JPS61252830A - Intake device of multicylinder engine - Google Patents

Intake device of multicylinder engine

Info

Publication number
JPS61252830A
JPS61252830A JP60094334A JP9433485A JPS61252830A JP S61252830 A JPS61252830 A JP S61252830A JP 60094334 A JP60094334 A JP 60094334A JP 9433485 A JP9433485 A JP 9433485A JP S61252830 A JPS61252830 A JP S61252830A
Authority
JP
Japan
Prior art keywords
intake
cylinder
length
intake air
supercharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60094334A
Other languages
Japanese (ja)
Other versions
JPH0726539B2 (en
Inventor
Haruo Okimoto
沖本 晴男
Toshimichi Akagi
赤木 年道
Seiji Tajima
誠司 田島
Naoyuki Koyama
小山 尚之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60094334A priority Critical patent/JPH0726539B2/en
Publication of JPS61252830A publication Critical patent/JPS61252830A/en
Publication of JPH0726539B2 publication Critical patent/JPH0726539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve intake efficiency, according to the method wherein an independent intake air passage is coupled form a surge tank to a set of the intake air ports of each cylinder to perform inertia supercharging, and an intake air passage, through which other set of the intake air ports are coupled to each of cylinders which are positioned in the ignition order in succession, is provided to perform dynamic supercharging. CONSTITUTION:When air is intaked from a surge tank 4 to the intake air port of each cylinder, independent intake air passages 3a and 3d are formed to a set of the intake air ports of a first and a fourth cylinder, and each passage length 11 is set to a value being so optimum enough to allow inertia supercharging. A second cylinder 2b and a third cylinder 2c, positioned in the ignition order in succession, are intercoupled through intake air passages 3b and c. A total length 12 of the two passages is set to length by which a pressure wave produced when the one cylinder is closed during high speed operation is propagated when the intake air port of the other cylinder is opened. The dynamic supercharging and said inertia supercharging cause improvement of intake efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多気筒エンジンの吸気装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for a multi-cylinder engine.

〔従来の技術〕[Conventional technology]

最近、車両用エンジンにおいては、エンジンの出力アッ
プの観点から、いわゆる吸気の動的効果を利用して吸気
を過給するようにしたものが種々開発提案されている。
Recently, various vehicle engines have been developed and proposed in which intake air is supercharged by utilizing the so-called dynamic effect of intake air, with a view to increasing engine output.

そしてこの吸気の動的効果の1つとして吸気の慣性効果
が知られており、この吸気慣性を利用した吸気装置とし
て、従来、複数の各気筒とサージタンク間に各々吸気通
路を設け、該吸気通路の寸法、形状をエンジン回転数に
応じた寸法、形状に設定するようにしたものがあるが、
この装置ではサージタンクが大型になり、又吸気通路が
長くなり、エンジンルームのスペースを考慮すると好ま
しくないものである。
Intake inertia effect is known as one of the dynamic effects of this intake air, and as an intake system that utilizes this intake inertia, conventionally, intake passages are provided between each of a plurality of cylinders and a surge tank, and the intake air There are some models in which the dimensions and shape of the passage are set according to the engine speed.
In this device, the surge tank becomes large and the intake passage becomes long, which is not desirable when considering the space in the engine room.

また吸気慣性を利用した他の吸気装置として、従来、例
えば実開昭56−105626号公報に示されるように
、サージタンク下流の共通の吸気通路から各気筒への分
岐吸気通路を分岐し、共通吸気通路及び分岐吸気通路の
寸法、形状を適宜設定するようにしたものがあり、この
装置では、吸気通路のサージタンクへの接続部が1つで
あることから、サージタンクが小型でよく、又その構造
上、分岐吸気通路が曲成されることから、サージタンク
と気筒間の距離が短くなるという利点がある。
In addition, as another intake device that utilizes intake inertia, conventionally, for example, as shown in Japanese Utility Model Application No. 56-105626, a branch intake passage is branched from a common intake passage downstream of a surge tank to each cylinder. There is a device in which the dimensions and shapes of the intake passage and the branch intake passage are set appropriately.In this device, there is only one connection part of the intake passage to the surge tank, so the surge tank can be small, and Due to its structure, the branch intake passage is curved, which has the advantage of shortening the distance between the surge tank and the cylinder.

一方、車両用エンジンにおいては、吸気の動的効果とし
て上述の吸気慣性の他に、吸気ポート閉時に生ずる高圧
力波が知られている。そして上記従来公報記載の吸気装
置においては、その吸気通路の構造上、1つの気筒の吸
気ポート閉時に生じる高圧力波を吸気行程にある他の気
筒に作用させることが可能であり、このように2つの異
なる動的効果を利用するようにすれば、より大きな過給
効果が得られるものと考えられる。
On the other hand, in a vehicle engine, in addition to the above-mentioned intake inertia, high pressure waves generated when the intake port is closed are known as dynamic effects of intake air. In the intake system described in the above-mentioned conventional publication, due to the structure of the intake passage, it is possible to cause the high pressure wave generated when the intake port of one cylinder is closed to act on other cylinders in the intake stroke. It is believed that a greater supercharging effect can be obtained by utilizing two different dynamic effects.

しかるにこの場合、2つの異なる動的効果による過給を
同時に行なおうとすると、吸気慣性による高圧力波と吸
気ポート閉時の高圧力波とが相互に干渉し合い、過給効
果がかえって低減してしまうこととなる。従って2つの
動的効果による過給を行なうためには、吸気慣性を利用
する吸気系と、吸気ポート閉時の高圧波を利用する吸気
系とを別個に設ける必要があり、構造複雑かつ大型にな
るという問題が生じることとなる。
However, in this case, if two different dynamic effects are tried to perform supercharging at the same time, the high pressure waves due to intake inertia and the high pressure waves when the intake port is closed will interfere with each other, which will actually reduce the supercharging effect. This will result in Therefore, in order to perform supercharging using two dynamic effects, it is necessary to separately provide an intake system that utilizes intake inertia and an intake system that utilizes high pressure waves when the intake port is closed, resulting in a complex and large structure. A problem arises.

ところでエンジンの過給について考察すると、一般に吸
気の動的効果を利用した過給はエンジンの高回転域、即
ち高出力が要求され、かつ吸気慣性が大きい運転域で行
なわれているものであり、上述の場合もエンジンの高回
転域において吸気慣性及び吸気ポート閉時の高圧力波の
両者による過給を行なおうとしたことから、上記のよう
に高圧力波同志が干渉し合って過給効果が得られないと
いう問題が生じることとなった訳である。ここで過給に
対する着眼点を変え、吸気慣性による過給及び吸気ポー
ト閉時の高圧力波による過給を各々異なる領域で行なう
ようにすれば、吸気慣性による高圧力と吸気ポート閉時
の高圧力波とが干渉することがなく、しかもこのように
すれば広い回転域にわたって過給効果が得られるものと
期待される。
By the way, when considering engine supercharging, supercharging that utilizes the dynamic effect of intake air is generally carried out in the high rotation range of the engine, that is, in the operating range where high output is required and intake inertia is large. In the above case as well, since we tried to perform supercharging using both the intake inertia and the high pressure waves when the intake port is closed in the high engine speed range, the high pressure waves interfere with each other as described above, resulting in the supercharging effect. This resulted in the problem of not being able to obtain the desired results. If we change the focus on supercharging and perform supercharging due to intake inertia and supercharging due to high pressure waves when the intake port is closed in different areas, we can reduce the high pressure due to intake inertia and the high pressure wave when the intake port is closed. There is no interference with pressure waves, and it is expected that by doing so, a supercharging effect can be obtained over a wide rotation range.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる点に鑑み、広い回転域にわたって過
給効果が得られる多気筒エンジンの吸気装置を提供せん
とするものである。
In view of this point, the present invention aims to provide an intake system for a multi-cylinder engine that can obtain a supercharging effect over a wide rotation range.

〔発明の構成〕[Structure of the invention]

そこでこの発明は、サージタンク下流の共通吸気通路か
ら各気筒の分岐吸気通路を分岐してなる多気筒エンジン
において、共通吸気通路と分岐吸気通路とを加算した長
さを高速域以外の運転域で吸気慣性による過給効果が得
られる長さに設定する一方、気筒間の分岐吸気通路の長
さを高速域で吸気ポート閉時の高圧力波による過給効果
が得られる長さに設定するようにしたもので、これによ
り異なる回転域で異なる動的効果による過給効果を得る
ようにしたものである。
Therefore, in a multi-cylinder engine in which branch intake passages for each cylinder are branched from a common intake passage downstream of a surge tank, the present invention aims to reduce the total length of the common intake passage and the branch intake passage in operating ranges other than high-speed ranges. The length of the branch intake passage between the cylinders is set to a length that provides a supercharging effect due to intake inertia, while the length of the branch intake passage between cylinders is set to a length that provides a supercharging effect due to high pressure waves when the intake port is closed at high speeds. This allows the supercharging effect to be obtained through different dynamic effects in different rotation ranges.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による多気筒エンジンの吸気
装置を示す。図において、1はエンジンで、該エンジン
1は第1〜第4の4つの気m2a〜2dを有し、該多気
筒2a〜2dの吸気ポート12には各々分岐吸気通路3
a〜3dが接続され、該分岐吸気通路3a〜3dの上流
端はサージタンク4下流の共通吸気通路5に接続されて
いる。このサージタンク4の上流側吸気通路6にはスロ
ットル弁7及び空気計量器8が配設され、上流側吸気通
路6の上流端はエアクリーナ9に至っている。
FIG. 1 shows an intake system for a multi-cylinder engine according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an engine, and the engine 1 has four air cylinders m2a to 2d, first to fourth, and each branch intake passage 3 is connected to an intake port 12 of each of the multi-cylinders 2a to 2d.
a to 3d are connected, and the upstream ends of the branched intake passages 3a to 3d are connected to a common intake passage 5 downstream of the surge tank 4. A throttle valve 7 and an air meter 8 are disposed in an upstream intake passage 6 of the surge tank 4, and an upstream end of the upstream intake passage 6 reaches an air cleaner 9.

また上記各気筒2a〜2dの排気ポート13には分岐排
気通路108〜10dが接続され、該分岐排気通路10
3〜10dの下流端は共通排気通路1)に接続されてい
る。
Further, branch exhaust passages 108 to 10d are connected to the exhaust ports 13 of the respective cylinders 2a to 2d, and the branch exhaust passages 108 to 10d are connected to the exhaust ports 13 of the cylinders 2a to 2d.
The downstream ends of 3 to 10d are connected to the common exhaust passage 1).

そして上記共通吸気通路5と分岐吸気通路3a〜3dと
によって形成される吸気通路の長さ1)は設定回転数以
下の低回転域で吸気の慣性効果による過給効果が得られ
る長さに設定され、又着火順序の連続する気筒2a〜2
dの吸気ポート12間を連通ずる分岐吸気通路3a〜3
dの長さ12(但し、図中には第1.第3気筒2a、 
 2c間の分岐吸気通路3a、3cの長さのみを示して
いる)は設定回転数以上の高回転域で吸気ポートロの開
閉によって発生する高圧力波が吸入行程後期にある次の
気筒に作用するような長さに設定されている。ここでエ
ンジン1は第1.第3.第4.第2の順序で点火される
ように設定されている。
The length 1) of the intake passage formed by the common intake passage 5 and the branched intake passages 3a to 3d is set to a length that allows a supercharging effect due to the inertia effect of intake air to be obtained in a low rotation range below the set rotation speed. and the cylinders 2a to 2 whose ignition order is consecutive
Branch intake passages 3a to 3 that communicate between the intake ports 12 of d.
d length 12 (However, in the figure, the first and third cylinders 2a,
(Only the length of the branch intake passages 3a and 3c between 2c and 2c is shown.) In the high rotation range above the set rotation speed, the high pressure waves generated by the opening and closing of the intake port act on the next cylinder in the latter half of the intake stroke. The length is set as follows. Here, engine 1 is the first engine. Third. 4th. They are set to fire in the second order.

次に作用について説明する。Next, the effect will be explained.

エンジンが設定回転数以下の低回転時においては、共通
吸気通路5及び分岐吸気通路3a〜3dの長さzlを吸
気の慣性効果が得られる長さに設定していることから、
各気筒2a〜2dにはこの吸気の慣性効果によって効率
よく吸気が押し込まれて充填効果が向上し、こうしてい
わゆる慣性過給が行なわれてエンジン出力は増大するこ
ととなる。
When the engine rotates at a low speed below the set rotation speed, the length zl of the common intake passage 5 and the branch intake passages 3a to 3d is set to a length that provides the inertia effect of intake air.
The inertial effect of this intake air forces the intake air into each cylinder 2a to 2d efficiently, improving the filling effect, thereby performing so-called inertial supercharging, and increasing the engine output.

またエンジンが設定回転数以上の高回転域になると、今
度は気筒2a〜2d間の分岐吸気通路3a〜3dの長さ
12を吸気ポート12閉時の高圧力波が次の気筒28〜
2dに作用し得る長さに設定していることから、1つの
気筒、例えば第1気筒2aにおいて吸気ポート12の閉
時に高圧力波が生じるとこの高圧力波は吸気行程後期に
ある次の点火順序の気筒、この場合は第3気筒2Cの吸
気ポート12に伝播され、この高圧力波の作用によって
第3気筒2Cには吸気が押し込まれて充填効率が向上し
、こうして過給が行なわれてエンジン出力は増大するこ
ととなる。
Furthermore, when the engine reaches a high rotational speed range higher than the set rotational speed, the high pressure wave when the intake port 12 is closed passes through the length 12 of the branch intake passages 3a to 3d between the cylinders 2a to 2d.
Since the length is set to such a length that it can act on 2d, when a high pressure wave is generated in one cylinder, for example, the first cylinder 2a, when the intake port 12 is closed, this high pressure wave will cause the next ignition in the latter half of the intake stroke. The intake air is propagated to the intake port 12 of the cylinder in sequence, in this case the third cylinder 2C, and the action of this high pressure wave forces the intake air into the third cylinder 2C, improving charging efficiency, and thus supercharging is performed. Engine output will increase.

以上のような本実施例の装置では、低回転域においては
吸気の慣性効果による過給効果を得るようにするととも
に、高回転域においては吸気ポート閉時の高圧力波によ
る過給効果を得るようにしたので、広い回転域にわたっ
て過給効果を得ることができ、エンジンの運転性を大幅
に向上できる。
In the device of this embodiment as described above, in the low rotation range, a supercharging effect is obtained by the inertial effect of the intake air, and in the high rotation range, the supercharging effect is obtained by the high pressure wave when the intake port is closed. As a result, the supercharging effect can be obtained over a wide rotation range, and the drivability of the engine can be greatly improved.

また本装置では、上記従来公報記載の装置に比し、吸気
通路の長さを適宜設定したのみであるので、従来公報記
載の装置と同様に構造簡単かつコンパクトである。特に
このような構造では共通吸気通路の長さを比較的簡単な
構造で可変とすることが可能であり、この場合にはエン
ジン低回転域のより広い範囲にわたって慣性過給を効率
よく行なうことができる。
In addition, in this device, compared to the device described in the above-mentioned conventional publication, the length of the intake passage is only set appropriately, so that the structure is simple and compact like the device described in the conventional publication. In particular, with this type of structure, it is possible to vary the length of the common intake passage with a relatively simple structure, and in this case, inertial supercharging can be performed efficiently over a wider range of low engine speeds. can.

ところで上述のように1つの吸気系で慣性過給と吸気ポ
ート閉時の高圧力波による過給を行なうようにすると慣
性効果による高圧力波と吸気ポート閉時の高圧力波とが
干渉することが懸念される。
By the way, as mentioned above, if one intake system performs inertia supercharging and supercharging by high pressure waves when the intake port is closed, the high pressure waves due to the inertial effect and the high pressure waves when the intake port is closed will interfere. There are concerns.

しかるに本装置では、共通吸気通路の長さを利用し、気
筒間の分岐吸気通路を高回転域で吸気ポート閉時の高圧
力波による過給効果が得られる長さに、共通吸気通路及
び分岐吸気通路の長さを低回転域で慣性過給効果が得ら
れる長さに設定しているので、いずれの回転域において
も吸気慣性による高圧力波と吸気ポート閉時の高圧力波
とが干渉することはほとんどなく、上述の過給効果を保
証できるものである。
However, in this device, the length of the common intake passage is used, and the length of the branch intake passage between the cylinders is set so that the supercharging effect due to the high pressure wave when the intake port is closed in the high rotation range is achieved. The length of the intake passage is set to a length that allows inertia supercharging to be achieved in the low rotation range, so high pressure waves due to intake inertia and high pressure waves when the intake port is closed will not interfere in any rotation range. There is little to do, and the above-mentioned supercharging effect can be guaranteed.

また第2図は本装置及び慣性過給のみを行なうようにし
た装置(以下、従来装置と記す)における過給効果の実
験結果を示す。図中、a、bは本装置及び従来装置にお
けるエンジン回転数に対するエンジン出力の変化を示す
。第2図によれば、従来装置では、特性曲線すで示され
るように、エンジン回転数が上昇すると慣性過給の効果
が現われてエンジン出力は次第に増大して、共通吸気通
路及び分岐吸気通路の長さによって決まる回転数で最大
となり、さらにエンジン回転数が上昇すると慣性過給の
効果が薄れてエンジン出力は低下している。これに対し
本装置では、特性曲線aで示されるように、エンジン回
転数が上昇するとこの場合も慣性過給の効果が現われて
エンジン出力は次第に増大して共通吸気通路5及び分岐
吸気通路3a〜3dの長さ1)によって決まる回転数で
最大となり、さらにエンジン回転数が上昇するとエンジ
ン出力は低下することとなるが、エンジン回転数が設定
回転数を越えると今度は吸気ポート12閉時の高圧力波
による過給効果が現われ、エンジン出力は再び増大して
点火順序の連続する気筒2a〜2d間の分岐吸気通路3
a〜3dの長さ12によって決まるエンジン回転数で最
大となり、その後高圧力波による過給効果が薄れてエン
ジン出力は低下することとなる。従って本装置は従来装
置に比して広い回転域にわたって良好なエンジン出力を
確保できることが分る。
Further, FIG. 2 shows the experimental results of the supercharging effect in the present device and a device that performs only inertial supercharging (hereinafter referred to as the conventional device). In the figure, a and b indicate changes in engine output with respect to engine speed in the present device and the conventional device. According to Fig. 2, in the conventional device, as the engine speed increases, the effect of inertial supercharging appears and the engine output gradually increases, as shown in the characteristic curve. The maximum rotational speed is determined by the length of the engine, and as the engine speed increases further, the effect of inertial supercharging weakens and the engine output decreases. On the other hand, in this device, as shown by the characteristic curve a, as the engine speed increases, the effect of inertial supercharging appears in this case as well, and the engine output gradually increases. The maximum engine speed is determined by the length 1) of 3d, and as the engine speed increases further, the engine output decreases, but when the engine speed exceeds the set speed, the high engine speed when the intake port 12 is closed becomes the maximum. A supercharging effect due to the pressure wave appears, and the engine output increases again.
The engine speed reaches its maximum at the engine speed determined by the length 12 of a to 3d, and thereafter the supercharging effect due to the high pressure wave fades and the engine output decreases. Therefore, it can be seen that the present device can ensure good engine output over a wider rotation range than the conventional device.

また第3図は本発明の他の実施例を示し、これは低負荷
及び高負荷の2系統の吸気系を有する多気筒エンジンに
通用した例である。即ち、サージタンク15は低負荷用
及び高負荷用の2室16゜17に画成され、低負荷用室
16の上流側吸気通路18にはアクセルペダルと連動す
る第1スロツトル弁19が、高負荷用室17の上流側吸
気通路20には第1スロツトル弁19とロストモーショ
ン機構等によって連結され、設定負荷以上で開き始める
第2スロツトル弁21が配設されている。
Further, FIG. 3 shows another embodiment of the present invention, which is an example applicable to a multi-cylinder engine having two intake systems for low load and high load. That is, the surge tank 15 is divided into two chambers 16 and 17, one for low load and one for high load, and a first throttle valve 19 that is linked to the accelerator pedal is located in the intake passage 18 on the upstream side of the low load chamber 16. A second throttle valve 21 is disposed in the upstream intake passage 20 of the load chamber 17 and is connected to the first throttle valve 19 by a lost motion mechanism or the like, and starts to open when the load exceeds a set load.

