber.

(作用) 上記の構成により、本発明では、エンジン回転数が設定
値未満の低回転域では、制御手段により連通部による各
独立吸気通路相互間の連通を遮断しておくと、各気筒か
ら伝播する負圧波が吸気拡大室で正圧の圧力波に反転し
て反射されるので、吸気慣性効果を得るための通路長が
吸気拡大室か ・ら各気筒までの比較的長いものとなり
、このことにより低回転域での吸気の慣性効果が高めら
れる。
(Function) With the above configuration, in the present invention, in a low engine speed range where the engine speed is less than a set value, if the communication between the independent intake passages is cut off by the control means by the communication section, the air will be transmitted from each cylinder. Since the negative pressure wave that occurs is reversed and reflected as a positive pressure wave in the intake expansion chamber, the passage length to obtain the intake inertia effect is relatively long from the intake expansion chamber to each cylinder. This increases the intake inertia effect in the low rotation range.

一方、エンジン回転数が設定値以上の高回転域では、制
御手段により各独立吸気通路相互間を連通部を介して連
通させると、各独立吸気通路途中の上記連通部において
各気筒から伝播する負圧波が正圧の圧力波に反転して反
射されることになって、吸気慣性効果を得るための吸気
通路の有効長が短くなる。しかも、他の気筒からの圧力
波が上記連通部により伝播することになり、これらの圧
力波の相乗作用によって高回転域での充填効率が大幅に
高められることになる。
On the other hand, in a high rotation range where the engine speed is higher than the set value, if the control means communicates the independent intake passages with each other through the communication part, the negative energy propagated from each cylinder at the communication part in the middle of each independent intake passage. Since the pressure wave is inverted and reflected as a positive pressure wave, the effective length of the intake passage for obtaining the intake inertia effect becomes shorter. Moreover, pressure waves from other cylinders are propagated through the communication portion, and the synergistic effect of these pressure waves greatly increases the filling efficiency in the high rotation range.

また、その場合、各独立吸気通路の通路長を同一にすべ
くエンジン長手方向に平行に配置される吸気拡大室に対
して、上記連通部が吸気拡大室の構成壁の一部によって
形成されて吸気拡大室に並設されているので、各気筒か
ら各独立吸気通路途中の連通部分岐箇所までの通路長を
同一にして上記作用を有効に確保しながら、小型でコン
パクトな吸気系を形成することが可能となる。
In this case, the communication portion may be formed by a part of the wall constituting the intake expansion chamber, which is arranged parallel to the longitudinal direction of the engine so that the passage lengths of the independent intake passages are the same. Since they are arranged in parallel in the intake expansion chamber, the passage length from each cylinder to the communication branch point in the middle of each independent intake passage is the same, effectively ensuring the above-mentioned effect, and forming a small and compact intake system. becomes possible.

(実施例) 以下、本発明の実施例について図面に基づいて詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第5図は本発明を4気筒4サイクルエンジンの
適用した場合の第1実施例を示し、第1図はその概略構
造、第2図〜第5図は具体的構造を示している。図示の
エンジンにおいて、シリンダブロック2およびシリンダ
ヘッド3等からなるエンジン本体1にはその長手方向に
第1〜第4気筒48〜4dが直列状に形成されている。
Figures 1 to 5 show a first embodiment in which the present invention is applied to a 4-cylinder, 4-stroke engine, with Figure 1 showing its schematic structure and Figures 2 to 5 showing its specific structure. There is. In the illustrated engine, first to fourth cylinders 48 to 4d are formed in series in the longitudinal direction of an engine body 1 that includes a cylinder block 2, a cylinder head 3, and the like.

