JPH0343379Y2 - - Google Patents

Info

Publication number
JPH0343379Y2
JPH0343379Y2 JP1985009745U JP974585U JPH0343379Y2 JP H0343379 Y2 JPH0343379 Y2 JP H0343379Y2 JP 1985009745 U JP1985009745 U JP 1985009745U JP 974585 U JP974585 U JP 974585U JP H0343379 Y2 JPH0343379 Y2 JP H0343379Y2
Authority
JP
Japan
Prior art keywords
intake
expansion chamber
communication
cylinder
independent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985009745U
Other languages
Japanese (ja)
Other versions
JPS61125631U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985009745U priority Critical patent/JPH0343379Y2/ja
Publication of JPS61125631U publication Critical patent/JPS61125631U/ja
Application granted granted Critical
Publication of JPH0343379Y2 publication Critical patent/JPH0343379Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、各気筒と吸気拡大室とを互いに独立
した吸気通路で接続した多気筒エンジンにおいて
吸気の動的効果(吸気慣性効果)により出力の向
上を図るようにした多気筒エンジンの吸気装置の
改良に関するものである。
[Detailed description of the invention] (Industrial application field) This invention uses the dynamic effect of intake air (intake inertia effect) to generate output in a multi-cylinder engine in which each cylinder and intake expansion chamber are connected by independent intake passages. The present invention relates to an improvement of an intake system for a multi-cylinder engine in order to improve the performance of the multi-cylinder engine.

(従来の技術) 従来から、エンジンの吸気装置において、吸気
開始に伴つて生じる負圧波(負圧の圧力波)が吸
気通路上流側の大気または吸気拡大室への開口端
で反射され正圧波(正圧の圧力波)となつて吸気
ポート方向に戻されることを利用し、上記正圧波
が吸気弁の閉弁寸前に吸気ポートに達して吸気を
燃焼室に押し込むようにする、いわゆる吸気の慣
性効果によつて吸気の充填効率を高めるようにす
ることは知られている。このような技術を用いよ
うとする場合に、吸気通路の形状が一定である
と、吸気通路に生じる圧力波の振動周期と吸気弁
の開閉周期とがマツチングして吸気慣性効果が高
められるのは特定回転域に限られる。
(Prior Art) Conventionally, in the intake system of an engine, a negative pressure wave (pressure wave of negative pressure) generated with the start of intake is reflected at the opening end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave ( The positive pressure wave returns to the intake port as a positive pressure wave, and the positive pressure wave reaches the intake port just before the intake valve closes, pushing the intake air into the combustion chamber. This is the so-called intake inertia. It is known to increase the filling efficiency of intake air by means of effects. When using such technology, if the shape of the intake passage is constant, the oscillation period of the pressure wave generated in the intake passage matches the opening and closing period of the intake valve, and the intake inertia effect is enhanced. Limited to a specific rotation range.

このため、特開昭56−115819号公報にみられる
ように、エンジンの回転数に応じて吸気通路の長
さ等を変えるようにし、例えば、各気筒別の吸気
通路を上流部で2叉に分岐させて長い通路と短い
通路とを形成し、これらの通路の上流端を吸気拡
大室等に開口させるとともに、短い通路に開閉弁
を設けて、高回転域でこの開閉弁を開くことによ
り吸気通路の有効長を短縮するようにし(上記公
報の第6図参照)、こうして低回転域と高回転域
とでそれぞれ吸気の慣性効果を高めるようにした
吸気装置が提案されている。
For this reason, as seen in Japanese Patent Application Laid-Open No. 56-115819, the length of the intake passage is changed depending on the engine speed, for example, the intake passage for each cylinder is bifurcated at the upstream part. They are branched to form a long passage and a short passage, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and an on-off valve is provided in the short passage, and this on-off valve is opened in the high rotation range to increase the intake air. An intake device has been proposed in which the effective length of the passage is shortened (see FIG. 6 of the above-mentioned publication), thereby increasing the inertial effect of intake air in both the low rotation range and the high rotation range.

(考案が解決しようとする課題) ところで、上記従来の吸気装置によると、多気
筒エンジンの場合、各気筒毎に圧力波が生じてい
るにも拘らず、単に高回転域では各気筒別の吸気
通路の有効長を短縮すること等により各気筒とそ
れに対応する吸気通路の上流側開口端との間の圧
力波伝播によつて吸気慣性効果を高めているにす
ぎず、吸気の充填効率の向上に余地がある。すな
わち、他の気筒に生じる圧力波をも有効に利用す
るようにすれば、充填効率をより一層向上させ得
ることが期待できる。
(Problem to be solved by the invention) By the way, according to the above-mentioned conventional intake system, in the case of a multi-cylinder engine, even though pressure waves are generated in each cylinder, in the high rotation range, the intake system is simply By shortening the effective length of the passage, etc., the intake inertia effect is simply increased by pressure wave propagation between each cylinder and the upstream opening end of the corresponding intake passage, and the intake air filling efficiency is improved. There is room for That is, if pressure waves generated in other cylinders are also effectively utilized, it is expected that the filling efficiency can be further improved.

そこで、本考案はかかる点に着目してなされた
もので、各気筒別の吸気通路の有効長を変えるこ
とにより、低回転域と高回転域とでそれぞれ吸気
の慣性効果を高めるようにするとともに、特に高
出力が要求される高回転域では各気筒間でも互い
に他の気筒に生じる圧力波を有効に作用せしめ合
うことにより、高回転域での吸気充填効率をより
一層高めて出力の向上を図ることを目的とする。
Therefore, the present invention was developed with attention to this point, and by changing the effective length of the intake passage for each cylinder, the inertia effect of the intake air is increased in the low rotation range and the high rotation range, respectively. In particular, in the high rotation range where high output is required, pressure waves generated in other cylinders are effectively used between each cylinder to further increase intake air filling efficiency in the high rotation range and improve output. The purpose is to

さらに、本考案の目的は、上記のような機能を
果たす吸気系を得るに当つて、この吸気系の形状
構造をできるだけコンパクトかつ小型なものに
し、車載性の向上を図ることにある。
Furthermore, an object of the present invention is to make the shape and structure of this intake system as compact and small as possible in order to obtain an intake system that performs the above-mentioned functions, thereby improving vehicle mountability.