またサージタンク15の低負荷用室16と各気筒22a
〜22dとの間には低負荷用吸気通路23が、サージタ
ンク15の高負荷用室17と各気筒22a〜22dとの
間には高負荷用吸気通路24が配設されており、該高負
荷用吸気通路24はサージタンク15下流側の共通吸気
通路25との該通路25から分岐して各気筒22a〜2
2dに延びる分岐吸気通路26a〜26dとから構成さ
れ、該共通吸気通路25及び分岐吸気通路268〜26
dは上記第1実施例と同様の長さに設定されている。な
お図中、27は排気ガス浄化用の触媒である。
In addition, the low load chamber 16 of the surge tank 15 and each cylinder 22a
-22d, and a high-load intake passage 24 is provided between the high-load chamber 17 of the surge tank 15 and each cylinder 22a-22d. The load intake passage 24 branches from the common intake passage 25 downstream of the surge tank 15 and connects each cylinder 22a to 2.
The common intake passage 25 and the branch intake passages 268 to 26 are composed of branch intake passages 26a to 26d extending to
d is set to the same length as in the first embodiment. In the figure, 27 is a catalyst for purifying exhaust gas.

本実施例においては、通路面積が比較的大きい高負荷吸
気通路24に本発明の構造を適用したことから、吸気の
動的効果による大きな過給効果を得ることができる。
In this embodiment, since the structure of the present invention is applied to the high-load intake passage 24 having a relatively large passage area, a large supercharging effect can be obtained due to the dynamic effect of intake air.

なお上記実施例では4気筒エンジンについて説明したが
、本発明は勿論4気筒以外の多気筒エンジンに適用でき
るものである。
Although a four-cylinder engine has been described in the above embodiment, the present invention is of course applicable to multi-cylinder engines other than four-cylinder engines.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、サージタンク下流の共通
吸気通路から各気筒の分岐吸気通路を分岐してなる多気
筒エンジンにおいて、共通吸気通路と分岐吸気通路とを
加算した長さを高速域以外の運転域で吸気慣性による過
給効果が得られる長さに設定する一方、気筒間の分岐吸
気通路の長さを高速域で吸気ポート閉時の高圧力波によ
る過給効果が得られる長さに設定するようにしたので、
広い回転域にわたって吸気の動的効果による過給効果を
得ることができ、エンジンの運転性を大幅に向上できる
効果がある。
As described above, according to the present invention, in a multi-cylinder engine in which the branch intake passages of each cylinder are branched from the common intake passage downstream of the surge tank, the length of the common intake passage and the branch intake passage is determined in the high-speed range. The length of the branched intake passage between the cylinders is set to a length that provides a supercharging effect due to intake inertia in other operating ranges, while the length of the branch intake passage between cylinders is set to a length that provides a supercharging effect due to high pressure waves when the intake port is closed at high speeds. I set it to
It is possible to obtain a supercharging effect due to the dynamic effect of intake air over a wide rotation range, which has the effect of significantly improving engine drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による多気筒エンジンの吸気
装置の概略構成図、第2図は上記装置の過給効果を説明
するためのエンジン回転数に対するエンジン出力を示す
図、第3図は本発明の他の実施例を示す概略構成図であ
る。 2a〜2d・・・気筒、3a〜3d・・・分岐吸気通路
、4・・・サージタンク、5・・・共通吸気通路、12
・・・吸気ポート、15・・・サージタンク、22a〜
22d・・・気筒、25・・・共通吸気通路、26a〜
26d・・・分岐吸気通路。
FIG. 1 is a schematic configuration diagram of an intake system for a multi-cylinder engine according to an embodiment of the present invention, FIG. 2 is a diagram showing engine output versus engine speed for explaining the supercharging effect of the above system, and FIG. FIG. 2 is a schematic configuration diagram showing another embodiment of the present invention. 2a to 2d... Cylinder, 3a to 3d... Branch intake passage, 4... Surge tank, 5... Common intake passage, 12
...Intake port, 15...Surge tank, 22a~
22d...Cylinder, 25...Common intake passage, 26a~
26d... Branch intake passage.