この8気m4a〜4dにはそれぞれピストン5の上方に
燃焼室6が形成され、この燃焼室6に吸気ボート7およ
び排気ボート8が開口し、これらのボート7.8にそれ
ぞれ吸気弁9および排気弁10が装備されている。また
、上記燃焼室6には点火プラグ11が装備されている。
A combustion chamber 6 is formed above the piston 5 in each of these 8-air m4a to 4d, an intake boat 7 and an exhaust boat 8 are opened in the combustion chamber 6, and an intake valve 9 and an exhaust boat 8 are connected to these boats 7.8, respectively. A valve 10 is provided. Further, the combustion chamber 6 is equipped with a spark plug 11.

上記各気筒4a〜4dの各吸気ボート7には、互いに独
立した気筒別の独立吸気通路12〜15の下流端が連通
し、これらの独立吸気通路12〜15の上流端はエンジ
ン長手方向(クランクシャフト方向)と平行に延びる吸
気拡大室16に接続されている。また、このことにより
、各独立吸気通路12〜15の通路長はほぼ同一長さに
設定されている。上記吸気拡大室16には吸気導入管1
7を介して外気が導入され、この吸気導入管17には吸
入空気量を制御するスロットル弁18が配設されている
。また、上記各独立吸気通路12〜15の下流端近傍部
には、燃料通路19に接続された燃料噴射弁20が配設
されている。
The downstream ends of independent intake passages 12 to 15 for each cylinder, which are independent from each other, communicate with each intake boat 7 of each of the cylinders 4a to 4d, and the upstream ends of these independent intake passages 12 to 15 communicate with each other in the engine longitudinal direction (crank direction). It is connected to an intake expansion chamber 16 extending parallel to the shaft direction). Further, due to this, the passage lengths of the independent intake passages 12 to 15 are set to be approximately the same length. The intake air introduction pipe 1 is provided in the intake expansion chamber 16.
Outside air is introduced through the air intake pipe 7, and a throttle valve 18 for controlling the amount of intake air is provided in the intake air introduction pipe 17. Further, a fuel injection valve 20 connected to the fuel passage 19 is disposed near the downstream end of each of the independent intake passages 12 to 15.

上記各独立吸気通路12〜15の途中箇所には、吸気拡
大室16(っまりエンジン長手方向)に平行に延び、こ
れらの独立吸気通路12〜15がら分岐する分岐孔21
を介してこれらの独立吸気通路12〜15を相互に連通
する連通部22が接続されている。また、このことによ
り、上記各独立吸気通路12〜15の連通部分岐箇所か
ら各気筒4a〜4dまでの通路長はほぼ同一長さに設定
されている。
In the middle of each of the independent intake passages 12 to 15, there is a branch hole 21 that extends parallel to the intake expansion chamber 16 (in the longitudinal direction of the engine) and branches from these independent intake passages 12 to 15.
A communication portion 22 that communicates these independent intake passages 12 to 15 with each other is connected thereto. Further, as a result, the lengths of the passages from the communication section branching point of each of the independent intake passages 12 to 15 to each of the cylinders 4a to 4d are set to be approximately the same length.

上記各分岐孔21にはそれぞれ分岐孔18を開閉する開
閉弁23が設けられており、この各開閉弁23は、連通
部19長手方向に延びるパルプシャフト24に一体的に
連動可能に固定されていて、図示していないが、エンジ
ン回転数検出手段等の出力を受ける制御回路によりアク
チュエータを介して開閉制御され、上記連通部22によ
る各独立吸気通路12〜15相互間の連通をエンジン運
転状態に応じてIll m L、、エンジン回転数が設
定値未満の低回転域では閉じられ、エンジン回転数が設
定値以上の高回転域では開かれるように制御する制御手
段25を構成している。なお、このようなエンジン回転
数に応じた開閉弁23の開閉作動は、少なくとも出力が
要求される高負荷時において行われるようにすればよく
、低負荷時には開閉弁23が同状態または閉状態に保た
れるようにしてもよい。
Each branch hole 21 is provided with an on-off valve 23 that opens and closes the branch hole 18, and each on-off valve 23 is integrally and interlockably fixed to a pulp shaft 24 extending in the longitudinal direction of the communication portion 19. Although not shown, opening and closing are controlled via an actuator by a control circuit that receives an output from an engine rotational speed detection means, etc., and the communication between the independent intake passages 12 to 15 through the communication portion 22 is brought into engine operating state. Accordingly, the control means 25 is configured to close in a low rotation range where the engine rotation speed is less than a set value and to open in a high rotation range where the engine rotation speed is equal to or higher than the set value. Note that the opening/closing operation of the on-off valve 23 according to the engine speed may be performed at least during high loads where output is required, and the on-off valve 23 may be in the same state or in the closed state at low loads. It may be maintained.

そして、上記連通部22と吸気拡大室16とにおける吸
気系構造は、両者が共にエンジン長手方向に平行に延び
るように形成されていることから、第2図〜第5図に詳
示するように、吸気系に介設したタンク26を仕切壁2
7で上下に分割することにより、このタンク26内に比
較的大きな容量の吸気拡大室16と比較的小さな容量の
連通部22とを区画形成している。つまり、連通部22
は、吸気拡大室16を構成する構成壁の一部(仕切壁2
7)によって形成し吸気拡大室16に並設するようにし
ている。さらに、上記連通部22の下端に各独立吸気通
路12〜15の分岐孔21を開口させるとともに、この
分岐孔21の形成箇所よりも上流側の各独立吸気通路1
2a〜15aを湾曲させて、その上流端を吸気拡大室1
6の側辺部に開口させている。
The intake system structure of the communication portion 22 and the intake expansion chamber 16 are both formed so as to extend in parallel to the longitudinal direction of the engine, as shown in detail in FIGS. 2 to 5. , the tank 26 installed in the intake system is connected to the partition wall 2
By dividing the tank 26 into upper and lower sections at 7, the intake expansion chamber 16 having a relatively large capacity and the communication portion 22 having a relatively small capacity are defined within the tank 26. In other words, the communication portion 22
is a part of the constituent wall configuring the intake expansion chamber 16 (partition wall 2
7) and arranged in parallel with the intake expansion chamber 16. Furthermore, the branch holes 21 of each of the independent intake passages 12 to 15 are opened at the lower end of the communication portion 22, and each independent intake passage 1 is located upstream of the location where the branch hole 21 is formed.
2a to 15a are curved, and their upstream ends are connected to the intake expansion chamber 1.
It is opened on the side of 6.

加えて、上記各独立吸気通路12〜15の上流側湾曲部
分12a〜15aは上記タンク26の局面に沿って形成
されていて、上記タンク26の吸気拡大室16およびそ
の外方の独立吸気通路12a〜15aを構成する部分2
6aが一体成形されるとともに、タンク26の連通部2
2およびその外方の独立吸気通路12a〜15aを構成
する部分26bが一体成形され、これら26a、26b
が仕切壁27を介して結合されているとともに、これら
に各独立吸気通路12〜15の下流側部分12b〜15
bが接続されており、吸気系をコンパクトに形成するよ
うになされている。
In addition, the upstream curved portions 12a to 15a of each of the independent intake passages 12 to 15 are formed along the curve of the tank 26, and the intake expansion chamber 16 of the tank 26 and the independent intake passage 12a outside thereof are ~ Part 2 constituting 15a
6a is integrally molded, and the communication portion 2 of the tank 26
2 and a portion 26b constituting the independent intake passages 12a to 15a outside thereof are integrally molded, and these 26a, 26b
are connected to each other via a partition wall 27, and downstream portions 12b to 15 of each independent intake passage 12 to 15 are connected to these through a partition wall 27.
b is connected to form a compact intake system.

次に、上記実施例の作用について述べるに、制御手段2
5により各開閉弁23が閉じて連通部22による各独立
吸気通路12〜15相互間の連通が遮断されている状態
では、吸・気行程で生じる負圧波が吸気拡大室16まで
伝播されてここで反射され、つまり比較的長い通路を通
して上記負圧波およびその反射波が伝播することにより
、低回転域においてこのような圧力波の振動周期が吸気
弁開閉周期にマツチングすることになり、低回転域での
吸気の慣性効果が^められて、吸気充填効率が高められ
る。一方、制御手段25により上記各開閉弁23が開か
れて連通部25により各独立吸気通路12〜15相互間
が連通している状態では、吸気行程で生じる負圧波が上
記連通部22で反射されてこの負圧波および反射波の伝
播に供される通路長さが短くなることにより、高回転域
で吸気慣性効果が高められるとともに、この運転域では
他の気筒から伝播される圧力波も連通部25を介して有
効に作用することになり、高回転域での充填効率が大幅
に高められる。従って、少なくとも高負荷時に、上記低
回転域と高回転域との吸気慣性効果が得られる各回転数
の中間回転数に相当する所定回転数を境に、これより低
回転側で開閉弁23を閉じ、これより高回転側で開閉弁
23を開くようにしておくことにより、全回転域で吸気
充填効率が高められて出力を向上させることができる。
Next, to describe the operation of the above embodiment, the control means 2
5, when the on-off valves 23 are closed and the communication between the independent intake passages 12 to 15 through the communication portion 22 is cut off, the negative pressure waves generated during the intake and intake strokes are propagated to the intake expansion chamber 16 and are In other words, the negative pressure wave and its reflected wave propagate through a relatively long passage, so that the oscillation period of such pressure waves matches the intake valve opening/closing period in the low rotation range. The inertia effect of the intake air at the pump is reduced, increasing the intake air filling efficiency. On the other hand, when the on-off valves 23 are opened by the control means 25 and the independent intake passages 12 to 15 are in communication with each other through the communication section 25, negative pressure waves generated during the intake stroke are reflected at the communication section 22. By shortening the length of the passage used for the propagation of negative pressure waves and reflected waves from the lever, the intake inertia effect is enhanced in the high rotation range, and in this operating range, pressure waves propagated from other cylinders are also transmitted through the communication section. 25, and the charging efficiency in the high rotation range is greatly increased. Therefore, at least when the load is high, the opening/closing valve 23 is turned on at a lower rotation speed after reaching a predetermined rotation speed corresponding to the intermediate rotation speed between the respective rotation speeds at which the intake inertia effect between the low rotation range and the high rotation range can be obtained. By closing the on-off valve 23 and opening it at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range, and the output can be improved.

特に、高回転域での吸気充填効率は、従来のように単に
吸気通路を短縮させて慣性効果を高めるようにした場合
と比べても、気筒間の圧力伝播作用でより一層高められ
ることとなる。
In particular, the intake air filling efficiency in the high rotation range can be further improved by the pressure propagation effect between the cylinders, compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに適当な吸
気拡大室16および連通部22の大きさとしては、吸気
拡大室16は排気量の0.5倍以上の容量とし、連通部
22は排気量の1.5倍以下の容量としておくことが望
ましい。さらに、上記連通部22は吸気拡大室16より
も容量を小さクシ、かつ連通部22の断面積は各独立吸
気通路12〜15の断面積よりも大きくしておくことが
望ましい。
The intake expansion chamber 16 and the communication section 22 have a capacity that is 0.5 times or more the exhaust volume, and the communication section 22 has a capacity that is 0.5 times or more the exhaust volume. It is desirable that the capacity be 1.5 times or less than the displacement. Further, it is desirable that the communication portion 22 has a smaller capacity than the intake expansion chamber 16, and that the cross-sectional area of the communication portion 22 is larger than the cross-sectional area of each of the independent intake passages 12-15.