さらにまた、上記のような吸気系においては、
一般にEGRガス(排気還流ガス)又はブローバ
イガス等はその各気筒への良好な分配性を確保す
べく吸気拡大室に導入される。このことから、こ
れらのガス中に含まれる水分が吸気拡大室に溜つ
て吸気拡大室の構成壁(タンク)の腐食を招く。
特に、燃料として有鉛ガソリンを使用したエンジ
ンにおいては上記水分中に酸化物質が生成される
ので腐食が顕著である。このため、本考案のもう
一つの目的は、上記水分の水抜き対策を施してタ
ンクの腐食を防止することにある。
Furthermore, in the above-mentioned intake system,
Generally, EGR gas (exhaust gas recirculation gas) or blow-by gas is introduced into the intake expansion chamber in order to ensure good distribution to each cylinder. As a result, moisture contained in these gases accumulates in the intake expansion chamber, leading to corrosion of the wall (tank) that constitutes the intake expansion chamber.
Particularly in engines using leaded gasoline as fuel, corrosion is significant because oxidizing substances are produced in the moisture. Therefore, another object of the present invention is to prevent corrosion of the tank by taking measures to drain the water.

(課題を解決するための手段) 上記の目的を達成するため、本考案の解決手段
は、気筒別に互いに独立して設けられた各独立吸
気通路の上流端が各々吸気拡大室に接続された多
気筒エンジンの吸気装置を前提とする。そして、
上記各独立吸気通路の途中部は、該各独立吸気通
路の途中部から上方に分岐して各独立吸気通路を
相互に連通する連通部に接続されている。該連通
部の上記各独立吸気通路からの分岐部には、該各
独立吸気通路と連通部との連通をエンジンの低回
転域で閉塞し、高回転域で解放する開閉弁が各々
配設されている。上記吸気拡大室と連通部とは、
タンクを仕切部で仕切ることによつて該タンク内
の仕切部の上側を吸気拡大室、下側を連通部とし
て形成されていて、該連通部は吸気拡大室の下側
に並設されており、かつ上記連通部の容積は上記
吸気拡大室の容積よりも小さく設定されている。
上記吸気拡大室と連通部とを区画する仕切部に
は、該吸気拡大室に流入した水分を上記連通部へ
排水するための水抜き孔が設けられているものと
する。
(Means for Solving the Problems) In order to achieve the above object, the solution of the present invention provides a multi-channel system in which the upstream ends of the independent intake passages provided independently for each cylinder are each connected to an intake expansion chamber. This assumes an intake system for a cylinder engine. and,
A midway portion of each of the independent intake passages is connected to a communication portion that branches upward from the midway portion of each independent intake passage and communicates the independent intake passages with each other. An opening/closing valve is disposed at a branching portion of the communication portion from each of the independent intake passages, and the valve closes the communication between the independent intake passage and the communication portion in a low rotation range of the engine, and opens the communication in a high rotation range of the engine. ing. The above-mentioned intake expansion chamber and communication section are:
By partitioning the tank with a partition part, the upper side of the partition part in the tank is formed as an intake expansion chamber, and the lower side is formed as a communication part, and the communication part is arranged below the intake expansion chamber. , and the volume of the communication portion is set smaller than the volume of the intake expansion chamber.
The partition section that partitions the intake expansion chamber and the communication section is provided with a drain hole for draining moisture that has flowed into the intake expansion chamber into the communication section.

(作用) 上記の構成により、本考案では、エンジン回転
数が設定値未満の低回転域では、開閉弁により連
通部による各独立吸気通路相互間の連通を閉塞し
ておくと、各気筒から伝播する負圧波が吸気拡大
室で正圧の圧力波に反転して反射されるので、吸
気慣性効果を得るための通路長が吸気拡大室から
各気筒までの比較的長いものとなり、このことに
より低回転域での吸気の慣性効果が高められる。
(Function) With the above configuration, in the present invention, in the low engine speed range where the engine speed is less than the set value, if the on-off valve closes the communication between the independent intake passages through the communication part, the air will propagate from each cylinder. Since the negative pressure wave that occurs is reversed and reflected as a positive pressure wave in the intake expansion chamber, the passage length required to obtain the intake inertia effect is relatively long from the intake expansion chamber to each cylinder. The inertial effect of intake air in the rotation range is enhanced.

一方、エンジン回転数が設定値以上の高回転域
では、開閉弁により各独立吸気通路相互間を連通
部を介して連通させると、各独立吸気通路途中の
上記連通部において各気筒から伝播する負圧波が
正圧の圧力波に反転して反射されることになつ
て、吸気慣性効果を得るための吸気通路の有効長
が短くなる。しかも、他の気筒からの圧力波が上
記連通部により伝播することになり、これらの圧
力波の相乗作用によつて高回転域での充填効率が
大幅に高められることになる。
On the other hand, in a high engine speed range where the engine speed is higher than the set value, if each independent intake passage is communicated with each other via the communication part by the on-off valve, the negative energy propagated from each cylinder at the communication part in the middle of each independent intake passage Since the pressure waves are inverted and reflected into positive pressure waves, the effective length of the intake passage for obtaining the intake inertia effect becomes shorter. Moreover, pressure waves from other cylinders are propagated through the communication portion, and the synergistic effect of these pressure waves greatly increases the filling efficiency in the high rotation range.

また、その場合、各独立吸気通路の通路長を同
一にすべくエンジン長手方向に平行に配置される
吸気拡大室に対して、上記連通部が、タンクを仕
切部で仕切ることによつてタンク内の仕切部の上
側を吸気拡大室、下側を連通部として形成されて
吸気拡大室の下側に並設されているので、各気筒
から各独立吸気通路途中の連通部分岐箇所までの
通路長を同一にして上記作用を有効に確保しなが
ら、小型でコンパクトな吸気系を形成することが
可能となる。
In this case, the communication section may be connected to the intake expansion chamber, which is arranged parallel to the longitudinal direction of the engine so that the passage lengths of the independent intake passages are the same, by partitioning the tank with a partition section. The upper side of the partition is formed as an intake expansion chamber, and the lower side is formed as a communication section, which are arranged side by side on the lower side of the intake expansion chamber, so the passage length from each cylinder to the communication section branch point in the middle of each independent intake passage It becomes possible to form a small and compact intake system while effectively ensuring the above-mentioned effect by keeping the same.

さらに、EGRガス等がその各気筒への良好な
分配性を確保すべく吸気拡大室に導入される場
合、このEGRガス等中に含まれる水分は、吸気
拡大室と連通部との仕切部に設けた水抜き孔を介
して連通部へ排水され、この連通部から各気筒へ
供給されて蒸発処理されるので、上記水分が吸気
拡大室に溜ることがなく、この吸気拡大室の構成
壁が腐食するのを防止することが可能となる。
Furthermore, when EGR gas, etc. is introduced into the intake expansion chamber to ensure good distribution to each cylinder, the moisture contained in this EGR gas, etc. is transferred to the partition between the intake expansion chamber and the communication section. Water is drained into the communication section through the provided water drain hole, and is supplied to each cylinder from this communication section for evaporation treatment, so the moisture does not accumulate in the intake expansion chamber, and the walls that make up the intake expansion chamber It becomes possible to prevent corrosion.

(実施例) 以下、本考案の実施例について図面に基づいて
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第3図は本考案を4気筒4サイクルエ
ンジンに適用した場合の実施例を示す。同図にお
いて、1はシリンダブロツク2およびシリンダヘ
ツド3等からなるエンジン本体であつて、該エン
ジン本体1にはその長手方向に第1〜第4の4つ
の気筒4,4、…が直列状に形成されている。こ
の各気筒4にはそれぞれ燃焼室5が形成されてい
る。
1 to 3 show an embodiment in which the present invention is applied to a 4-cylinder 4-cycle engine. In the figure, reference numeral 1 denotes an engine body consisting of a cylinder block 2, a cylinder head 3, etc. In the engine body 1, four cylinders 4, 4, 4, first to fourth, are arranged in series in the longitudinal direction. It is formed. A combustion chamber 5 is formed in each cylinder 4.

6は気筒別に互いに独立して設けられた独立吸
気通路であつて、該各独立吸気通路6は、シリン
ダヘツド3内に形成され独立吸気通路6の下流端
部を構成する吸気ポート7を介して各気筒4の燃
焼室5に開口しており、これらの独立吸気通路
6,6…の上流端はそれぞれほぼ同一通路長でも
つてエンジン長手方向に平行に延びる略角筒形状
の吸気拡大室8に連通接続されている。上記吸気
拡大室8の一端面には外気を導入する吸気導入管
9が接続されていて、該吸気導入管9内には吸入
空気量を制御するスロツトル弁10が配設されて
おり、上記吸気導入管9により吸気拡大室8に導
入された吸気を各独立吸気通路6を介して各気筒
4の燃焼室5に供給するようになされている。ま
た、上記吸気ポート7には吸気弁11が設けられ
ている。
Reference numeral 6 denotes independent intake passages provided independently of each other for each cylinder, and each independent intake passage 6 is connected through an intake port 7 formed in the cylinder head 3 and constituting the downstream end of the independent intake passage 6. The upstream ends of these independent intake passages 6, 6, . It is connected in communication. An intake air introduction pipe 9 for introducing outside air is connected to one end surface of the intake expansion chamber 8, and a throttle valve 10 for controlling the amount of intake air is disposed inside the intake air introduction pipe 9. Intake air introduced into the intake expansion chamber 8 through the introduction pipe 9 is supplied to the combustion chamber 5 of each cylinder 4 via each independent intake passage 6. Further, the intake port 7 is provided with an intake valve 11 .

上記各独立吸気通路6の途中箇所は、吸気拡大
室8(つまりエンジン長手方向)に平行に延び、
これらの独立吸気通路6,6…から分岐する分岐
部としての分岐孔12を介してこれらの独立吸気
通路6,6…を相互に連通する連通部13に接続
されている。また、このことにより、上記各独立
吸気通路6,6…の連通部分岐箇所から各気筒4
までの通路長はほぼ同一長さに設定されている。
The intermediate portion of each independent intake passage 6 extends parallel to the intake expansion chamber 8 (that is, the longitudinal direction of the engine),
These independent intake passages 6, 6, . . . are connected to a communication portion 13 through which the independent intake passages 6, 6, . Moreover, by this, each cylinder 4 is
The passage lengths up to the two are set to be approximately the same length.

上記各分岐孔12にはそれぞれ分岐孔12を開
閉する開閉弁14が設けられている。この各開閉
弁14は、連通部13長手方向に延びるバルブシ
ヤフト15に一体的に連動可能に固定されてい
て、図示していないが、エンジン回転数検出手段
等の出力を受ける制御回路によりアクチユエータ
を介して開閉制御され、上記連通部13による各
独立吸気通路6相互間の連通をエンジン運転状態
に応じて制御し、エンジン回転数が設定値未満の
低回転域では閉じられ、エンジン回転数が設定値
以上の高回転域では開かれるように制御する制御
手段27を構成している。なお、このようなエン
ジン回転数に応じた開閉弁14の開閉作動は、小
なくとも出力が要求される高負荷時において行わ
れるようにすればよく、低負荷時には開閉弁14
が開状態または閉状態に保たれるようにしてもよ
い。
Each branch hole 12 is provided with an on-off valve 14 that opens and closes the branch hole 12, respectively. Each of the on-off valves 14 is integrally fixed to a valve shaft 15 extending in the longitudinal direction of the communication portion 13 so as to be interlocked with each other, and although not shown, the actuator is controlled by a control circuit that receives an output from an engine rotation speed detecting means or the like. The communication between the independent intake passages 6 through the communication portion 13 is controlled according to the engine operating state, and is closed in the low rotation range where the engine rotation speed is less than the set value, and the engine rotation speed is set. A control means 27 is configured to open the valve in a high rotation range exceeding the value. Note that the opening/closing operation of the on-off valve 14 according to the engine speed may be performed at least during high loads that require a small output, and the on-off valve 14 may be opened/closed at low loads.
may be kept open or closed.

そして、このような吸気系システムにおいて、
16は、上記吸気拡大室8、各独立吸気通路6,
6…、連通部13および各分岐孔12,12…を
形成するための吸気系構造体である。該構造体1
6は、吸気拡大室8および連通部13を両者を仕
切板28で仕切つた状態で構成するタンク部17
と、該タンク部17のエンジン側とは反対側の側
辺上部から側辺および下辺にかけてタンク部17
の周囲を迂回して延び、かつその構成壁の一部つ
まり側壁および下壁を利用して各独立吸気通路
6,6……の上流側部分6a,6a……をその各
上流端がタンク部17(吸気拡大室8)側辺上部
に開口するように一体的に形成する一体吸気管部
18,18…と、該各一体吸気管部18,18…
の下辺部からエンジン側へ向かつて各気筒別に分
岐して延び、各独立吸気通路6,6…の下流側部
分6b,6b…を形成する分岐吸気管部19,1
9…と、上記各一体吸気管部18の分岐吸気管部
19近傍においてタンク部17(連通部13)の
構成壁のうちの下壁を利用して各独立吸気通路6
の途中を連通部13に連通する分岐孔12を一体
的に形成する連通管部20,20…と、上記各分
岐吸気管部19,19…の先端部を互いに連結す
るフランジ部21とからなり、該フランジ部21
にてエンジン本体1に対し各分岐吸気管部19の
独立吸気通路下流側部分6bを各気筒4の吸気ポ
ート7に合致せしめた状態でボルト22,22…
を側方から挿入して締付けることによりエンジン
本体1に固定される。また、上記タンク部17の
エンジン側の側辺上部はエンジン側に膨出するよ
うに形成されており、吸気拡大室8の容積を十分
に確保するようにしている。すなわち、上記タン
ク部17は、連通部13と吸気拡大室8とが共に
エンジン長手方向に平行に延びるように形成され
ていることから、仕切部としての仕切板28で上
下に分割することにより、このタンク部17内の
仕切板28の上側に比較的大きな容量の吸気拡大
室8を、下側に比較的小さな容量の連通部13を
区画形成しており、連通部13は、吸気拡大室8
を構成する構成壁の一部(仕切板28)によつて
形成し吸気拡大室8の下側に並設するようにして
いる。
In such an intake system,
16 is the intake expansion chamber 8, each independent intake passage 6,
6..., an intake system structure for forming the communication portion 13 and each branch hole 12, 12.... The structure 1
Reference numeral 6 denotes a tank section 17 that includes the intake expansion chamber 8 and the communication section 13 separated by a partition plate 28.
The tank portion 17 extends from the upper side of the tank portion 17 opposite to the engine side to the side and lower sides.
The upstream portions 6a, 6a, . 17 (intake expansion chamber 8) Integral intake pipe parts 18, 18... integrally formed so as to open at the upper side of the side, and the respective integrated intake pipe parts 18, 18...
Branch intake pipe portions 19, 1 extend from the lower side toward the engine side and branch for each cylinder, forming downstream portions 6b, 6b of each independent intake passage 6, 6...
9... and each independent intake passage 6 using the lower wall of the constituent walls of the tank section 17 (communication section 13) in the vicinity of the branch intake pipe section 19 of each integral intake pipe section 18.
It consists of communication pipe parts 20, 20... which integrally form a branch hole 12 which communicates with the communication part 13 in the middle thereof, and a flange part 21 which connects the tips of each of the branch intake pipe parts 19, 19... to each other. , the flange portion 21
With the independent intake passage downstream portion 6b of each branch intake pipe section 19 aligned with the intake port 7 of each cylinder 4 with respect to the engine body 1, bolts 22, 22...
It is fixed to the engine body 1 by inserting it from the side and tightening it. Further, the upper side of the tank portion 17 on the engine side is formed so as to bulge toward the engine side, thereby ensuring a sufficient volume of the intake expansion chamber 8. That is, since the tank part 17 is formed so that the communication part 13 and the intake expansion chamber 8 both extend parallel to the longitudinal direction of the engine, by dividing the tank part 17 into upper and lower parts by the partition plate 28 as a partition part, An intake expansion chamber 8 with a relatively large capacity is defined above the partition plate 28 in the tank section 17, and a communication section 13 with a relatively small capacity is defined below.
It is formed by a part of the constituent wall (partition plate 28) constituting the air intake expansion chamber 8, and is arranged below the intake expansion chamber 8.

また、上記各分岐吸気部19の独立吸気管通路
下流側部分6bおよび各吸気ポート7は、斜め上
方から燃焼室5に向つてほぼ直線状に延びて燃焼
室5に開口するように形成されている。そして、
該各分岐吸気管部19の独立吸気通路下流側部分
6bの下流端近傍上部には噴射弁装着孔23が形
成されており、燃料噴射弁24はその先端噴射口
部がシールリング23aを介して噴射弁装着孔2
3に挿入されて固定されている。この噴射弁装着
孔23および燃料噴射弁24の取付方向は該噴射
弁24からの燃料が燃焼室5の吸気弁11に向つ
て噴射されるように装着されていて、各燃料噴射
弁24,24…はエンジン長手方向に平行に配設
された燃料供給管25に連通接続されている。こ
のことにより、燃料噴射弁24は分岐吸気管部1
9にほぼ沿つて寝た状態で取付けられることとな
り、該燃料噴射弁24の中心線の延長線上に上
記タンク部17が燃料噴射弁24および燃料供給
管25に近接して位置することになる。
Further, the independent intake pipe passage downstream portion 6b of each branch intake section 19 and each intake port 7 are formed to extend in a substantially straight line from obliquely upward toward the combustion chamber 5 and open into the combustion chamber 5. There is. and,
An injection valve mounting hole 23 is formed in the upper part near the downstream end of the downstream side portion 6b of the independent intake passage of each branch intake pipe section 19, and the fuel injection valve 24 has its tip injection port inserted through a seal ring 23a. Injection valve mounting hole 2
3 and is fixed. The injection valve mounting hole 23 and the fuel injection valve 24 are installed in such a manner that the fuel from the injection valve 24 is injected toward the intake valve 11 of the combustion chamber 5. ... are connected to a fuel supply pipe 25 arranged parallel to the longitudinal direction of the engine. As a result, the fuel injection valve 24 is connected to the branch intake pipe section 1.
9, and the tank portion 17 is located close to the fuel injection valve 24 and the fuel supply pipe 25 on an extension of the center line of the fuel injection valve 24.

さらに、上記各連通管部20の分岐孔12に開
閉弁14が配設されること、およびタンク部17
が燃料噴射弁24の中心延長線上に位置するこ
とから、上記吸気系構造体16は、そのタンク部
17において、上記燃料噴射弁24の中心線の延
長線よりも下側の位置でかつ各分岐孔12,1
2…を含む連通部13の部分と吸気拡大室8との
間としての仕切板28の位置でタンク部17の長
手方向に沿つた分割面によつて上下に分割されて
形成されていて、タンク部17の上半部(吸気拡
大室8)および各一体吸気管部18,18…の上
半部が一体成形された上側分割体16aと、タン
ク部17の下半部(連通部13)、一体吸気管部
18,18…の下半部、各分岐吸気管部19,1
9…、各連通管路20,20…およびフランジ部
21が一体成形された下側分割体16bとからな
り、両分割体16a,16b…が仕切板28を介
して接合され、ボルト26,26…を下方から挿
入して締付けることにより気密的に結合されてな
る。
Further, an on-off valve 14 is disposed in the branch hole 12 of each communication pipe section 20, and a tank section 17 is provided.
is located on the central extension line of the fuel injection valve 24, so that the intake system structure 16 is positioned below the central extension line of the fuel injection valve 24 in the tank portion 17 and at each branch. hole 12,1
It is formed by being divided into upper and lower parts by a dividing plane along the longitudinal direction of the tank part 17 at the position of the partition plate 28 between the part of the communication part 13 including 2... and the intake expansion chamber 8, and An upper divided body 16a in which the upper half of the section 17 (intake expansion chamber 8) and the upper half of each integral intake pipe section 18, 18... are integrally molded, the lower half of the tank section 17 (the communication section 13), The lower half of the integrated intake pipe parts 18, 18..., each branched intake pipe part 19, 1
9..., each communicating pipe line 20, 20... and a lower divided body 16b integrally formed with a flange portion 21, both divided bodies 16a, 16b... are joined via a partition plate 28, and bolts 26, 26 ... are inserted from below and tightened to form an airtight connection.

加えて、上記吸気拡大室8と連通部13とを仕
切る仕切部としての仕切板28には、第2図に示
すように仕切板28のうち高さの低い側(エンジ
ン側)近傍でかつ開閉弁14と対向しないよう分
岐孔12,12間の中間箇所に対応する位置に水
抜き孔29が形成されている。
In addition, as shown in FIG. 2, the partition plate 28 serving as a partition part that partitions the intake expansion chamber 8 and the communication portion 13 has an opening/closing function near the lower height side (engine side) of the partition plate 28. A drain hole 29 is formed at a position corresponding to an intermediate location between the branch holes 12 and 12 so as not to face the valve 14.

次に、上記実施例の作用について述べるに、制
御手段27により各開閉弁14が閉じて連通部1
3による各独立吸気通路6相互間の連通が閉塞さ
れている状態では、吸気行程で生じる負圧波が吸
気拡大室8まで伝播されてここで反射され、つま
り比較的長い通路を通して上記負圧波およびその
反射波が伝播することにより、低回転域において
このような圧力波の振動周期が吸気弁開閉周期に
マツチングすることになり、低回転域での吸気の
慣性効果が高められて、吸気充填効率が高められ
る。一方、制御手段27により上記各開閉弁14
が開かれて連通部13により各独立吸気通路6相
互間が連通している状態では、吸気行程で生じる
負圧波が上記連通部13で反射されてこの負圧波
および反射波の伝播に供される通路長さが短くな
ることにより、高回転域で吸気慣性効果が高めら
れるとともに、この運転域では他の気筒から伝播
される圧力波も連通部13を介して有効に作用す
ることになり、高回転域での充填効率が大幅に高
められる。従つて、少なくとも高負荷時に、上記
低回転域と高回転域との吸気慣性効果が得られる
各回転数の中間回転数に相当する所定回転数を境
に、これより低回転側で開閉弁14を閉じ、これ
より高回転側で開閉弁14を開くようにしておく
ことにより、全回転域で吸気充填効率が高められ
て出力を向上させることができる。特に、高回転
域での吸気充填効率は、従来のように単に吸気通
路を短縮させて慣性効果を高めるようにした場合
と比べても、気筒間の圧力伝播作用でより一層高
められることとなる。
Next, to describe the operation of the above embodiment, each on-off valve 14 is closed by the control means 27 and the communication portion 1 is closed.
In a state in which the communication between the independent intake passages 6 is closed due to the passage 3, the negative pressure waves generated during the intake stroke are propagated to the intake expansion chamber 8 and reflected there. In other words, the negative pressure waves and their Due to the propagation of the reflected waves, the oscillation period of these pressure waves matches the intake valve opening/closing period in the low rotation range, increasing the inertia effect of intake air in the low rotation range and increasing the intake air filling efficiency. be enhanced. On the other hand, each on-off valve 14 is controlled by the control means 27.
is opened and the individual intake passages 6 are in communication with each other through the communication portion 13, the negative pressure waves generated during the intake stroke are reflected by the communication portion 13, and the negative pressure waves and reflected waves are propagated. By shortening the passage length, the intake inertia effect is enhanced in the high rotation range, and in this operating range, pressure waves propagated from other cylinders also act effectively through the communication part 13, resulting in high engine speed. Filling efficiency in the rotation range is greatly increased. Therefore, at least when the load is high, the opening/closing valve 14 is opened at a lower rotational speed than a predetermined rotational speed corresponding to an intermediate rotational speed between the respective rotational speeds at which the intake inertia effect between the low rotational speed range and the high rotational speed range is obtained. By closing the on-off valve 14 and opening the on-off valve 14 at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range, and the output can be improved. In particular, the intake air filling efficiency in the high rotation range can be further improved by the pressure propagation effect between the cylinders, even compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに
適当な吸気拡大室8および連通部13の大きさと
しては、吸気拡大室8は排気量の0.5倍以上の容
量とし、連通部13は排気量の1.5倍以下の容量
としておくことが望ましい。さらに、上記連通部
13は吸気拡大室8よりも容量を小さくし、かつ
連通部13の断面積は各独立吸気通路6の断面積
よりも大きくしておくことが望ましい。
The appropriate sizes of the intake expansion chamber 8 and the communication portion 13 to effectively exhibit the above-mentioned effects are as follows: The intake expansion chamber 8 has a capacity of 0.5 times or more the exhaust volume, and the communication portion 13 has a capacity that is 0.5 times or more the exhaust volume. It is desirable to keep the capacity 1.5 times or less. Furthermore, it is desirable that the capacity of the communicating portion 13 is smaller than that of the intake expansion chamber 8, and that the cross-sectional area of the communicating portion 13 is larger than the cross-sectional area of each independent intake passage 6.

そして、この場合、上記連通部13は、タンク
部17を仕切板28で上下に仕切ることにより吸
気拡大室8の下側に並設され、この吸気拡大室8
の構成壁の一部(仕切板28)によつて形成され
ているので、上述の如き作用効果を発揮する吸気
系をコンパクトに小型に形成することができ、そ
の車載性を向上させることができる。特に、上記
実施例の如く吸気系構造体16における吸気拡大
室8および連通部13を構成するタンク部17と
各独立吸気通路6の上流側部分6aを構成する一
体吸気管部18と各独立吸気通路6の下流側部分
6bを構成する分岐吸気管部19と各分岐孔12
を構成する連通管部20とによつて、各独立吸気
通路6がタンク部17の周囲に迂回しながらかつ
タンク部17の構成壁の一部を利用して一体的に
形成されているとともに、各分岐孔12がタンク
部17の構成壁の一部と一体的に形成されている
ので、上記独立吸気通路6の所要長さ、吸気拡大
室8および連通部13の各所要容積を得るに当つ
て、これら吸気系を一層コンパクトに小型のもの
に形成することができ、よつて限られたスペース
(エンジンルーム)内で上記所要長さおよび所要
容積を十分に確保することができ、車載性の向上
をより一層図ることができる。
In this case, the communication section 13 is arranged in parallel below the intake expansion chamber 8 by partitioning the tank section 17 into upper and lower sections with a partition plate 28.
Since it is formed by a part of the constituent wall (partition plate 28), the intake system that exhibits the above-mentioned functions and effects can be formed compactly and compactly, and its mountability on a vehicle can be improved. . In particular, as in the above embodiment, the tank section 17 that constitutes the intake expansion chamber 8 and the communication section 13 in the intake system structure 16, the integral intake pipe section 18 that constitutes the upstream portion 6a of each independent intake passage 6, and each independent intake A branch intake pipe section 19 and each branch hole 12 that constitute the downstream portion 6b of the passage 6
Each independent intake passage 6 is detoured around the tank part 17 by the communication pipe part 20 constituting the tank part 17, and is integrally formed using a part of the constituent wall of the tank part 17. Since each branch hole 12 is formed integrally with a part of the constituent wall of the tank section 17, it is necessary to obtain the required length of the independent intake passage 6 and the required volumes of the intake expansion chamber 8 and the communication section 13. As a result, these intake systems can be made more compact and smaller, and the required length and volume can be secured in a limited space (engine room), making it possible to install them in a vehicle. Further improvement can be achieved.

また、この場合、燃料噴射弁24が上記分岐吸
気管部19の下流端近傍つまり独立吸気通路6の
下流側においてその噴射燃料をその霧化を良好に
しながら燃焼室5に応答性良く供給すべく燃焼室
5に向けて装着されている関係上、該燃料噴射弁
24の中心延長線上に近接して吸気系構造体1
6のタンク部17が位置すること、および上記各
分岐孔12に開閉弁14を配設することが必要で
ある。このため、上記吸気系構造体16はそのタ
ンク部17において上記中心延長線よりも下側
即ち分岐吸気管部19側の位置でかつ仕切板28
の位置で吸気拡大室8の長手方向に沿つた分割面
で上下に上側分割体16aと下側分割体16bと
に分割され両分割体16a,16bが仕切板28
を介して結合されてなるので、下側分割体16b
をそのフランジ部21にてエンジン本体1に側方
からのボルト22による締付けにより取付けたの
ち、該下側分割体16bの各分岐吸気管部19の
噴射弁装着孔23に燃料噴射弁24を中心延長線
方向から挿入し燃料供給管25を下側分割体1
6bに固定することによつて各燃料噴射弁24を
取付けるとともに、下側分割体16bの各連通管
部20の分岐孔12にその上方から開閉弁14を
挿入してバルブシヤフト15に固定し、しかる後
上記下側分割体16bに対して仕切板28を介在
させて上側分解体16aを接合して下方からのボ
ルト26の締付けにより両者16a,16bを一
体に結合することによつて、良好な成形性を確保
でき、かつ上側および下側分割体16a,16b
の組付けを容易に行い得るのは勿論のこと、開閉
弁14および燃料噴射弁24の組付けを容易に行
うことができ、良好な組付け性を確保することが
できる。
Further, in this case, the fuel injection valve 24 is arranged near the downstream end of the branched intake pipe section 19, that is, on the downstream side of the independent intake passage 6, in order to supply the injected fuel to the combustion chamber 5 with good responsiveness while improving its atomization. Since the fuel injector 24 is mounted facing the combustion chamber 5, the intake system structure 1 is located close to the central extension line of the fuel injector 24.
It is necessary that the tank portion 17 of No. 6 be located therein, and that the on-off valve 14 be disposed in each of the branch holes 12. Therefore, the intake system structure 16 is located at a position below the center extension line of the tank portion 17, that is, on the side of the branch intake pipe portion 19, and the partition plate 28
At the position, the intake expansion chamber 8 is divided vertically into an upper divided body 16a and a lower divided body 16b by a dividing plane along the longitudinal direction, and both divided bodies 16a and 16b are connected to a partition plate 28.
Since the lower divided body 16b is connected via
is attached to the engine body 1 at its flange portion 21 by tightening bolts 22 from the side, and then the fuel injection valve 24 is inserted into the injection valve mounting hole 23 of each branch intake pipe portion 19 of the lower divided body 16b. Insert the fuel supply pipe 25 from the extension direction and connect it to the lower divided body 1.
6b to attach each fuel injection valve 24, and the on-off valve 14 is inserted from above into the branch hole 12 of each communication pipe portion 20 of the lower division body 16b and fixed to the valve shaft 15, Thereafter, the upper disassembled body 16a is joined to the lower divided body 16b with the partition plate 28 interposed therebetween, and both 16a and 16b are joined together by tightening the bolts 26 from below, thereby achieving a good result. Formability can be ensured, and upper and lower divided bodies 16a, 16b
Not only can the on-off valve 14 and the fuel injection valve 24 be easily assembled, but also good assembly performance can be ensured.

しかも、上記上側分割体16aと下側分割体1
6bとの結合は、下方からのボルト26の締付け
によつて行われるので、その良好な組付け性を確
保しながら、上述の如くタンク部17(吸気拡大
室8)におけるエンジン側の側辺上部の膨出形成
が可能となつて、吸気拡大室8の容積を十分に確
保できる利点もある。
Moreover, the upper divided body 16a and the lower divided body 1
6b is achieved by tightening the bolt 26 from below, while ensuring good assemblability, the upper part of the side of the tank part 17 (intake expansion chamber 8) on the engine side is secured as described above. There is also an advantage that a bulge can be formed, and a sufficient volume of the intake expansion chamber 8 can be secured.

さらに、EGRガス等を吸気拡大室8に導入す
る場合、このEGRガス等は吸気拡大室8に一旦
一つの大きな空間に導入されたのち各独立吸気通
路6を介して各気筒4に供給されるので、EGR
ガス等を各気筒4にほぼ均等に分配することがで
き、この良好な分配性により各気筒4での燃焼状
態を均等にして各気筒4間でのトルク変動を防止
することができる。そして、この場合、吸気拡大
室8と連通部13とを仕切る仕切板28には水抜
き孔29が設けられていることにより、上記吸気
拡大室8に導入されたEGRガス等中に含まれる
水分は溜ることなく、上記水抜き孔29を介して
下側の連通部13に排水され、この連通部13か
ら各分岐孔12を介して各気筒4へ導かれて蒸発
処理されることになり、上記水分が吸気拡大室8
に溜ることによるタンク部17の腐食を未然にか
つ確実に防止することができる。また、その際、
上記水抜き孔29は開閉弁14に対向しないよう
分岐孔12,12間の中間箇所に対応する位置に
設けられているので、吸気拡大室8から水抜き孔
29を介して連通部13へ排水された水分が直接
開閉弁14に当たることがなく、開閉弁14の良
好な作動を確保することができる。
Furthermore, when introducing EGR gas etc. into the intake expansion chamber 8, this EGR gas etc. is once introduced into the intake expansion chamber 8 into one large space and then supplied to each cylinder 4 via each independent intake passage 6. So, EGR
Gas, etc. can be distributed almost equally to each cylinder 4, and this good distribution property makes it possible to equalize the combustion state in each cylinder 4 and prevent torque fluctuations among each cylinder 4. In this case, a water drain hole 29 is provided in the partition plate 28 that partitions the intake expansion chamber 8 and the communication section 13, so that moisture contained in the EGR gas etc. introduced into the intake expansion chamber 8 can be removed. The water is drained through the drain hole 29 to the lower communication section 13 without accumulating, and from this communication section 13 is led to each cylinder 4 via each branch hole 12 for evaporation treatment. The above moisture is in the intake expansion chamber 8
Corrosion of the tank portion 17 due to accumulation in water can be prevented in advance and reliably. Also, at that time,
The water drain hole 29 is provided at a position corresponding to the intermediate point between the branch holes 12 and 12 so as not to face the on-off valve 14, so that water is drained from the intake expansion chamber 8 to the communication portion 13 through the water drain hole 29. The released moisture does not directly hit the on-off valve 14, and good operation of the on-off valve 14 can be ensured.

尚、本考案は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、吸気拡大室8を構成するタンクと連
通部13を構成するタンクとを、両者の外壁の一
部を共用して上下に並設した吸気系に対しても適
用でき、この場合、この仕切部として共用する外
壁に水抜き孔を設ければ、上記実施例と同様の作
用効果を奏し得る。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, it can be applied to an intake system in which a tank forming the intake expansion chamber 8 and a tank forming the communication section 13 are arranged vertically side by side, sharing a part of their outer walls; in this case, this partition If a drain hole is provided in the outer wall that is commonly used as a section, the same effects as in the above embodiment can be achieved.

さらに、本考案は以上の実施例の如く吸気拡大
室8と連通部13とを完全に仕切つたものに限ら
ず、吸気拡大室8と連通部13とを例えば第1図
で仮想線で示す如く仕切板28に設けた連通路3
0で連通させて、低回転域でこの連通路30を介
して連通する吸気拡大室8と連通部13との間で
吸気圧力振動を起こすことにより吸気の充填効率
を一層高めるようにした吸気系に対しても適用可
能である。
Furthermore, the present invention is not limited to the case where the intake expansion chamber 8 and the communication section 13 are completely partitioned off as in the above embodiments, but the intake expansion chamber 8 and the communication section 13 are separated, for example, as shown by imaginary lines in FIG. Communication path 3 provided in the partition plate 28
The intake system further increases the filling efficiency of intake air by causing intake pressure vibration between the intake expansion chamber 8 and the communication part 13, which are communicated at 0 and communicated via the communication passage 30 in the low rotation range. It is also applicable to

さらに、本考案は以上の実施例の如く4気筒エ
ンジンに限らず、他の多気筒エンジン、例えば5
気筒エンジンや6気筒エンジンにも適用すること
ができる。そして、各気筒の吸気行程のずれが4
気筒エンジンでは180°となるが、例えば6気筒エ
ンジンでは120°となるので、6気筒のエンジンに
適用する場合は上記連通部13を短く形成してお
けば、高回転域で特定気筒に他の気筒から連通部
13を通して伝播される圧力波と連通部13から
の反射波とをほぼ合致させることができる。
Furthermore, the present invention is applicable not only to 4-cylinder engines as in the above embodiments, but also to other multi-cylinder engines, such as 5-cylinder engines.
It can also be applied to cylinder engines and six-cylinder engines. And the difference in the intake stroke of each cylinder is 4
In a cylinder engine, the angle is 180°, but in a 6-cylinder engine, for example, it is 120°. Therefore, when applying to a 6-cylinder engine, if the communication portion 13 is formed short, it is possible to connect a specific cylinder to another in the high rotation range. The pressure wave propagated from the cylinder through the communication section 13 and the reflected wave from the communication section 13 can be made to substantially match.

(考案の効果) 以上説明したように、本考案によれば、吸気拡
大室と各気筒との間の互いに独立した各独立吸気
通路をその途中で相互に連通する連通部を設け、
その連通部による連通をエンジンの低回転域で閉
塞し、高回転域で開放するようにしたので、低回
転域および高回転域でそれぞれ吸気の慣性効果を
高めることができ、特に高回転域では上記連通部
を通して気筒間を伝播する圧力波によつて吸気充
填効率をより一層高めて、高回転時の出力を大幅
に向上させることができる。しかも、上記連通部
を吸気拡大室の下側に並設したので、上記の効果
を発揮する吸気系を小型、コンパクトに形成する
ことができ、車載性の向上を図ることができる。
さらに、上記吸気拡大室と連通部とを区画する仕
切部に水抜き孔を設けたので、EGRガス等をそ
の良好な分配性を確保すべく吸気拡大室に導入し
た場合、このEGRガス等中に含まれる水分が吸
気拡大室に溜るのを防いで、吸気拡大室の構成壁
(タンク)の腐食防止を図ることができる。
(Effects of the invention) As explained above, according to the invention, a communication portion is provided midway through which the mutually independent intake passages between the intake expansion chamber and each cylinder are communicated with each other,
Since the communication through the communication part is closed in the low engine speed range and opened in the high engine speed range, the inertia effect of the intake air can be enhanced in both the low and high speed ranges, especially in the high speed range. The pressure waves that propagate between the cylinders through the communication portion can further increase the intake air filling efficiency and significantly improve the output at high rotation speeds. Moreover, since the communication portions are arranged side by side on the lower side of the intake expansion chamber, the intake system that exhibits the above-mentioned effects can be formed small and compact, and it is possible to improve the ease of mounting on a vehicle.
Furthermore, since a drainage hole is provided in the partition that separates the intake expansion chamber and the communication section, when EGR gas, etc. is introduced into the intake expansion chamber to ensure good distribution, this EGR gas, etc. It is possible to prevent moisture contained in the intake air expansion chamber from accumulating in the intake air expansion chamber, thereby preventing corrosion of the constituent wall (tank) of the intake air expansion chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を例示し、第1図は第3
図の−線における縦断側面図、第2図は第3
図の−線における縦断側面図、第3図は一部
破断した平面図である。 1……エンジン本体、4……気筒、6……独立
吸気通路、8……吸気拡大室、12……分岐孔、
13……連通部、14……開閉弁、17……タン
ク部、28……仕切板、29……水抜き孔。
The drawings illustrate an embodiment of the invention, FIG.
Vertical side view taken along the - line in the figure, Figure 2 is the 3rd
FIG. 3 is a longitudinal sectional side view taken along the line - in the figure, and FIG. 3 is a partially broken plan view. 1... Engine body, 4... Cylinder, 6... Independent intake passage, 8... Intake expansion chamber, 12... Branch hole,
13...Communication part, 14...Opening/closing valve, 17...Tank part, 28...Partition plate, 29...Drain hole.

Claims (1)

【実用新案登録請求の範囲】 気筒別に互いに独立して設けられた各独立吸気
通路の上流端が各々吸気拡大室に接続された多気
筒エンジンの吸気装置において、 上記各独立吸気通路の途中部は、該各独立吸気
通路の途中部から上方に分岐して各独立吸気通路
を相互に連通する連通部に接続されており、該連
通部の上記各独立吸気通路からの分岐部には、該
各独立吸気通路と連通部との連通をエンジンの低
回転域で閉塞し、高回転域で開放する開閉弁が
各々配設されており、 上記吸気拡大室と連通部とは、タンクを仕切部
で仕切ることによつて該タンク内の仕切部の上側
を吸気拡大室、下側を連通部として形成されてい
て、該連通部は吸気拡大室の下側に並設されてお
り、かつ上記連通部の容積は上記吸気拡大室の容
積よりも小さく設定されており、 上記吸気拡大室と連通部とを区画する仕切部に
は、該吸気拡大室に流入した水分を上記連通部へ
排水するための水抜き孔が設けられていることを
特徴とする多気筒エンジンの吸気装置。
[Scope of Claim for Utility Model Registration] In an intake system for a multi-cylinder engine in which the upstream ends of independent intake passages provided independently for each cylinder are connected to intake enlargement chambers, the middle part of each independent intake passage is , is connected to a communication portion that branches upward from the middle of each of the independent intake passages and communicates each independent intake passage with each other, and the branch portion of the communication portion from each of the independent intake passages has a Opening/closing valves are installed that close the communication between the independent intake passage and the communication section in the low engine speed range and open it in the high engine speed range. By partitioning, the upper side of the partition part in the tank is formed as an intake expansion chamber, and the lower side is formed as a communication part, and the communication part is arranged in parallel with the lower side of the intake expansion chamber, and the communication part The volume of the intake air expansion chamber is set to be smaller than the volume of the intake air expansion chamber, and the partition section that separates the air intake expansion chamber from the communication section has a partition for draining moisture that has flowed into the intake air expansion chamber into the communication section. An intake system for a multi-cylinder engine characterized by being provided with a water drain hole.
JP1985009745U 1985-01-25 1985-01-25 Expired JPH0343379Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985009745U JPH0343379Y2 (en) 1985-01-25 1985-01-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985009745U JPH0343379Y2 (en) 1985-01-25 1985-01-25

Publications (2)

Publication Number Publication Date
JPS61125631U JPS61125631U (en) 1986-08-07
JPH0343379Y2 true JPH0343379Y2 (en) 1991-09-11

Family

ID=30490257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985009745U Expired JPH0343379Y2 (en) 1985-01-25 1985-01-25

Country Status (1)

Country Link
JP (1) JPH0343379Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834401U (en) * 1971-08-26 1973-04-25

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098138U (en) * 1974-01-14 1975-08-15
JPS58116726U (en) * 1982-02-03 1983-08-09 株式会社小松製作所 Inertial supercharging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834401U (en) * 1971-08-26 1973-04-25

Also Published As

Publication number Publication date
JPS61125631U (en) 1986-08-07

Similar Documents

Publication Publication Date Title
KR890001733B1 (en) Intake system for internal combustion engine
JPH0353452B2 (en)
JPS61149519A (en) Intake-air passage device in multi-cylinder internal combustion engine
US4735177A (en) Intake system for internal combustion engine
JPS627922A (en) Intake structure of engine
JPH0343379Y2 (en)
JPS61157717A (en) Air intake device of multicylinder engine
JPH0320498Y2 (en)
JPH0315779Y2 (en)
JPH0320495Y2 (en)
JPH0343378Y2 (en)
JPH04214923A (en) Intake device for multiple cylinder engine
JPH0353454B2 (en)
JPH0643462Y2 (en) Engine intake system
JPH0343380Y2 (en)
JP2500856B2 (en) Multi-cylinder engine intake system
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0353455B2 (en)
JPH0427370B2 (en)
JPS61116020A (en) Engine intake-air device
JPH064029Y2 (en) Multi-cylinder engine intake system
JPH048304Y2 (en)
JPS59226264A (en) Suction device for engine
JPH0523824Y2 (en)
JPS60222524A (en) Suction device of engine