Claims (1)

【特許請求の範囲】[Claims] (1)サージタンク下流の共通の吸気通路から各気筒の
分岐吸気通路を分岐してなる多気筒エンジンにおいて、
サージタンクと吸気ポートとの間の上記共通吸気通路と
分岐吸気通路とによって形成される吸気通路の長さを、
高速域を除く回転域で吸気慣性による過給効果が得られ
る長さに設定する一方、着火順序の連続する気筒の各吸
気ポート間を連通する分岐吸気通路の長さを、高速時に
吸気ポートの開閉によって発生する高圧力波を吸入行程
後期にある次の気筒に及ぼして過給効果が得られる長さ
に設定したことを特徴とする多気筒エンジンの吸気装置
(1) In a multi-cylinder engine in which branch intake passages for each cylinder are branched from a common intake passage downstream of the surge tank,
The length of the intake passage formed by the common intake passage and the branched intake passage between the surge tank and the intake port,
The length of the branch intake passage that communicates between the intake ports of cylinders with consecutive ignition orders is set to a length that allows the supercharging effect due to intake inertia to be obtained in the rotation range except the high speed range. An intake system for a multi-cylinder engine, characterized in that the length is set so that a supercharging effect can be obtained by applying high pressure waves generated by opening and closing to the next cylinder in the latter half of the intake stroke.
JP60094334A 1985-04-30 1985-04-30 Multi-cylinder engine intake system Expired - Lifetime JPH0726539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094334A JPH0726539B2 (en) 1985-04-30 1985-04-30 Multi-cylinder engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094334A JPH0726539B2 (en) 1985-04-30 1985-04-30 Multi-cylinder engine intake system

Publications (2)

Publication Number Publication Date
JPS61252830A true JPS61252830A (en) 1986-11-10
JPH0726539B2 JPH0726539B2 (en) 1995-03-29

Family

ID=14107378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094334A Expired - Lifetime JPH0726539B2 (en) 1985-04-30 1985-04-30 Multi-cylinder engine intake system

Country Status (1)

Country Link
JP (1) JPH0726539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858569A (en) * 1987-02-12 1989-08-22 Autoipari Kutato Es Fejleszto Vallalat Reciprocating piston-type internal combustion engine with resonance charging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162223A (en) * 1980-05-19 1981-12-14 Hino Motors Ltd Air suction device for multicylinder engine
JPS59218333A (en) * 1983-05-25 1984-12-08 Mazda Motor Corp Suction device of multicylinder engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162223A (en) * 1980-05-19 1981-12-14 Hino Motors Ltd Air suction device for multicylinder engine
JPS59218333A (en) * 1983-05-25 1984-12-08 Mazda Motor Corp Suction device of multicylinder engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858569A (en) * 1987-02-12 1989-08-22 Autoipari Kutato Es Fejleszto Vallalat Reciprocating piston-type internal combustion engine with resonance charging

Also Published As

Publication number Publication date
JPH0726539B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS61116021A (en) Engine intake-air device
JPH0192518A (en) Engine intake-air device
JPS6263127A (en) Suction device for engine
JPH0259290B2 (en)
JPS61252830A (en) Intake device of multicylinder engine
JPH0452377B2 (en)
JPS61116022A (en) Engine intake-air device
JPH01318756A (en) Intake device for internal combustion engine
JPS61218720A (en) Intake device of engine with supercharger
JPS60222523A (en) Suction device of engine
JPH0517372B2 (en)
JPH04194318A (en) Suction device for engine
JPH0320497Y2 (en)
JPS59692B2 (en) Exhaust turbocharged engine
JPH0559249B2 (en)
JPH0740662Y2 (en) Engine intake system
JPS61157716A (en) Air intake device of multicylinder engine
JPS61201819A (en) Air intake device for engine
JPH0517378B2 (en)
JPH02123229A (en) Intake device of engine
JPS61116019A (en) Engine intake-air device
JPH0635835B2 (en) Internal combustion engine intake system
JPS59226264A (en) Suction device for engine
JPH0340214B2 (en)
JPS61218719A (en) Intake device of engine with supercharger