そして、この場合、上記連通部22は、タンク26を仕
切壁27で上下に分割することにより吸気拡大室16に
並設され、この吸気拡大室16の構成壁の一部(仕切壁
27)によって形成されているので、上述の如き作用効
果を発揮する吸気系をコンパクトに小型に形成すること
ができ、その車載性を向上させることができる。特に、
上記実施例の如く各独立吸気通路1・2〜15の分岐孔
21よりも上流側の湾曲部分12a〜15aをタンク2
6の周面に沿って形成し、かつタンク26の吸気拡大室
16およびその外方の独立吸気通路128〜15aを構
成する部分26aと、タンク26の連通部22およびそ
の外方の独立吸気通路128〜15aを構成する部分2
6bとをそれぞれ一体成形して仕切W!27を介して結
合するようにすれば、上記吸気系のコンパクト化を一層
図ることができるとともに、成形性や組付性の向上も併
せ図ることがで−きる。
In this case, the communication section 22 is arranged in parallel with the intake expansion chamber 16 by dividing the tank 26 into upper and lower parts by a partition wall 27, and is connected to a portion of the wall (partition wall 27) constituting the intake expansion chamber 16. As a result, the intake system that exhibits the above-mentioned functions and effects can be formed compactly and compactly, and its mountability on a vehicle can be improved. especially,
As in the above embodiment, the curved portions 12a to 15a on the upstream side of the branch holes 21 of the independent intake passages 1 and 2 to 15 are connected to the tank 2.
A portion 26a formed along the circumferential surface of the tank 6 and constituting the intake expansion chamber 16 of the tank 26 and the independent intake passages 128 to 15a outside thereof, and the communication portion 22 of the tank 26 and the independent intake passage outside thereof. Part 2 composing 128-15a
Partition W by integrally molding 6b and 6b respectively! If they are connected via 27, the intake system can be made more compact, and the moldability and assemblability can also be improved.

尚、゛本発明は上記実施例に限定されるものではなく、
その他種々の変形例をも包含するものである。例えば、
第6図は本発明の第2実施例を示し、吸気拡大室16を
構成するタンク28の外壁の一部を共用して連通部22
を構成したものである。
It should be noted that the present invention is not limited to the above embodiments,
It also includes various other modifications. for example,
FIG. 6 shows a second embodiment of the present invention, in which a part of the outer wall of a tank 28 constituting the intake expansion chamber 16 is used in common to provide a communication section 22.
It is composed of

すなわち、本例では、吸気拡大室16を構成するタンク
28と連通部22を構成するタンク29とが、連通部2
2を吸気拡大室16の構成壁の一部によって形成すべく
両者の外壁の一部を共用して上下に並設されている。さ
らに、独立吸気通路12〜15の上流側湾曲部分12a
〜15aは上記タンク28および29の周面に沿って形
成され、タンク29の上下中間位置を分割面としてそれ
ぞれ一体成形された上下部分が接合されて、吸気系を構
成したものである。本例においても上記第1実施例と同
様の作用効果を奏し得る。
That is, in this example, the tank 28 that constitutes the intake expansion chamber 16 and the tank 29 that constitutes the communication section 22 are connected to the communication section 2.
2 are formed by a part of the wall constituting the intake expansion chamber 16, so that they are arranged vertically in parallel, sharing a part of their outer walls. Furthermore, the upstream curved portion 12a of the independent intake passages 12 to 15
15a are formed along the circumferential surfaces of the tanks 28 and 29, and the upper and lower portions of the tank 29, which are integrally molded with the upper and lower intermediate positions serving as dividing planes, are joined to form an intake system. In this example as well, the same effects as in the first example can be achieved.

さらに、本発明は以上の実施例の如く吸気拡大室16と
連通部22とを完全に仕切ったものに限らず、吸気拡大
室16と連通部22とを例えば第2図で仮想線で示す如
く仕切壁27に設けた連通路30で連通させて、低回転
域でこの連通路30を介して連通する吸気拡大室16と
連通部22との間で吸気圧力振動を起こすことにより吸
気の充填効率を一層高めるようにしたものに対しても適
用可能である。
Furthermore, the present invention is not limited to the case where the intake expansion chamber 16 and the communication section 22 are completely partitioned off as in the above embodiments, but the intake expansion chamber 16 and the communication section 22 are separated, for example, as shown by imaginary lines in FIG. The intake air filling efficiency is improved by communicating through a communication passage 30 provided in the partition wall 27 and causing intake pressure vibration between the intake expansion chamber 16 and the communication part 22, which communicate through the communication passage 30 in the low rotation range. It is also applicable to those designed to further increase the

さらに、本発明は以上の実施例の如く4気筒エンジンに
限らず、他の多気筒エンジン、例えば5気筒エンジンや
6気筒エンジンにも適用することができる。そして、各
気筒の吸気行程のずれが4気筒エンジンでは1800と
なるが、例えば6気筒エンジンでは120°となるので
、6気筒のエンジンに適用する場合は上記連通部22を
短く形成しておけば、高回転域で特定気筒に他の気筒か
ら連通部22を通して伝播される圧力波と連通部22か
らの反射波とをほぼ合致させることができる。
Furthermore, the present invention is not limited to the four-cylinder engine as in the above embodiments, but can also be applied to other multi-cylinder engines, such as five-cylinder engines and six-cylinder engines. Furthermore, the deviation in the intake stroke of each cylinder is 1800° in a 4-cylinder engine, but 120° in a 6-cylinder engine, for example, so when applying to a 6-cylinder engine, the communication portion 22 should be formed short. In a high rotation range, the pressure waves propagated to a specific cylinder from other cylinders through the communication section 22 and the reflected waves from the communication section 22 can be made to almost match.

(発明の効果) 以上説明したように、本発明によれば、吸気拡大室と各
気筒との間の互いに独立した各独立吸気通路をその途中
で相互に連通する連通部を設け、その連通部による連通
をエンジン運転状態に応じて制御するようにしたので、
低回転域および高回転域でそれぞれ吸気の慣性効果を高
めることができ、特に高回転域では上記連通部を通して
気筒間を伝播する圧力波によって吸気充填効率をより一
層高めて、^回転時の出力を大幅に向上させることがで
きる。しかも、上記連通部を吸気拡大室に並設したので
、上記の効果を発揮する吸気系を小型、コンパクトに形
成することができ、車載性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the present invention, a communication portion is provided midway through which the mutually independent intake passages between the intake expansion chamber and each cylinder communicate with each other, and the communication portion Since the communication is controlled according to the engine operating status,
The inertia effect of the intake air can be enhanced in both the low and high rotation ranges, and especially in the high rotation range, the pressure waves propagating between the cylinders through the communication section further increase the intake air filling efficiency, increasing the output at rotation. can be significantly improved. Furthermore, since the communication portion is arranged in parallel with the intake expansion chamber, the intake system that exhibits the above effects can be formed small and compact, and the ease of mounting on a vehicle can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示し、第1図〜第5図は第1
実施例を示し、第1図はその概略断面図、第2図は具体
的構造を示す断面図、第3図は同一部破断した斜視図、
第4図および第5図はそれぞtt421i!!Iのrv
−rvsおよびv−vmにおける断m図である。第6図
は第2実施例を示す第2図相当図である。 1・・・エンジン本体、4a〜4d・・・気筒、12〜
15・・・独立吸気通路、16・・・吸気拡大室、22
・・・連通部、23・・・開開弁、25・・・制御手段
、26・・・タンク、27・・・仕切壁、28.29・
・・タンク。 −二二一二一二  t
The drawings illustrate embodiments of the invention, and FIGS.
An example is shown, FIG. 1 is a schematic sectional view thereof, FIG. 2 is a sectional view showing a specific structure, and FIG. 3 is a partially broken perspective view of the same.
Figures 4 and 5 are respectively tt421i! ! I's rv
-rvs and v-vm. FIG. 6 is a diagram corresponding to FIG. 2 showing the second embodiment. 1...Engine body, 4a-4d...Cylinder, 12-
15...Independent intake passage, 16...Intake expansion chamber, 22
...Communication part, 23...Opening/opening valve, 25...Control means, 26...Tank, 27...Partition wall, 28.29.
··tank. -221212 t

Claims (1)

【特許請求の範囲】[Claims] (1)吸気拡大室と各気筒とを互いに独立した気筒別の
各独立吸気通路で接続した多気筒エンジンの吸気装置に
おいて、上記各独立吸気通路の途中から分岐して各独立
吸気通路を相互に通過する連通部と、この連通部による
各独立吸気通路相互間の連通をエンジンの運転状態に応
じて制御する制御手段とを設け、上記連通部を、吸気拡
大室を構成する構成壁の一部によつて形成し吸気拡大室
に並設したことを特徴とする多気筒エンジンの吸気装置
(1) In an intake system for a multi-cylinder engine in which the intake expansion chamber and each cylinder are connected by independent intake passages for each cylinder that are independent of each other, each independent intake passage is branched from the middle and the independent intake passages are connected to each other. A communication section that passes through the passage, and a control means that controls communication between the independent intake passages through this communication section according to the operating state of the engine, and the communication section is a part of the constituent wall that constitutes the intake expansion chamber. An intake system for a multi-cylinder engine, characterized in that the intake system is formed by a multi-cylinder engine and is arranged in parallel with an intake expansion chamber.
JP59275487A 1984-11-08 1984-12-29 Air intake device of multicylinder engine Granted JPS61157716A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59275487A JPS61157716A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine
US06/795,443 US4679531A (en) 1984-11-08 1985-11-06 Intake system for internal combustion engine
EP85114229A EP0182223B1 (en) 1984-11-08 1985-11-08 Intake system for internal combustion engine
DE8585114229T DE3560959D1 (en) 1984-11-08 1985-11-08 Intake system for internal combustion engine
KR1019850008374A KR890001733B1 (en) 1984-11-08 1985-11-08 Intake system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275487A JPS61157716A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Publications (2)

Publication Number Publication Date
JPS61157716A true JPS61157716A (en) 1986-07-17
JPH0353454B2 JPH0353454B2 (en) 1991-08-15

Family

ID=17556201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275487A Granted JPS61157716A (en) 1984-11-08 1984-12-29 Air intake device of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS61157716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422829U (en) * 1987-07-31 1989-02-07
US8061946B2 (en) * 2003-10-23 2011-11-22 Big Alpha Co., Inc. Threaded assembly comprising internal thread member, and external thread member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422829U (en) * 1987-07-31 1989-02-07
US8061946B2 (en) * 2003-10-23 2011-11-22 Big Alpha Co., Inc. Threaded assembly comprising internal thread member, and external thread member

Also Published As

Publication number Publication date
JPH0353454B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
KR890001733B1 (en) Intake system for internal combustion engine
US4671217A (en) Intake system for internal combustion engine
JPS6263127A (en) Suction device for engine
JPS627922A (en) Intake structure of engine
JPS61157716A (en) Air intake device of multicylinder engine
JPS61157717A (en) Air intake device of multicylinder engine
JPH0343378Y2 (en)
JPS61116020A (en) Engine intake-air device
JPH0343379Y2 (en)
JP2500856B2 (en) Multi-cylinder engine intake system
JPH0353453B2 (en)
JPH0320498Y2 (en)
JPH0341056Y2 (en)
JPH04214923A (en) Intake device for multiple cylinder engine
JPH0320495Y2 (en)
JPH0343380Y2 (en)
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0361006B2 (en)
JPS60222524A (en) Suction device of engine
JPH0353455B2 (en)
JPS6267225A (en) Air intake device for engine
JPH0427370B2 (en)
JPH0568612B2 (en)
JPS59226264A (en) Suction device for engine
JPS61201820A (en) Air intake device for multicylinder engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees