JPH0427370B2 - - Google Patents

Info

Publication number
JPH0427370B2
JPH0427370B2 JP59275489A JP27548984A JPH0427370B2 JP H0427370 B2 JPH0427370 B2 JP H0427370B2 JP 59275489 A JP59275489 A JP 59275489A JP 27548984 A JP27548984 A JP 27548984A JP H0427370 B2 JPH0427370 B2 JP H0427370B2
Authority
JP
Japan
Prior art keywords
intake
passage
tank
cylinder
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59275489A
Other languages
Japanese (ja)
Other versions
JPS61157718A (en
Inventor
Fusatoshi Tanaka
Shuichi Nakatani
Hideo Nakayama
Hiroyuki Hanabusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59275489A priority Critical patent/JPS61157718A/en
Publication of JPS61157718A publication Critical patent/JPS61157718A/en
Publication of JPH0427370B2 publication Critical patent/JPH0427370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各気筒と吸気拡大室(タンク)とを
互いに独立した吸気通路で接続して、吸気の動的
効果(吸気慣性効果)により出力の向上を図るよ
うにした多気筒エンジンの吸気装置の改良に関す
るものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention connects each cylinder and an intake expansion chamber (tank) through independent intake passages, thereby utilizing the dynamic effect of intake air (intake inertia effect). The present invention relates to an improvement of an intake system for a multi-cylinder engine designed to improve output.

(従来の技術) 従来から、エンジンの吸気装置において、吸気
開始に伴つて生じる負圧数(負圧の圧力波)が吸
気通路上流側の大気または吸気拡大室への開口端
で反射され正圧波(正圧の圧力波)となつて吸気
ポート方向に戻されることを利用し、上記正圧波
が吸気弁の閉弁寸前に吸気ポートに達して吸気を
燃焼室に押し込むようにする、いわゆる吸気の慣
性効果によつて吸気の充填効率を高めるようにす
ることは知られている。このような技術を用いよ
うとする場合に、吸気通路の形状が一定である
と、吸気通路に生じる圧力波の振動周期と吸気弁
の開閉周期とがマツチングして吸気慣性効果が高
められるのは特定回転域に限られる。
(Prior art) Conventionally, in the intake system of an engine, the negative pressure number (pressure wave of negative pressure) generated with the start of intake is reflected at the open end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave is generated. By utilizing the fact that the positive pressure wave becomes a positive pressure wave and returns toward the intake port, the positive pressure wave reaches the intake port just before the intake valve closes and forces the intake air into the combustion chamber. It is known to increase the filling efficiency of intake air through inertial effects. When using such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage matches the opening and closing period of the intake valve, and the intake inertia effect is enhanced. Limited to a specific rotation range.

このため、従来、特開昭56−115819号公報にみ
られるように、エンジンの回転数に応じて吸気通
路の長さ等を変えるようにし、例えば、各気筒別
の吸気通路を上流部で2叉に分岐させて長い通路
と短い通路とを形成し、これらの通路の上流端を
吸気拡大室等に開口させるとともに、短い通路に
制御弁を設けて、高回転域でこの制御弁を開くこ
とにより吸気通路の有効長を短縮するようにし
(上記公報の第6図参照)、こうして低回転域と高
回転域とでそれぞれ吸気の慣性効果を高めるよう
にした吸気装置が提案されている。
For this reason, conventionally, as seen in JP-A-56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is divided into two parts at the upstream part. A long passage and a short passage are formed by branching, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and a control valve is provided in the short passage, and this control valve is opened in a high rotation range. An intake device has been proposed in which the effective length of the intake passage is shortened (see FIG. 6 of the above-mentioned publication), thereby increasing the inertial effect of intake air in both the low-speed range and the high-speed range.

(発明が解決しようとする問題点) ところで、上記提案例の如く吸気拡大室(タン
ク)と各気筒とを互いに独立して接続する各独立
吸気通路の途中を上記吸気拡大室に連通する第2
通路を設けるとともに、該第2通路にエンジンの
運転状態に応じて開閉する制御弁を設けた多気筒
エンジンの吸気装置においては、上記吸気拡大室
(タンク)がエンジン長手方向に平行に延びる形
状であることから、エンジン振動に伴つてタンク
はエンジン長手方向に沿つて振動変形しやすく、
このことにより第2通路を開閉する制御弁の開閉
動作がスームズに行われ難くなり、上述の如き低
回転域と高回転域とでの吸気慣性効果の発揮が達
成されなくなるという問題がある。
(Problems to be Solved by the Invention) By the way, as in the above-mentioned proposed example, there is a second intake passage that connects the intake expansion chamber (tank) and each cylinder independently of each other and communicates with the intake expansion chamber in the middle of each independent intake passage.
In an intake system for a multi-cylinder engine in which a passage is provided and a control valve is provided in the second passage to open and close depending on the operating state of the engine, the intake expansion chamber (tank) has a shape extending parallel to the longitudinal direction of the engine. Because of this, the tank tends to vibrate and deform along the longitudinal direction of the engine as the engine vibrates.
This makes it difficult to smoothly open and close the control valve that opens and closes the second passage, resulting in a problem that the intake inertia effect cannot be achieved in the low and high rotation ranges as described above.

本発明はかかる点に鑑みてなされたものであ
り、その目的とするところは、吸気拡大室(タン
ク)を、制御弁のバルブシヤフトと該バルブシヤ
フトを支承する支承部とによつて補強することに
より、吸気拡大室を構成するタンクの剛性を十分
にかつ有効に確保して、エンジン振動に伴うタン
クの振動を抑え、よつて上記制御弁のスムーズな
開閉を確保することにある。
The present invention has been made in view of the above, and an object of the present invention is to reinforce an intake expansion chamber (tank) with a valve shaft of a control valve and a support portion that supports the valve shaft. Accordingly, the purpose is to sufficiently and effectively ensure the rigidity of the tank constituting the intake expansion chamber, suppress vibrations of the tank due to engine vibrations, and thereby ensure smooth opening and closing of the control valve.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段
は、気筒列方向に延びるタンクの内部に形成され
た少なくとも一つの空間と各気筒とを互いに独立
した気筒別の各独立吸気通路で接続するととも
に、該各独立吸気通路の途中をそれぞれタンク内
部の空間に連通する第2通路を設け、該各第2通
路にエンジンの運転状態に応じて開閉する制御弁
を設けた多気筒エンジンの吸気装置を対象とす
る。これに対し、上記制御弁のバルブシヤフトを
支承するボス部を、上記タンクの構成壁と一体に
形成されており、且つ上記バルブシヤフトをその
周方向の全面に亘つて囲繞した状態で上記タンク
の構成壁に沿つて気筒列方向に連続して延びるこ
とにより上記第2通路の壁部同士を連結している
構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention is to separate at least one space formed inside a tank extending in the cylinder row direction and each cylinder into independent cylinders. A control valve is provided in each of the second passages, which is connected to each other by separate independent intake passages, and which communicates with the space inside the tank in the middle of each of the independent intake passages, and which opens and closes depending on the operating state of the engine. The target is the intake system of a multi-cylinder engine equipped with a On the other hand, the boss part that supports the valve shaft of the control valve is formed integrally with the constituent wall of the tank, and the boss part of the tank is surrounded by the entire circumferential direction of the valve shaft. The wall portions of the second passage are connected to each other by extending continuously in the direction of the cylinder row along the constituent wall.

(作用) 上記の構成により、本発明では、エンジン回転
数が設定値未満の低回転域では、制御弁により各
第2通路を閉じておくと、各気筒から伝播する負
圧波が各独立吸気通路を経てタンクで正圧の圧力
波に反転して反射されるので、吸気慣性効果を得
るための通路長がタンクから各気筒までの比較的
長いものとなり、このことにより低回転域での吸
気の慣性効果が高められる。一方、エンジン回転
数が設定値以上の高回転域では、制御弁により各
第2通路を開くと、各気筒が各独立吸気通路途中
の第2通路を介してタンク内部の空間に連通し、
この経路を経て各気筒から伝播する負圧波が正圧
の圧力波に反転して反射されることになつて、吸
気慣性効果を得るための吸気通路の有効長が短く
なり、高回転域での吸気慣性効果が高められるこ
とになる。
(Function) With the above configuration, in the present invention, when each second passage is closed by the control valve in a low engine speed range where the engine speed is less than a set value, negative pressure waves propagating from each cylinder are transmitted to each independent intake passage. As a result, the passage length from the tank to each cylinder is relatively long in order to obtain the intake inertia effect, and this reduces the intake air flow in the low rotation range. The inertia effect is enhanced. On the other hand, in a high rotation range where the engine speed is higher than the set value, when each second passage is opened by the control valve, each cylinder communicates with the space inside the tank via the second passage in the middle of each independent intake passage.
The negative pressure waves that propagate from each cylinder via this path are reversed and reflected as positive pressure waves, and the effective length of the intake passage to obtain the intake inertia effect is shortened, resulting in a reduction in speed in the high rotation range. The effect of inhalation inertia will be enhanced.

その場合、制御弁のバルブシヤフトを支承する
ボス部は、タンクの構成壁と一体に形成され、且
つバルブシヤフトをその周方向の全面に亘つて囲
繞した状態でタンクの構成壁に沿つて気筒列方向
に連続して延びることにより第2通路の壁部同士
を連結しているので、その構造をコンパクトなも
のとしながら、タンク構成壁に沿つて連続して延
び且つタンク構成壁と一体に設けられたボス部
と、該ボス部に周方向の全面に亘つて支承されタ
ンク構成壁に沿つて延びるバルブシヤフトとによ
つて、タンクの気筒列方向の剛性強度が増強され
ることになり、その結果、エンジン振動に伴うタ
ンクの振動変形が有効に抑制されて、制御弁を常
にスムーズに開閉することが可能となる。
In this case, the boss part that supports the valve shaft of the control valve is formed integrally with the wall that constitutes the tank, and the boss part that supports the valve shaft of the control valve is formed integrally with the wall that constitutes the tank, and the boss part that supports the valve shaft of the control valve is formed so as to surround the entire circumferential direction of the valve shaft. Since the walls of the second passage are connected to each other by extending continuously in the direction, the structure of the second passage is made compact, and it is possible to extend continuously along the tank-constituting wall and to connect the walls of the second passage with each other. The rigidity of the tank in the cylinder row direction is increased by the boss part and the valve shaft which is supported over the entire circumferential direction by the boss part and extends along the tank wall. , vibration deformation of the tank due to engine vibration is effectively suppressed, making it possible to always open and close the control valve smoothly.

(実施例) 以下、本発明の実施例について図面に基づいて
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第4図は本発明を4気筒4サイクルエ
ンジンに適用した場合の実施例を示す。同図にお
いて、1はシリンダブロツク2およびシリンダヘ
ツド3等からなるエンジン本体であつて、該エン
ジン本体1にはその長手方向に第1〜第4の4つ
の気筒4,4,…が直列状に形成されている。こ
の各気筒4にはそれぞれ燃焼室5が形成されてい
る。
1 to 4 show an embodiment in which the present invention is applied to a 4-cylinder, 4-cycle engine. In the figure, reference numeral 1 denotes an engine body consisting of a cylinder block 2, a cylinder head 3, etc. In the engine body 1, four cylinders 4, 4, 4, first to fourth, are arranged in series in the longitudinal direction. It is formed. A combustion chamber 5 is formed in each cylinder 4.

6は気筒別に互いに独立して設けられた独立吸
気通路であつて、該各独立吸気通路6は、シリン
ダヘツド3内に形成され独立吸気通路6の下流端
部を構成する吸気ポート7を介して各気筒4の燃
焼室5に開口している。また、8はエンジン長手
方向に平行に延びる略角筒形状のタンクよりなる
吸気拡大室であつて、該吸気拡大室8は仕切板9
によつて上下に仕切られて上側に比較的大きな容
積の第1容積室8aと下側に比較的小さな容積の
第2容積室8bとに区画されている。そして、上
記各独立吸気通路6,6…の上流端はそれぞれほ
ぼ同一通路長でもつて上記吸気拡大室8の第1容
積室8aに連通接続されている。該第1容積室8
aの一端面には外気を導入する吸気導入管10が
接続されていて、該吸気導入管10内には吸入室
気量を抑制するスロツトル弁11が配設されてお
り、上記吸気導入管10により第1容積室8aに
導入された吸気を各独立吸気通路6を介して各気
筒4の燃焼室5に供給するようになされている。
また、上記吸気ポート7には吸気弁12が設けら
れている。
Reference numeral 6 denotes independent intake passages provided independently of each other for each cylinder, and each independent intake passage 6 is connected through an intake port 7 formed in the cylinder head 3 and constituting the downstream end of the independent intake passage 6. It opens into the combustion chamber 5 of each cylinder 4. Reference numeral 8 denotes an intake expansion chamber made of a substantially rectangular cylindrical tank extending parallel to the longitudinal direction of the engine.
It is partitioned vertically into a first volume chamber 8a having a relatively large volume on the upper side and a second volume chamber 8b having a relatively small volume on the lower side. The upstream ends of each of the independent intake passages 6, 6, . . . are connected to the first volume chamber 8a of the intake expansion chamber 8 with substantially the same passage length. The first volume chamber 8
An intake air introduction pipe 10 for introducing outside air is connected to one end surface of a, and a throttle valve 11 for suppressing the intake chamber air volume is disposed inside the intake air introduction pipe 10. Thus, the intake air introduced into the first volume chamber 8a is supplied to the combustion chamber 5 of each cylinder 4 via each independent intake passage 6.
Further, the intake port 7 is provided with an intake valve 12 .

さらに、上記各独立吸気通路6の途中箇所から
第2通路13が分岐していて、該各第2通路1
3,13…の他端はそれぞれほぼ同一通路長でも
つて上記吸気拡大室8の第2容積室8bに連通接
続されており、このことから第2容積室8bによ
り第2通路13を介して各独立吸気通路6,6…
を相互に連通するようにしている。
Further, a second passage 13 branches off from a midway point of each of the independent intake passages 6, and each of the second passages 1
The other ends of 3, 13, . Independent intake passages 6, 6...
are made to communicate with each other.

また、上記各第2通路13にはそれぞれ第2通
路13を開閉する制御弁14が設けられており、
この各制御弁14は、吸気拡大室8長手方向と平
行に延びるバルブシヤフト15に一体的に連動可
能に固定されていて、図示していないが、エンジ
ン回転数検出手段等の出力を受ける制御回路によ
りアクチユエータを介して開閉制御され、上記第
2容積室8bによる各独立吸気通路6,6…相互
間の連通をエンジン運転状態に応じて制御し、エ
ンジン回転数が設定値未満の低回転域では閉じら
れ、エンジン回転数が設定値以上の高回転域では
開かれるように制御される。なお、このようなエ
ンジン回転数に応じた制御弁14の開閉作動は、
少なくとも出力が要求される高負荷時において行
われるようにすればよく、低負荷時には制御弁1
4が開状態または閉状態に保たれるようにしても
よい。
Further, each of the second passages 13 is provided with a control valve 14 that opens and closes the second passage 13,
Each of the control valves 14 is integrally fixed to a valve shaft 15 that extends in parallel with the longitudinal direction of the intake expansion chamber 8, and is connected to a control circuit (not shown) that receives output from an engine rotation speed detection means, etc. is controlled to open and close via an actuator, and communication between the independent intake passages 6, 6... by the second volume chamber 8b is controlled according to the engine operating state, and in a low rotation range where the engine rotation speed is less than a set value. It is controlled to be closed and opened in the high engine speed range where the engine speed is higher than a set value. Note that the opening/closing operation of the control valve 14 according to the engine speed is as follows.
It suffices to perform this at least during high loads when output is required, and at low loads, the control valve 1
4 may be kept open or closed.

そして、このような吸気系システムにおいて、
16は、上記吸気拡大室8、各独立吸気通路6,
6…および各第2通路13,13…を形成するた
めの吸気系構造体であつて、該構造体16は、吸
気拡大室8(第1容積室8aおよび第2容積室8
b)を構成するタンク部17と、該タンク部17
のエンジン側とは反対側の側辺上部から側辺およ
び下辺にかけてタンク部17の周囲を迂回して延
び、かつその構成壁の一部つまり側壁および下壁
を利用して各独立吸気通路6,6…の上流側部分
6a,6a…をその各上流端がタンク部17(第
1容積室8a)側辺上部に開口するように一体的
に形成する一体吸気管部18,18…と、該各一
体吸気管部18,18…の下辺部からエンジン側
へ向かつて各気筒別に分岐して延び、各独立吸気
通路6,6…の下流側部分6b,6b…を形成す
る分岐吸気管部19,19…と、上記各一体吸気
管部18の分岐吸気管部19近傍においてタンク
部17(第2容積室8b)の構成壁のうちの下壁
を利用して各独立吸気通路6の途中を第2容積質
8bに連通する第2通路13を一体的に形成する
連通管部20,20…と、上記各分岐吸気管部1
9,19…の先端部を互いに連結するフランジ部
21とからなり、該フランジ部21にてエンジン
本体1に対し各分岐吸気管部19の独立吸気通路
下流側部分6bを各気筒4の吸気ポート7に合致
せしめた状態でボルト22,22…を側方から挿
入して締付けることによりエンジン本体1に固定
される。また、上記タンク部17のエンジン側の
側辺上部はエンジン側に膨出するように形成され
ており、第1容積室8aの容積を十分に確保する
ようにしている。
In such an intake system,
16 is the intake expansion chamber 8, each independent intake passage 6,
6... and each second passage 13, 13..., the structure 16 is an intake system structure for forming the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8).
b) The tank part 17 constituting the tank part 17
The independent intake passages 6, 17 extend around the tank part 17 from the upper part of the side opposite to the engine side to the side and lower sides, and utilize part of the constituent walls, that is, the side wall and the lower wall. integral intake pipe portions 18, 18, . A branch intake pipe section 19 extends from the lower side of each integrated intake pipe section 18, 18... toward the engine side and branches for each cylinder, forming the downstream portions 6b, 6b... of each independent intake passage 6, 6... , 19... and in the vicinity of the branched intake pipe section 19 of each integral intake pipe section 18, the lower wall of the constituent walls of the tank section 17 (second volume chamber 8b) is used to extend the middle of each independent intake passage 6. Communication pipe parts 20, 20... that integrally form the second passage 13 communicating with the second volumetric mass 8b, and each branch intake pipe part 1
The flange portion 21 connects the tips of the branch intake pipe portions 19 to the engine body 1, and the downstream portion 6b of the independent intake passage of each branch intake pipe portion 19 is connected to the intake port of each cylinder 4. 7, the bolts 22, 22... are inserted from the side and tightened to be fixed to the engine body 1. Further, the upper side of the tank portion 17 on the engine side is formed so as to bulge toward the engine, thereby ensuring a sufficient volume of the first volume chamber 8a.

また、上記各分岐吸気管部19の独立吸気通路
下流側部分6bおよび各吸気ポート7は、斜め上
方から燃焼室5に向つてほぼ直線状に延びて燃焼
室5に開口するように形成されている。そして、
該各分岐吸気管部19の独立吸気通路下流側部分
6bの下流端近傍上部には噴射弁装着孔23が形
成されており、燃料噴射弁24はその先端噴射口
部がシールリング23aを介して装着孔23に挿
入されて固定されている。この装着孔23及び燃
料噴射弁24の取付方向は該噴射弁24からの燃
料が燃焼室5の吸気弁12に向つて噴射されるよ
うに装着されていて、各燃料噴射弁24,24…
はエンジン長手方向に平行に配設された燃料供給
管25に連通接続されている。このことにより、
燃料噴射弁24は分岐吸気管部19にほぼ沿つて
寝た状態で取付けられることとなり、該燃料噴射
弁24の中心線の延長線q→上に上記吸気拡大室8
(タンク部17)が燃料噴射弁24および燃料供
給管25に近接して位置することになる。
Further, the downstream side portion 6b of the independent intake passage and each intake port 7 of each of the branched intake pipe portions 19 are formed to extend in a substantially straight line from obliquely upward toward the combustion chamber 5 and open into the combustion chamber 5. There is. and,
An injection valve mounting hole 23 is formed in the upper part near the downstream end of the downstream side portion 6b of the independent intake passage of each branch intake pipe section 19, and the fuel injection valve 24 has its tip injection port inserted through a seal ring 23a. It is inserted into the mounting hole 23 and fixed. The installation direction of the mounting hole 23 and the fuel injection valve 24 is such that the fuel from the injection valve 24 is injected toward the intake valve 12 of the combustion chamber 5, and each fuel injection valve 24, 24...
is connected to a fuel supply pipe 25 arranged parallel to the longitudinal direction of the engine. Due to this,
The fuel injection valve 24 is installed in a lying state almost along the branched intake pipe portion 19, and the intake expansion chamber 8 is located above the extension line q of the center line of the fuel injection valve 24.
(Tank portion 17) is located close to fuel injection valve 24 and fuel supply pipe 25.

さらに、上記各連通管部20の第2通路13に
制御弁14が配設されること、および吸気拡大室
8(タンク部17)が燃料噴射弁24の中心延長
線q→上に位置することから、上記吸気系構造体1
6は、そのタンク部17において、上記中心延長
線q→よりも下側の位置でかつ各第2通路13,1
3…を含む吸気拡大室8の第2容積室8bの部分
と吸気拡大室8の第1容積室8aとの間としての
上記仕切板9の位置で吸気拡大室8の長手方向に
沿つた分割面によつて上下に分割されて形成され
ていて、タンク部17の上半部および各一体吸気
管部18,18…の上半部が一体成形された上側
分割体16aと、タンク部17の下半部、一体吸
気管部18,18…の下半部、各分岐吸気管部1
9,19…、各連通管部20,20…およびフラ
ンジ部21が一体成形された下側分割体16bと
からなり、両分割体16a,16bが上記仕切板
9を介して接合され、ボルト26,26…を下方
から挿入して締付けることにより気密的に結合さ
れてなる。
Further, the control valve 14 is disposed in the second passage 13 of each communication pipe section 20, and the intake expansion chamber 8 (tank section 17) is located above the central extension line q of the fuel injection valve 24. From above, the above-mentioned intake system structure 1
6 is located at a position below the center extension line q→ in the tank portion 17 and is connected to each of the second passages 13, 1.
Division along the longitudinal direction of the intake expansion chamber 8 at the position of the partition plate 9 between the second volume chamber 8b of the intake expansion chamber 8 including the second volume chamber 8b and the first volume chamber 8a of the intake expansion chamber 8. The upper divided body 16a is formed by being divided into upper and lower parts by a surface, and the upper half of the tank part 17 and the upper half of each integral intake pipe part 18, 18... are integrally molded, and the upper divided body 16a of the tank part 17 Lower half part, lower half part of integral intake pipe parts 18, 18..., each branch intake pipe part 1
9, 19..., each communicating pipe part 20, 20... and a lower divided body 16b in which the flange part 21 is integrally molded, both divided bodies 16a, 16b are joined via the partition plate 9, and bolts 26 , 26... are inserted from below and tightened to form an airtight connection.

加えて、第4図に詳示するように、上記タンク
部17(第2容積室8b)の下壁には、各第2通
路13の第2容積室8bへの開口部間および両端
部に制御弁14のバルブシヤフト15を回転自在
に支承するボス部27,27…が一体に形成され
ているとともに、上記各開口部周囲つまり制御弁
14の弁体14aが着座する弁座部分に上記各ボ
ス部27,27を一連に連続させるように環状に
隆起するリブ部28,28…が一体に形成されて
おり、このリブ部28,28…を介して一連に連
なるボス部27,27…によつて吸気拡大室8
(タンク部17)のエンジン長手方向の剛性を増
大させるようにしている。尚、第4図に示す如く
上記第2通路13は第2容積室8b側からドリル
で穴明け加工されるが、この第2通路13の独立
吸気通路との接続部を滑らかなR部に形成して、
第2通路13の通路断面積の変化を小さくかつ緩
かなものに抑え、第2容積室8bから第2通路1
3を介しての独立吸気通路6への流通抵抗および
その変化を小さく抑えるようにしている。また、
29はボス部27に沿つて形成され、第2通路1
3開口部周りの環状リブ部28,28同士を連結
するリブ部である。
In addition, as shown in detail in FIG. 4, on the lower wall of the tank portion 17 (second volume chamber 8b), there are holes between the openings of each second passage 13 to the second volume chamber 8b and at both ends. The boss portions 27, 27, . Rib portions 28, 28... which protrude in an annular manner so as to connect the boss portions 27, 27 in series are integrally formed, and the continuous boss portions 27, 27... are formed integrally with each other through the rib portions 28, 28... Intake expansion chamber 8
The rigidity of the tank portion 17 in the longitudinal direction of the engine is increased. As shown in FIG. 4, the second passage 13 is drilled from the second volume chamber 8b side, and the connection part of the second passage 13 with the independent intake passage is formed into a smooth rounded part. do,
The change in the passage cross-sectional area of the second passage 13 is suppressed to a small and gentle one, and the passage from the second volume chamber 8b to the second passage 1
3 and the flow resistance to the independent intake passage 6 and its change are kept small. Also,
29 is formed along the boss portion 27 and is connected to the second passage 1
This is a rib portion that connects the annular rib portions 28, 28 around the three openings.

次に、上記実施例の作用について述べるに、各
制御弁14が閉じて第2通路13の閉塞によつて
第2容積室8bによる各独立吸気通路6,6…相
互間の連通が遮断されている状態では、各気筒4
の吸気行程で生じる負圧波が第1容積室8aまで
伝播されてここで反射され、つまり比較的長い通
路を通して上記負圧波およびその反射波が伝播す
ることにより、低回転域においてこのような圧力
波の振動周期が吸気弁開閉周期にマツチングする
ことになり、低回転域での吸気の慣性効果が高め
られて、吸気充填効率が高められる。一方、上記
各制御弁14が開かれ第2通路13が開放され
て、第2容積室8nにより各独立吸気通路6,6
…相互間が連通している状態では、各気筒4の吸
気行程で生じる負圧波が上記第2通路13を介し
て第2容積室8bで反射されてこの負圧波および
反射波の伝播に供される通路長さが短くなること
により、高回転域で吸気慣性効果が高められると
ともに、この運転域では他の気筒から伝播される
圧力波も第2容積室8bを介して有効に作用する
ことになり、高回転域での充填効率が大幅に高め
られる。従つて、少なくとも高負荷時に、上記低
回転域と高回転域との吸気慣性効果が得られる各
回転数の中間回転数に相当する所定回転数を境
に、これより低回転側で制御弁14を閉じ、これ
より高回転側で制御弁14を開くようにしておく
ことにより、全回転域で吸気充填効率が高められ
て出力を向上させることができる。特に、高回転
域での吸気充填効率は、従来のように単に吸気通
路を短縮させて慣性効果を高めるようにした場合
と比べても、気筒間の圧力伝播作用でより一層高
められることとなる。
Next, to describe the operation of the above embodiment, each control valve 14 closes and the second passage 13 is closed, thereby cutting off the communication between the independent intake passages 6, 6, . . . by the second volume chamber 8b. In this condition, each cylinder 4
The negative pressure wave generated during the intake stroke is propagated to the first volume chamber 8a and reflected there. In other words, the negative pressure wave and its reflected wave propagate through a relatively long passage, so that such a pressure wave is generated in the low rotation range. The vibration period matches the intake valve opening/closing period, increasing the inertial effect of intake air in the low rotation range and increasing intake air filling efficiency. On the other hand, each control valve 14 is opened, the second passage 13 is opened, and each independent intake passage 6, 6 is opened by the second volume chamber 8n.
...When they are in communication with each other, the negative pressure waves generated during the intake stroke of each cylinder 4 are reflected in the second volume chamber 8b via the second passage 13, and the negative pressure waves and reflected waves are propagated. By shortening the passage length, the intake inertia effect is enhanced in the high rotation range, and in this operating range, pressure waves propagated from other cylinders also act effectively through the second volume chamber 8b. This greatly increases charging efficiency in the high rotation range. Therefore, at least when the load is high, the control valve 14 is activated on the lower rotation side after a predetermined rotation speed corresponding to the intermediate rotation speed between the respective rotation speeds at which the intake inertia effect between the low rotation range and the high rotation range is obtained. By closing the control valve 14 and opening the control valve 14 at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range and the output can be improved. In particular, the intake air filling efficiency in the high rotation range can be further improved by the pressure propagation effect between the cylinders, compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに
適当な第1および第2容積室8a,8bの大きさ
としては、第1容積室8aは排気量の0.5倍以上
の容量とし、第2容積室8bは排気量の1.5倍以
下の容量としておくことが望ましい。さらに、上
記第2容積室8bは第1容積室8aより容量を小
さくし、かつ第2容積室8bの断面積は各独立吸
気通路6の断面積よりも大きくしておくことが望
ましい。
The sizes of the first and second volume chambers 8a and 8b that are suitable for effectively exerting the above-mentioned effects are such that the first volume chamber 8a has a capacity of 0.5 times or more of the displacement, and the second volume It is desirable that the capacity of the chamber 8b is 1.5 times or less than the exhaust volume. Furthermore, it is desirable that the second volume chamber 8b has a smaller capacity than the first volume chamber 8a, and that the cross-sectional area of the second volume chamber 8b is larger than the cross-sectional area of each independent intake passage 6.

そして、この場合、吸気系構造体16における
吸気拡大室8(第1容積室8aおよび第2容積室
8b)を構成するタンク部17と各独立吸気通路
6の上流側部分6aを構成する一体吸気管部18
と各独立吸気通路6の下流側部分6bを構成する
分岐吸気管部19と各第2通路13を構成する連
通管部20とによつて、各独立吸気通路6が吸気
拡大室8の周囲に迂回しながらかつ吸気拡大室8
(タンク部17)の構成壁の一部を利用して一体
的に形成されているとともに、各第2通路13が
吸気拡大室8(第2容積室8b)の構成壁の一部
と一体的に形成されているので、上記独立吸気通
路6の所要長さおよび吸気拡大室8の第1および
第2容積室8a,8bの各所要容積を得るに当つ
て、これら吸気系をコンパクトに小型のものに形
成することができ、よつて限られたスペース(エ
ンジンルーム)内で上記所要長さおよび所要容積
を十分に確保することができ、車載性の向上を図
ることができる。
In this case, the tank portion 17 that constitutes the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8b) in the intake system structure 16 and the integrated intake that constitutes the upstream portion 6a of each independent intake passage 6 Pipe part 18
The branch intake pipe section 19 that constitutes the downstream portion 6b of each independent intake passage 6 and the communication pipe section 20 that constitutes each second passage 13 allow each independent intake passage 6 to extend around the intake expansion chamber 8. While detouring and intake expansion chamber 8
(tank part 17), and each second passage 13 is integrally formed with a part of the wall that constitutes the intake expansion chamber 8 (second volume chamber 8b). Therefore, in order to obtain the required length of the independent intake passage 6 and the required volumes of the first and second volume chambers 8a and 8b of the intake expansion chamber 8, these intake systems can be made compact and small. Therefore, the above-mentioned required length and required volume can be sufficiently secured within a limited space (engine room), and the vehicle mountability can be improved.

また、この場合、燃料噴射弁24が上記分岐吸
気管部19の下流端近傍つまり独立吸気通路6の
下流側においてその噴射燃料をその霧化を良好に
しながら燃焼室5に応答性良く供給すべく燃焼室
5に向けて装着されている関係上、該燃料噴射弁
24の中心延長線q→上に近接して吸気系構造体1
6のタンク部17(吸気拡大室8)が位置するこ
と、および上記各第2通路13に制御弁14を配
設することが必要である。このため、上記吸気系
構造体16はそのタンク部17において上記中心
延長線q→よりも下側即ち分岐吸気管部19側の位
置でかつ仕切板9の位置で吸気拡大室8の長手方
向に沿つた分割面で上下に上側分割体16aと下
側分割体16bとに分割され両分割体16a,1
6bが仕切板9を介して結合されてなるので、下
側分割体16bをそのフランジ部21にてエンジ
ン本体1に側方からのボルト22による締付けに
より取付けたのち、該下側分割体16bの各分岐
吸気管部19の噴射弁装着孔23に燃料噴射弁2
4を中心延長線q→方向から挿入し燃料供給管25
を下側分割体16bに固定することによつて各燃
料噴射弁24を取付けるとともに、下側分割体1
6bの各連通管部20の第2通路13にその上方
から制御弁14を挿入してバルブシヤフト15に
固定し、しかる後上記下側分割体16bに対して
仕切板9を介在させて上側分割体16aを接合し
て下方からのボルト26の締付けにより両者16
a,16bを一体に結合することによつて、良好
な成形性を確保し、かつ上側および下側分割体1
6a,16bの組付けを容易に行い得るのは勿論
のこと、制御弁14および燃料噴射弁24の組付
けを容易に行うことができ、良好な組付け性を確
保することができる。
Further, in this case, the fuel injection valve 24 is arranged near the downstream end of the branched intake pipe section 19, that is, on the downstream side of the independent intake passage 6, in order to supply the injected fuel to the combustion chamber 5 with good responsiveness while improving its atomization. Since the fuel injector 24 is mounted facing the combustion chamber 5, the intake system structure 1 is located close to the center extension line q of the fuel injector 24.
It is necessary that the tank portion 17 (intake expansion chamber 8) of No. 6 be located therein, and that the control valve 14 be disposed in each of the second passages 13. Therefore, the intake system structure 16 is located in the tank portion 17 at a position below the center extension line q→, that is, on the branch intake pipe portion 19 side, and at the position of the partition plate 9 in the longitudinal direction of the intake expansion chamber 8. It is vertically divided into an upper divided body 16a and a lower divided body 16b along the dividing plane, and both divided bodies 16a, 1
6b are connected via the partition plate 9, after the lower divided body 16b is attached to the engine body 1 at its flange portion 21 by tightening bolts 22 from the side, the lower divided body 16b is The fuel injection valve 2 is inserted into the injection valve mounting hole 23 of each branch intake pipe section 19.
4 from the center extension line q → direction and insert the fuel supply pipe 25
By fixing the fuel injection valves 24 to the lower divided body 16b, each fuel injection valve 24 is attached, and the lower divided body 1
The control valve 14 is inserted into the second passage 13 of each communication pipe portion 20 of 6b from above and fixed to the valve shaft 15, and then the upper divided body 16b is separated by interposing the partition plate 9 with respect to the lower divided body 16b. By joining the body 16a and tightening the bolt 26 from below, both 16
By integrally joining a and 16b, good moldability is ensured, and the upper and lower divided bodies 1
6a and 16b can be easily assembled, as well as the control valve 14 and the fuel injection valve 24 can be easily assembled, and good assembly performance can be ensured.

しかも、上記上側分割体16aと下側分割体1
6bとの結合は、下方からのボルト26の締付け
によつて行われるので、その良好な組付け性を確
保しながら、上述の如くタンク部17(吸気拡大
室8)におけるエンジン側の側辺上部の膨出形成
が可能となつて、吸気拡大室8の特に第1容積室
8aの容積を十分に確保できる利点もある。ま
た、上記第2容積室8bは吸気系構造体16のタ
ンク部17を仕切板9で上下に分割することによ
つて第1容積室8aに並設され、第1容積室8a
の構成壁の一部(仕切板9)を共用して形成され
ているので、上記吸気系のコンパクト化を一層図
ることができる。
Moreover, the upper divided body 16a and the lower divided body 1
6b is achieved by tightening the bolt 26 from below, while ensuring good assemblability, the upper part of the side of the tank part 17 (intake expansion chamber 8) on the engine side is secured as described above. There is also the advantage that a sufficient volume of the intake expansion chamber 8, particularly the first volume chamber 8a, can be secured. Further, the second volume chamber 8b is arranged in parallel with the first volume chamber 8a by dividing the tank portion 17 of the intake system structure 16 into upper and lower parts with a partition plate 9, and is arranged in parallel with the first volume chamber 8a.
Since a part of the constituent wall (partition plate 9) is shared, the intake system can be made more compact.

さらに、上記タンク部17(第2容積室8b)
の下壁に、各制御弁14の弁体14aが固定され
エンジン長手方向に平行に延びるバルブシヤフト
15を回転自在に支承するボス部27,27…が
一体に形成され、かつ該各ボス部27,27…は
各第2通路13の開口部周囲に一体に形成された
環状のリブ部28,28…によつて一連に連なつ
ているので、吸気拡大室8(タンク部17)のエ
ンジン長手方向の剛性強度が増強されることにな
る。そのため、エンジン振動に伴うタンク部17
の振動変形が可及的に抑制されて、従来の如く制
御弁14の開閉に支障を与えることがなく、その
スムーズな開閉動作が安定して確保されることに
なり、上記の吸気慣性効果の発揮を確実なものと
することができる。また、上記タンク部17の構
成壁への上記ボス部27およびリブ部28の一体
形成により、構造のコンパクト化および簡素化を
図ることもできる。
Furthermore, the tank section 17 (second volume chamber 8b)
Boss portions 27, 27, . , 27... are connected in series by the annular rib portions 28, 28... integrally formed around the opening of each second passage 13, so that the engine longitudinal direction of the intake expansion chamber 8 (tank portion 17) The rigidity strength in the direction will be enhanced. Therefore, the tank part 17 due to engine vibration
The vibration deformation of the control valve 14 is suppressed as much as possible, and the opening and closing of the control valve 14 is not hindered as in the past, and its smooth opening and closing operation is stably ensured, which reduces the intake inertia effect mentioned above. performance can be ensured. Further, by integrally forming the boss portion 27 and the rib portion 28 on the wall constituting the tank portion 17, the structure can be made compact and simple.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、上記実施例の如く吸気拡大室8を第
1容積室8aと第2容積室8bとに区画して低回
転域と高回転域とでそれぞれ吸気慣性効果を得る
とともに、特に高回転域で気筒相互間の圧力波の
伝播により吸気の充填効率を一層高めるようにし
た吸気系の他に、第5図に示すように吸気拡大室
8を仕切板9で仕切らずに従来例と同様に単に低
回転域と高回転域とでそれぞれ吸気慣性効果を高
めるようにした吸気系、あるいは上記実施例にお
ける仕切板9に上下の第1容積室8aと第2容積
室8bとを連通する連通孔を設けて、さらに低回
転域で上下の両容積室8a,8b間での吸気圧力
振動を利用して吸気の充填効率を一層高めるよう
にした吸気系に対しても適用可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, as in the above embodiment, the intake expansion chamber 8 is divided into a first volume chamber 8a and a second volume chamber 8b to obtain intake inertia effects in the low rotation range and high rotation range, and particularly in the high rotation range. In addition to the intake system that further increases the filling efficiency of intake air by propagating pressure waves between cylinders, as shown in FIG. An intake system that increases the intake inertia effect in the low rotation range and high rotation range, or a communication hole in the partition plate 9 in the above embodiment that communicates the upper and lower first volume chamber 8a and second volume chamber 8b. The present invention can also be applied to an intake system in which the intake air filling efficiency is further increased by utilizing intake air pressure vibration between the upper and lower volume chambers 8a and 8b in a low rotation range.

また、本発明は以上の実施例の如く4気筒エン
ジンに限らず、他の多気筒エンジン、例えば5気
筒エンジンや6気筒エンジンにも適用することが
できるのは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the four-cylinder engine as in the above-described embodiments, but can also be applied to other multi-cylinder engines, such as five-cylinder engines and six-cylinder engines.

(発明の効果) 以上説明したように、本発明によれば、気筒列
方向に延びるタンクの内部の少なくとも一つの空
間から各気筒に至る独立吸気通路とは別に、各独
立吸気通路の途中をタンク内部の空間に連通する
第2通路を制御弁で開閉して、低回転域と高回転
域とでそれぞれ吸気慣性効果を得るようにした多
気筒エンジンの吸気装置において、上記制御弁の
バルブシヤフトを支承するボス部は、タンクの構
成壁と一体に形成し、且つバルブシヤフトをその
周方向の全面に亘つて囲繞した状態でタンクの構
成壁に沿つて気筒列方向に連続して延ばすことに
より、該ボス部によつて第2通路の壁部同士を連
結させたので、構造のコンパクト化を図りなが
ら、タンクの気筒列方向の剛性強度を良好に確保
して、エンジン振動に伴う吸気拡大室の振動を有
効に抑制することができ、よつて制御弁のスムー
ズな開閉を確保して、上記低回転域と高回転域と
での吸気慣性効果の発揮を確実なものとすること
ができるものである。
(Effects of the Invention) As explained above, according to the present invention, in addition to the independent intake passage extending from at least one space inside the tank extending in the cylinder row direction to each cylinder, the tank In an intake system for a multi-cylinder engine in which a second passage communicating with an internal space is opened and closed by a control valve to obtain an intake inertia effect in a low rotation range and a high rotation range, the valve shaft of the control valve is The supporting boss portion is formed integrally with the tank wall, and extends continuously in the cylinder row direction along the tank wall while surrounding the entire valve shaft in the circumferential direction. Since the walls of the second passage are connected to each other by the boss, the structure can be made more compact, and the rigidity of the tank in the direction of the cylinder row can be ensured to ensure good rigidity and strength, and the expansion of the intake chamber due to engine vibration can be avoided. It is possible to effectively suppress vibrations, thereby ensuring smooth opening and closing of the control valve, and ensuring that the intake inertia effect is exerted in the above-mentioned low rotation range and high rotation range. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の実施例を示し、第1
図は第3図の−線における縦断側面図、第2
図は第3図の−線における縦断側面図、第3
図は一部破断した平面図、第4図は第1図の−
線における拡大断面図である。第5図は他の実
施例を示す第1図相当図である。 1……エンジン本体、4……気筒、6……独立
吸気通路、8……吸気拡大室、8a……第1容積
室、8b……第2容積室、13……第2通路、1
4……制御弁、15……バルブシヤフト、16…
…吸気系構造体、17……タンク部、18……一
体吸気管部、19……分岐吸気管部、20……連
通管部、27……ボス部、28……リブ部。
1 to 4 show embodiments of the present invention;
The figure is a longitudinal sectional side view taken along the - line in Figure 3.
The figure is a longitudinal sectional side view taken along the - line in Figure 3.
The figure is a partially cutaway plan view, and Figure 4 is the same as Figure 1.
FIG. FIG. 5 is a diagram corresponding to FIG. 1 showing another embodiment. 1... Engine body, 4... Cylinder, 6... Independent intake passage, 8... Intake expansion chamber, 8a... First volume chamber, 8b... Second volume chamber, 13... Second passage, 1
4... Control valve, 15... Valve shaft, 16...
...Intake system structure, 17...Tank part, 18...Integrated intake pipe part, 19...Branch intake pipe part, 20...Communication pipe part, 27...Boss part, 28...Rib part.

Claims (1)

【特許請求の範囲】[Claims] 1 気筒列方向に延びるタンクの内部に形成され
た少なくとも一つの空間と各気筒とを互いに独立
した気筒別の各独立吸気通路で接続するととも
に、該各独立吸気通路の途中をそれぞれタンク内
部の空間に連通する第2通路を設け、該各第2通
路にエンジンの運転状態に応じて開閉する制御弁
を設けた多気筒エンジンの吸気装置において、上
記制御弁のバルブシヤフトを支承するボス部は、
上記タンクの構成壁と一体に形成されており、且
つ上記バルブシヤフトをその周方向の全面に亘つ
て囲繞した状態で上記タンクの構成壁に沿つて気
筒列方向に連続して延びることにより上記第2通
路の壁部同士を連結していることを特徴とする多
気筒エンジンの吸気装置。
1 At least one space formed inside a tank extending in the direction of the cylinder row and each cylinder are connected by each independent intake passage for each cylinder, and the middle of each independent intake passage is connected to a space inside the tank, respectively. In an intake system for a multi-cylinder engine, the boss portion supporting the valve shaft of the control valve is provided with a second passage communicating with the engine, and each second passage is provided with a control valve that opens and closes depending on the operating state of the engine.
The valve shaft is formed integrally with the constituent wall of the tank, and extends continuously in the direction of the cylinder row along the constituent wall of the tank while surrounding the entire circumferential direction of the valve shaft. An intake system for a multi-cylinder engine characterized by connecting the walls of two passages.
JP59275489A 1984-12-29 1984-12-29 Air intake device of multicylinder engine Granted JPS61157718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275489A JPS61157718A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275489A JPS61157718A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3029857A Division JPH086596B2 (en) 1991-02-25 1991-02-25 Multi-cylinder engine intake system
JP2985691A Division JPH0726542B2 (en) 1991-02-25 1991-02-25 Multi-cylinder engine intake system

Publications (2)

Publication Number Publication Date
JPS61157718A JPS61157718A (en) 1986-07-17
JPH0427370B2 true JPH0427370B2 (en) 1992-05-11

Family

ID=17556227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275489A Granted JPS61157718A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS61157718A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856330U (en) * 1981-10-07 1983-04-16 株式会社 明治ゴム化成 Damper for recording head of magnetic recording device
JPS6015926B2 (en) * 1981-03-31 1985-04-23 富士通株式会社 Manufacturing method of support tube for optical fiber connector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015926U (en) * 1983-07-13 1985-02-02 日産自動車株式会社 Internal combustion engine intake system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015926B2 (en) * 1981-03-31 1985-04-23 富士通株式会社 Manufacturing method of support tube for optical fiber connector
JPS5856330U (en) * 1981-10-07 1983-04-16 株式会社 明治ゴム化成 Damper for recording head of magnetic recording device

Also Published As

Publication number Publication date
JPS61157718A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
KR890001733B1 (en) Intake system for internal combustion engine
JPH0353452B2 (en)
JPS627922A (en) Intake structure of engine
JPS61157717A (en) Air intake device of multicylinder engine
JPH0315779Y2 (en)
JPH0427370B2 (en)
JP2500856B2 (en) Multi-cylinder engine intake system
JPH04214923A (en) Intake device for multiple cylinder engine
JPH0343378Y2 (en)
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0320498Y2 (en)
JPH0320495Y2 (en)
JPH0343380Y2 (en)
JPH0343379Y2 (en)
JPH0643462Y2 (en) Engine intake system
JP2500855B2 (en) Multi-cylinder engine intake system
JPS63215822A (en) Intake device for v-type engine
JPH0353455B2 (en)
JPS61157716A (en) Air intake device of multicylinder engine
JPS61116020A (en) Engine intake-air device
JPH064029Y2 (en) Multi-cylinder engine intake system
JPH086596B2 (en) Multi-cylinder engine intake system
JPH0353453B2 (en)
JPS6267225A (en) Air intake device for engine
JPH01346A (en) Engine exhaust gas recirculation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees