JPS6258557B2 - - Google Patents

Info

Publication number
JPS6258557B2
JPS6258557B2 JP56044776A JP4477681A JPS6258557B2 JP S6258557 B2 JPS6258557 B2 JP S6258557B2 JP 56044776 A JP56044776 A JP 56044776A JP 4477681 A JP4477681 A JP 4477681A JP S6258557 B2 JPS6258557 B2 JP S6258557B2
Authority
JP
Japan
Prior art keywords
layer
gaas
current
type gaas
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56044776A
Other languages
English (en)
Other versions
JPS57159084A (en
Inventor
Saburo Yamamoto
Kazuhisa Murata
Hiroshi Hayashi
Takuo Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4477681A priority Critical patent/JPS57159084A/ja
Publication of JPS57159084A publication Critical patent/JPS57159084A/ja
Publication of JPS6258557B2 publication Critical patent/JPS6258557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は低閾値の駆動電流でレーザ発振する内
部ストライプ構造半導体レーザ素子の構造に関す
るものである。
活性層の近傍に電流狭窄用のストライプ構造を
形成した内部ストライプ構造半導体レーザ素子は
電流狭窄の効率が高く低閾値の駆動電流でレーザ
発振を得ることができるものと期待されている。
第1図は内部ストライプ構造半導体レーザ素子の
基本的構成を示す構成図である。従来より提唱さ
れている内部ストライプ構造半導体レーザ素子の
構成は、p−GaAs基板5上にn−GaAsから成る
電流阻止層6を形成した後電流阻止層6より
GaAs基板5に達するストライプ溝7を加工成形
し、この上にp−Ga1−yAyAsから成る第1ク
ラツド層1.n−Ga1−xAxAs(0≦x<y<
1)から成る活性層2.n−Ga1−yAyAsから
成る第2クラツド層3及びn−GaAsから成るキ
ヤツプ層4を順次積層したものである。また
GaAs基板5の下面にはp側電極9.キヤツプ層
4の上面にはn側電極8がそれぞれ形成され給電
手段が構成されている。n側電極8.p側電極9
を介して通電すると電流阻止層6の介在する領域
はその接合界面が逆バイアスに接合されることと
なり、この部分には電流が流れずストライプ溝7
の形成された領域のみが電流通路となる。従つて
この電流通路に対応する活性層2の領域近傍でレ
ーザ発振が開始される。
しかしながら、上記構造を有する半導体レーザ
素子に於いても実際には活性層2よりストライプ
溝7の溝幅内のみで微小スポツト状レーザ発振を
確実に実現することは困難である。以下、その理
由について第2図a,bを参照しながら説明す
る。第2図aはストライプ溝7内に於けるエネル
ギーバンドを示し、第2図bはストライプ溝7外
に於けるエネルギーバンドを示す。ストライプ溝
7に於ける第1クラツド層1及びGaAs基板5は
いずれもp型層であり、電圧はほとんど印加され
ない。従つて、ストライプ溝7外に於ける第1ク
ラツド層1、電流阻止層6及びGaAs基板5にも
電圧は印加されず熱平衡状態のままである。波線
矢印で示すような活性層2で発生したhν(h:
プランク定数、ν;振動数)のエネルギーを有す
る光はhνよりも大きなエネルギーギヤツプEg1
を有する第1クラツド層1を透過した後、hνよ
りも小さなエネルギーギヤツプEg2を有するスト
ライプ溝7近傍の電流阻止層6で吸収され、それ
によつて電子−正孔対が発生する。尚、図中白丸
は正孔、黒丸は電子を示す。その結果、電流阻止
層6には電子が蓄積され、また第1クラツド層1
には正孔が蓄積されてターンオンし、元来非導通
状態であるべき領域が導通状態に転換される。ス
トライプ溝7の近傍が導通状態となりその直上の
活性層2で発光が生じるようになるとその光で導
通状態の領域が次第に拡大していく。即ち、非導
通領域が導通領域からの光の侵入により導通状態
へ転換され、この領域が更に周辺の非導通領域を
導通状態へ転換させることになる。このような過
程が繰り返されてついには半導体レーザ素子全域
が導通状態となり、素子全体にわたつて出力光が
生起されるに至り、電流狭窄のためのストライプ
構造はその意義を失する結果となる。
上述の問題点を除去する手段として、電流阻止
層6に光の吸収の少ない(GaA)As層を用い
るかあるいは第1クラツド層1の厚さを充分に厚
くすることが考えられる。しかしながら(GaA
)As層表面は酸化膜が形成され易く、その上
へのエピタキシヤル成長が阻害され良好な結晶が
得られない。また第1クラツド層1の厚さを厚く
するとストライプ溝7から注入された電流は活性
層2へ到達するまでに横方向へ拡がり、このため
電流狭窄の効果が減少してスポツト発振が得られ
ず発振開始の閾値電流が増大する。
本発明は上記現状に鑑み、技術的手段を駆使す
ることによつて電流狭窄効果の実を上げ低閾値で
スポツト状のレーザ発振を得ることのできる新規
有用な内部ストライプ構造を有する半導体レーザ
素子を提供することを目的とするものである。
本発明はn−GaAsのキヤリア濃度が高くなる
程GaAsのバンドキヤツプよりも大きなエネルギ
ーを有する光即ち0.89μmより短波長の光に対し
ては吸収係数αが小さくなる性質及びキヤリア濃
度が高い程少数キヤリアである正孔の拡散長Lp
が短かくなる性質を有するn−GaAs層を利用し
て電流狭窄のストライプ構造を構成したものであ
る。
以下、本発明を実施例に従つて図面を参照しな
がら説明する。
第3図は本発明の半導体レーザ素子に用いられ
るn−GaAs層の吸収係数の波長依存性がそのキ
ヤリア濃度によつて大きく変化する様子を示す説
明図である。図中曲線はキヤリア濃度3×
1018cm-3はキヤリア濃度7×1018cm-3の場
合の特性曲線である。第4図は同じく正孔の拡散
長Lpがキヤリア濃度の増大によつて短くなる様
子を示す。また同時に第4図中にp−GaAsに於
ける少数キヤリアである電子の拡散長Lnを示
す。p−GaAsの場合はキヤリア濃度1×1018cm
-3以上では常に少数キヤリアは発光再結合をし、
その光の再吸収に起因して電子の拡散長Lnは長
い。一方、n−GaAsの場合はキヤリア濃度3×
1018cm-3以下では発光再結合が中心であるが、キ
ヤリア濃度3×1018cm-3以上で急激に非発光再結
合が支配的となり正孔の拡散長Lpは短かくなる
(J,APPL,PHYS,Vo144,No.3 1973,
P1281)。
電子の拡散長Lnはキヤリア濃度を5×1018cm-3
以上としても2μm以下にすることはできないの
でn−GaAs基板上にp−GaAs層を形成してこれ
を電流阻止層として用いると電流阻止層の厚さは
2μm以上必要となり、このように厚い電流阻止
層をストライプ状にエツチングして電流通路とな
る溝を貫通形成する過程で横方向のエツチングも
相当に進行する結果となり、電流通路が開通され
た際のストライプ幅は大きく拡がり、このため狭
小幅での電流狭窄ができなくなる。これは低閾値
電流でのレーザ発振を得ることを企図したキヤリ
ア注入方式である電流狭窄上不都合である。一
方、p型GaAs基板5上にn−GaAs層を形成して
これを電流阻止層6とする場合でも従来の如くキ
ヤリア濃度が1×1018cm-3程度であると正孔の拡
散長は2μm以上と長く光の吸収係数も大きいの
で電流阻止層6を2μm以下の厚さにすることは
できない。このことはストライプ溝の幅Wを6μ
m以下にエツチング加工することが困難であるこ
とを意味する。第4図よりn−GaAsのキヤリア
濃度を3×1018cm-3以上とすると正孔の拡散長Lp
は急激に減少し、1μm以下となる。従つて、第
1図に示すp−GaAs基板5上に形成される電流
阻止層6としてn−GaAs層を用い、そのキヤリ
ア濃度を3×1018cm-3以上として、その厚さを1
μm以下に設定し、ストライプ溝7の幅Wを5μ
m以下に加工成形することによりストライプ幅の
小さに電流狭窄機構が得られる。第3図及び第4
図より電流阻止層6であるn−GaAs層のキヤリ
ア濃度をより高くする程その厚さを薄くできるこ
とがわかる。例えばn−GaAs層のキヤリア濃度
を7×1018cm-3とすれば、レーザ発振波長0.83μ
mの半導体レーザ素子に於けるn−GaAs層内で
の吸収係数を1000cm-1、正孔の拡散長Lpを0.2μ
mにすることができ、n−GaAs層の厚さを0.3μ
m程度に薄くしても電流狭窄が可能であり、その
電流狭窄効果は高く低閾値の駆動電流でレーザ動
作を確立することができる。
以下、実施例に従つて本発明を説明する。
実施例 1 1×1018cm-3のキヤリア濃度を有するZnドープ
p−GaAs基板5上に液相エピタキシヤル成長法
によりキヤリア濃度5×1018cm-3を有するTeドー
プn−GaAsから成る電流阻止層6を0.6μmの厚
さに成長させる。その後、電流阻止層6より
GaAs基板5に至る迄ストライプ状の溝7をエツ
チング加工する。ストライプ溝7の幅Wは3μm
とする。このストライプ溝7を300μmのピツチ
で形成した後、再度液相エピタキシヤル成長法で
Znドープp−Ga0.7A0.3Asから成る第1クラツ
ド層を層厚0.5μmで、Siドープn−Ga0.95A0.
05Asから成る活性層2を層厚0.1μmで、Teドー
プn−Ga0.7A0.3Asから成る第2クラツド層3
を層厚1μmで、Teドープn−GaAsから成るキ
ヤツプ層4を層厚3μmで、それぞれ順次堆積さ
せる。次にp側電極9及びn側電極8を蒸着形成
し、ストライプ溝7を中心とする300μm幅にウ
エハーを分割し、劈開法で共振器端面を形成して
半導体レーザ素子とする。
この内部ストライプ構造半導体レーザ素子は発
振波長が0.83μmであり、その発振閾値は共振器
長を250μmとした場合平均して25mAであつ
た。
実施例 2 1×1019cm-3のキヤリア濃度を有するZnドープ
p−GaAs基板5上に液相エピタキシヤル成長法
によりキヤリア濃度7×1019cm-3を有するTeドー
プn−GaAsから成る電流阻止層6を0.8μmの厚
さに成長させる。その後、電流阻止層6より
GaAs基板5に至る迄ストライプ状の溝7をエツ
チング加工する。ストライプ溝7の幅Wは3.5μ
mとする。このストライプ溝7を300μmピツチ
で形成した後、再度液相エピタキシヤル成長法で
Znドープp−Ga0.5A0.5Asから成る第1クラツ
ド層1を層厚0.5μmで、Siドープn−Ga0.86A
0.14Asから成る活性層2を層厚0.1μmで、Teド
ープn−Ga0.5A0.5Asから成る第2クラツド層
3を層厚1μmで、Teドープn−GaAsから成る
キヤツプ層4を層厚3μmで、順次堆積する。次
にp側電極9及びn側電極8を蒸着形成し、スト
ライプ溝7を中心とする300μm幅にウエハーを
分割し、共振器を劈開法で形成する。この内部ス
トライプ構造半導体レーザ素子は発振波長が0.78
μmでありその発振閾値は共振器長を250μmと
した場合、平均して30mAであつた。
以上詳説した如く、本発明は電流阻止層となる
n−GaAsのキヤリア濃度を3×1018cm-3以上と
し、光の吸収及び正孔の拡散長の両面より有利な
条件を確立することにより低閾値の駆動電流特性
を有する内部ストライプ構造半導体レーザ素子を
確立することができる。
尚、本発明は光の吸収係数及び少数キヤリアの
拡散長のキヤリア濃度依存性がn型GaAsと同様
な性質を有する材料であれば、いかなるものにで
も適用できる。またダブルヘテロ接合型の半導体
レーザ素子以外にシングルヘテロ接合型あるいは
マルチヘテロ接合型にも適用可能である。更に半
導体レーザ以外の発光素子にも応用し得るもので
ある。
【図面の簡単な説明】
第1図は内部ストライプ構造半導体レーザ素子
の基本的構成を示す構成図である。第2図a,b
はストライプ溝内外のエネルギーバンドを示す説
明図である。第3図はn−GaAs層の吸収係数の
波長及びキヤリア依存性を示す説明図である。第
4図はn−GaAs層に於ける電子の拡散長Lnと正
孔の拡散長Lpのキヤリア濃度依存性を示す説明
図である。 1……第1クラツド層、2……活性層、3……
第2クラツド層、4……キヤツプ層、5……
GaAs基板、6……電流阻止層。

Claims (1)

    【特許請求の範囲】
  1. 1 p型GaAs基板上にn型GaAs層がエピタキシ
    ヤル成長されかつ該n型GaAs層をストライプ状
    に貫通して前記p型GaAs基板に達する深さの溝
    が加工形成され、この上にクラツド層で挾設され
    た活性層を内包するレーザ動作用多層結晶が堆積
    されて成る半導体レーザ素子において、前記溝
    は、前記レーザ動作用多層結晶に対してキヤリア
    注入する電流通路となり、前記n型GaAs層は、
    前記レーザ動作用多層結晶に対して逆極性のキヤ
    リア濃度3×1018cm-3以上を有する導電型に設定
    されかつその層厚が非発光再結合によつて定まる
    正孔の拡散長より若干厚く設定され、前記活性層
    は、光が前記n型GaAs層に吸収される範囲に前
    記n型GaAs層と近接して配置されていることを
    特徴とする半導体レーザ素子。
JP4477681A 1981-03-25 1981-03-25 Semiconductor laser element Granted JPS57159084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4477681A JPS57159084A (en) 1981-03-25 1981-03-25 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4477681A JPS57159084A (en) 1981-03-25 1981-03-25 Semiconductor laser element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61314271A Division JPS62162387A (ja) 1986-12-26 1986-12-26 半導体レ−ザ素子の結晶成長用基板

Publications (2)

Publication Number Publication Date
JPS57159084A JPS57159084A (en) 1982-10-01
JPS6258557B2 true JPS6258557B2 (ja) 1987-12-07

Family

ID=12700813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4477681A Granted JPS57159084A (en) 1981-03-25 1981-03-25 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS57159084A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565429B2 (en) 2018-01-19 2023-01-31 Ocado Innovation Limited Grasping affordance for use in a robot system
US11745337B2 (en) 2019-08-29 2023-09-05 Kabushiki Kaisha Toshiba Handling device, control device, and computer program product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990979A (ja) * 1982-11-16 1984-05-25 Nec Corp 半導体レ−ザ
DE3483733D1 (de) * 1983-04-27 1991-01-24 Toshiba Kawasaki Kk Halbleiterlaser.
JPH085575Y2 (ja) * 1986-05-09 1996-02-14 三洋電機株式会社 半導体レ−ザ
JPS62162387A (ja) * 1986-12-26 1987-07-18 Sharp Corp 半導体レ−ザ素子の結晶成長用基板
JP2914847B2 (ja) * 1993-07-09 1999-07-05 株式会社東芝 半導体レーザ装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156188A (ja) * 1974-11-13 1976-05-17 Hitachi Ltd Handotaireezasochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156188A (ja) * 1974-11-13 1976-05-17 Hitachi Ltd Handotaireezasochi

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565429B2 (en) 2018-01-19 2023-01-31 Ocado Innovation Limited Grasping affordance for use in a robot system
US11745337B2 (en) 2019-08-29 2023-09-05 Kabushiki Kaisha Toshiba Handling device, control device, and computer program product

Also Published As

Publication number Publication date
JPS57159084A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US3801928A (en) Singler heterostructure junction lasers
US5163064A (en) Laser diode array and manufacturing method thereof
US4933728A (en) Semiconductor optical device
WO2003007445A1 (fr) Dispositif semi-conducteur a points quantiques
US4142160A (en) Hetero-structure injection laser
JP2000058981A (ja) 窒化ガリウム系半導体発光素子及びその製造方法
JPS6258557B2 (ja)
US4313125A (en) Light emitting semiconductor devices
US4759025A (en) Window structure semiconductor laser
JPH10284800A (ja) 半導体発光素子およびその製造方法
US5359619A (en) Multi-beam semiconductor laser and method for producing the same
US4841535A (en) Semiconductor laser device
JPH0521902A (ja) 半導体レーザ装置
JPS60101989A (ja) 半導体レ−ザ及びその製造方法
US5022037A (en) Semiconductor laser device
JP3801410B2 (ja) 半導体レーザ素子及びその製造方法
JPH048957B2 (ja)
JP2680804B2 (ja) 半導体レーザ
JP2508649B2 (ja) 半導体発光装置
JPH07321409A (ja) 半導体レーザー素子
JPH09232681A (ja) 窒化物系化合物半導体光素子
JPS61253882A (ja) 半導体レ−ザ装置
JPH05226774A (ja) 半導体レーザ素子とその製造方法
JP3217461B2 (ja) 半導体レーザ素子の製造方法
JP2848615B2 (ja) 半導体発光素子