JPS6253049B2 - - Google Patents

Info

Publication number
JPS6253049B2
JPS6253049B2 JP20828782A JP20828782A JPS6253049B2 JP S6253049 B2 JPS6253049 B2 JP S6253049B2 JP 20828782 A JP20828782 A JP 20828782A JP 20828782 A JP20828782 A JP 20828782A JP S6253049 B2 JPS6253049 B2 JP S6253049B2
Authority
JP
Japan
Prior art keywords
bright
light
image
dark images
dark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20828782A
Other languages
Japanese (ja)
Other versions
JPS5999215A (en
Inventor
Toyoki Kitayama
Shigeru Morya
Kazuhiko Komatsu
Teruaki Okino
Shunichi Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20828782A priority Critical patent/JPS5999215A/en
Publication of JPS5999215A publication Critical patent/JPS5999215A/en
Publication of JPS6253049B2 publication Critical patent/JPS6253049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 本発明は物体の高さ、例えば荷電粒子線露光装
置におけるマスクブランクやウエハ表面の高さを
極めて正確に検知することの可能な装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus capable of extremely accurately detecting the height of an object, such as the height of a mask blank or wafer surface in a charged particle beam exposure apparatus.

例えば、電子線露光装置により半導体ウエハ等
上に微細回路パターンを描画する際、該ウエハ表
面が設定した高さからずれていると、露光された
回路の位置や大きさが所定のものと異なつてしま
い、特に半導体ウエハにおける多重露光をすると
きには描画精度は著しく低下してしまう。従つ
て、被露光材料の高さを正確に測定することは高
精度な描画のために極めて重要である。
For example, when drawing a fine circuit pattern on a semiconductor wafer etc. using an electron beam exposure device, if the wafer surface deviates from the set height, the position and size of the exposed circuit may differ from the predetermined one. Especially when multiple exposure is performed on a semiconductor wafer, the drawing accuracy is significantly reduced. Therefore, accurately measuring the height of the exposed material is extremely important for highly accurate drawing.

従来の高さ測定装置としては、被露光材料の表
面に対向して電極を配置し、この表面と電極との
間に形成されるコンデンサの静電容量が該表面の
上下動に伴つて変化することを利用するもの及び
被露光材料表面にレーザ光を照射し、その表面で
の反射光と照射光との干渉縞を利用するものが使
用されている。
In conventional height measuring devices, an electrode is placed opposite the surface of the material to be exposed, and the capacitance of a capacitor formed between this surface and the electrode changes as the surface moves up and down. There are two types of laser beams in use: one that irradiates the surface of a material to be exposed with laser light and uses interference fringes between the reflected light on the surface and the irradiated light.

しかし乍ら、前者では静電界の発生があるの
で、測定時電子線に悪影響を与えることになる。
従つて、高さ測定点は最も重要な電子線照射点か
ら著しく離れた点にならざるを得ず、高い測定精
度は望めない。又、後者は光学的測定であるの
で、電子線照射点と測定点とを一致させることは
できるが、干渉パルスの数の積算を利用している
ので、被露光材料表面の凹凸を横切つたりして光
の中断があると、その後の測定は全く信頼性のな
いものとなる。
However, in the former case, an electrostatic field is generated, which adversely affects the electron beam during measurement.
Therefore, the height measurement point must be located significantly away from the most important electron beam irradiation point, and high measurement accuracy cannot be expected. In addition, since the latter is an optical measurement, it is possible to match the electron beam irradiation point and the measurement point, but since it uses the integration of the number of interference pulses, it is difficult to traverse irregularities on the surface of the exposed material. If there is an interruption in the light, such as when the light is interrupted, subsequent measurements will be completely unreliable.

この様な欠点を解決し得る装置が近時提案され
ている。この装置は、第1図に示す如く光源1よ
りの光を被露光材料2の表面に対して斜め方向か
ら投射し、この投射光をアパーチヤを有する部材
3に照射してその通過した光をレンズ4によつて
前記被露光材料表面近傍に結像せしめ、該材料表
面で反射された光の進行方向にレンズ5を置いて
前記像をイメージデイセクター管6の光電検出面
上に結像するようになし、該像の位置に応じた信
号を発生し、それより高さ変位を演算するように
なしたものである。
Recently, devices have been proposed that can solve these drawbacks. As shown in FIG. 1, this device projects light from a light source 1 obliquely onto the surface of a material to be exposed 2, irradiates this projected light onto a member 3 having an aperture, and directs the passed light through a lens. 4 to form an image near the surface of the material to be exposed, and a lens 5 is placed in the traveling direction of the light reflected from the material surface to form the image on the photoelectric detection surface of the image dissector tube 6. Instead, a signal corresponding to the position of the image is generated, and the height displacement is calculated from the signal.

斯かる装置において、今材料2が第2図に示す
如く、2aから2bに高さhだけ変化した場合、
アパーチヤ像pの虚像p′とp″との間隔をL、レ
ンズ5の倍率をM、光の入、反射角をθとしたと
き、検出面でのアパーチヤ像のズレ量△は △=M・Lcosθ=M・2hcosθ で与えられる。上記M及びθは既知であるので、
△が求まれば容易に高さ変位hが求まることにな
る。
In such an apparatus, if the material 2 changes by a height h from 2a to 2b as shown in FIG.
When the distance between the virtual images p' and p'' of the aperture image p is L, the magnification of the lens 5 is M, and the angle of incidence and reflection of light is θ, the amount of deviation △ of the aperture image on the detection surface is △ = M・It is given by Lcosθ=M・2hcosθ.Since the above M and θ are known,
If Δ is found, the height displacement h can be easily found.

この装置は非接触、光学式であり電子線に何等
の影響を与えることなく該電子線の照射点におけ
る表面高さを測定でき、且つ干渉パルスの積算は
用いないので、凹凸等の光中断部があつても正確
な高さ測定が可能であるという効果を有してい
る。
This device is a non-contact, optical type and can measure the surface height at the point of irradiation of the electron beam without affecting the electron beam in any way, and does not use integration of interference pulses, so it is possible to measure the surface height at the point where the electron beam is irradiated. This has the effect that accurate height measurement is possible even when there is a problem.

しかし、前記イメージデイセクター管は光電変
換面、アパーチヤ板、2次電子増倍管、コレクタ
ー電極、静電レンズ、偏向コイル及び各部の電源
等から構成されるので構造が複雑で大型であり、
且つ非常に高価であるという問題がある。特に、
装置が大型であることは狭隘な露光室への設置が
困難となり折角の利点をもつ装置の活用ができな
くなる。そこで、イメージデイセクター管に代え
て半導体アレイセンサを使用すれば上記構造的問
題は解決するが、新たな問題が生ずる。即ち、半
導体アレイセンサは半導体光検出素子を10〜30μ
mのピツチ間隔で多数配列したものであるが、現
在市販の最も多い配列数は2048個である。今、配
列素子のピツチPを25μmとすると素子の長さは
約50mm程度である。第1図において結像レンズ5
の倍率Mを10倍とし、θが小さくcosθを略1と
みなすと前述の式から最大の高さ変位量h max
は約2.5mmとなる。つまり、測定可能高さ範囲は
2mm〜3mm程度しかないことになる。又、測定精
度向上のためMを100倍とすると高さ範囲は0.25
mmにしかならない。
However, the image dissector tube is composed of a photoelectric conversion surface, an aperture plate, a secondary electron multiplier, a collector electrode, an electrostatic lens, a deflection coil, a power source for each part, etc., so the structure is complex and large.
Another problem is that it is very expensive. especially,
The large size of the device makes it difficult to install it in a narrow exposure room, making it impossible to utilize the device, which has many advantages. Therefore, if a semiconductor array sensor is used in place of the image dissector tube, the above structural problem will be solved, but a new problem will arise. In other words, a semiconductor array sensor uses a semiconductor photodetector element with a thickness of 10 to 30μ.
They are arranged in large numbers at m pitch intervals, and the largest number currently commercially available is 2048. Now, if the pitch P of the array element is 25 μm, the length of the element is about 50 mm. In Fig. 1, the imaging lens 5
If the magnification M is 10 times and θ is small and cosθ is approximately 1, then from the above formula, the maximum height displacement h max
is approximately 2.5mm. In other words, the measurable height range is only about 2 mm to 3 mm. Also, to improve measurement accuracy, if M is multiplied by 100, the height range is 0.25.
It can only be mm.

而して本発明は半導体アレイセンサを用いて測
定範囲を拡大することを目的とするもので、その
構成は物体の表面に一定角度θで光を照射し、且
つその照射点近傍に複数の明暗像を結ばせる光照
射光学系と、前記照射点から反射する光を集光し
前記複数の明暗像を結像する光学系と、該明暗像
の結像面に置かれた多数の半導体光検出素子から
なる半導体アレイセンサと、該半導体アレイセン
サ上における明暗像の基準位置からの距離を求め
る回路とを備え、前記半導体アレイセンサ上での
複数の明暗像の配列長さは該センサの長さよりは
るかに長くなし、且つ明暗像の間隔は最低一個の
明暗像がセンサ上に存在する如き大きさとなし、
更に各明暗像の幅は相互に異なつた値をもつよう
に形成してなる物体の表面高さ測定装置を特徴と
するものである。
The purpose of the present invention is to expand the measurement range using a semiconductor array sensor, and its configuration is such that light is irradiated onto the surface of an object at a constant angle θ, and a plurality of bright and dark areas are arranged near the irradiation point. a light irradiation optical system that forms an image; an optical system that collects light reflected from the irradiation point to form the plurality of bright and dark images; and a number of semiconductor light detectors placed on the imaging plane of the bright and dark images. a semiconductor array sensor consisting of a semiconductor array sensor, and a circuit for determining the distance of bright and dark images on the semiconductor array sensor from a reference position, and the array length of the plurality of bright and dark images on the semiconductor array sensor is longer than the length of the sensor. much longer, and the interval between bright and dark images is such that at least one bright and dark image exists on the sensor;
Furthermore, the present invention is characterized by an apparatus for measuring the surface height of an object in which the widths of the bright and dark images are formed to have mutually different values.

以下本発明の一実施例を図面に基づき説明す
る。
An embodiment of the present invention will be described below based on the drawings.

第3図において、7は電子銃を示し、該電子銃
より出た電子線8は電子レンズ系9により集束さ
れて被露光材料2上に投射される。10は偏向器
であり、電子線8を偏向し、被露光材料2上で移
動させてパターンを描くためのもので、増幅器1
1を介してコンピユータ12よりパターン信号が
送られる。光源1と照射光学系のレンズ4との間
には後述するような微小間隔と配列長さを有する
複数スリツトを穿つたスリツト板3′が置かれて
おり、該スリツト板を通過した光はレンズ4で結
像され、p点にその明暗像を結んだ後、材料2上
に角θで投射される。該材料2で反射した光は結
像レンズ5により結像され、多数の半導体光検出
素子を配列した半導体アレイセンサ13上に拡
大・結像される。つまり、点pの虚像p′がセンサ
上に投射されることになる。尚、レンズ4による
スリツト板3′の結像位置は図の如き材料照射点
の前方に限られるものではなく、該照射点又は、
それより後方であつても良い。半導体アレイセン
サ13からの信号は増幅器14により増幅され、
演算回路15に送られる。この演算回路におい
て、スリツト像である明暗像の基準位置からの距
離を求め、それを高さ信号として表示装置16に
送り、表示する。又、該信号は前記偏向器の増幅
器11や対物レンズ、ビームシフト用偏向器、更
にはフイールド回転レンズ等に送られ、被露光材
料の高さ変位に拘わらず描画パターンの描画位置
や露光フイールドの大きさ、フオーカシング等が
一定になるようにそれらを制御する。
In FIG. 3, numeral 7 indicates an electron gun, and an electron beam 8 emitted from the electron gun is focused by an electron lens system 9 and projected onto the material 2 to be exposed. 10 is a deflector for deflecting the electron beam 8 and moving it on the exposed material 2 to draw a pattern;
A pattern signal is sent from a computer 12 via 1. Between the light source 1 and the lens 4 of the irradiation optical system, there is placed a slit plate 3' having a plurality of slits with minute intervals and array lengths as will be described later, and the light passing through the slit plate passes through the lens. 4, and after forming its bright and dark image at point p, it is projected onto material 2 at an angle θ. The light reflected by the material 2 is imaged by an imaging lens 5, and is magnified and imaged onto a semiconductor array sensor 13 in which a large number of semiconductor photodetecting elements are arranged. In other words, a virtual image p' of point p is projected onto the sensor. Incidentally, the image formation position of the slit plate 3' by the lens 4 is not limited to the front of the material irradiation point as shown in the figure, but is located in front of the material irradiation point or
It may be further back than that. The signal from the semiconductor array sensor 13 is amplified by the amplifier 14,
The signal is sent to the arithmetic circuit 15. In this arithmetic circuit, the distance from the reference position of the bright and dark image, which is the slit image, is determined and sent as a height signal to the display device 16 for display. Further, the signal is sent to the amplifier 11 of the deflector, the objective lens, the beam shift deflector, and the field rotation lens, etc., so that the drawing position of the drawing pattern and the exposure field are adjusted regardless of the height displacement of the exposed material. Control them so that the size, focusing, etc. are constant.

第4図は本発明の作用を説明する図であり、a
図は半導体アレイセンサ13の検出面を示し、半
導体光検出素子が一定間隔で多数配列されてい
る。又b図は半導体アレイセンサ13表面におけ
るスリツト像の光強度分布を示すものでA,B,
C,D……Nは各スリツト像(光像)に対応す
る。図からわかる様に、スリツト像の配列長さ
(AからNまでの長さ)はアレイセンサ13の検
出面の長さに比し、はるかに長く(数倍〜十倍
位)されており、又、各光像A,B,C……Nの
間隔は一定であり、前記検出面の長さと同一か、
又はそれぞれ小さくされている。図では検出面の
長さの1/2の場合であり、従つて常に2つの光像
が検出面に投影されている。更に、各光像A,
B,C……Nの幅は相互に異なつており、どの光
像が検出面上に投影されているかが識別できるよ
うになつている。つまり、各光像の幅を異にして
おくことにより光検出素子中の出力を生ずる素子
数が異なるため、それによりどの光像が投影され
ているかを識別できるようになしてある。図では
DとEの光像が投影されており、該光像の基準位
置(例えば検出素子の左端)からの距離d及びe
が求められ、これらの距離信号から高さ(相対高
さ)が求められ、表示装置16及び例えば偏向器
10の増幅器11に制御信号として送り込まれ
る。
FIG. 4 is a diagram illustrating the operation of the present invention, and a
The figure shows the detection surface of the semiconductor array sensor 13, in which a large number of semiconductor photodetecting elements are arranged at regular intervals. Figure b shows the light intensity distribution of the slit image on the surface of the semiconductor array sensor 13.
C, D...N correspond to each slit image (light image). As can be seen from the figure, the array length of the slit images (length from A to N) is much longer (several to ten times) than the length of the detection surface of the array sensor 13. Also, the intervals between each of the optical images A, B, C...N are constant and are the same as the length of the detection surface, or
Or each is made smaller. In the figure, the length of the detection surface is 1/2, so two optical images are always projected onto the detection surface. Furthermore, each optical image A,
The widths of B, C...N are different from each other, so that it is possible to identify which optical image is projected onto the detection surface. In other words, by making the widths of each light image different, the number of elements that produce outputs in the photodetecting element differs, so that it is possible to identify which light image is being projected. In the figure, optical images D and E are projected, and the distances d and e from the reference position (for example, the left end of the detection element) of the optical images are
is determined, and the height (relative height) is determined from these distance signals and sent as a control signal to the display device 16 and, for example, the amplifier 11 of the deflector 10.

前記被露光材料の高さが変化した場合には、光
像D,Eが検出面上で右方、又は左方に移動し、
基準位置からの距離d及びeが変化する。従つ
て、表示も変り、更に制御信号も変化する。前記
高さ変位が著しく大きい場合には、半導体アレイ
センサ13の検出面上に前記光像D,Eとは異な
つた光像、例えばAやB等が投影されることにな
り、それに応じた高さ値が表示される。尚、上記
基準位置からの距離d及びeはいずれか一方のみ
を使用しても良いが、両者を加算し、その平均値
を求めるようにすると測定精度が向上する。この
場合、各光像の一方のエツジだけでなく、両エツ
ジを検出し、基準位置からの距離を求めて平均化
すると更に良い。
When the height of the exposed material changes, the optical images D and E move to the right or left on the detection surface,
The distances d and e from the reference position change. Therefore, the display changes, and the control signal also changes. If the height displacement is extremely large, a light image different from the light images D and E, such as A and B, will be projected onto the detection surface of the semiconductor array sensor 13, and the height will change accordingly. value is displayed. Incidentally, only one of the distances d and e from the reference position may be used, but the measurement accuracy is improved by adding the two and calculating the average value. In this case, it is better to detect not only one edge but also both edges of each optical image, calculate the distance from the reference position, and average it.

以上詳述した如き構成となせば限られた長さの
半導体アレイセンサを用いて、その数倍の長さに
匹敵する範囲の高さ測定が可能となり、広汎に利
用できる。
With the configuration described in detail above, it becomes possible to measure heights in a range comparable to several times the length using a semiconductor array sensor of a limited length, and it can be used in a wide range of applications.

尚、上記は本発明の一実施例であり、実施に当
つては幾多の変形が可能である。例えば、半導体
アレイセンサの検出面に投影されるスリツト像は
図では2個示したが、最低1個あれば良い。又、
第4図では明るい部分、つまり光の照射された部
分の素子の位置を検出する様にしたが、逆に暗い
部分、つまり光の当らない部分の素子の位置を検
出する様にしても良い。従つて、スリツト板3′
に代えて複数本のワイヤや帯状体を並置しても良
い。更に、第3図は電子ビーム露光装置に適用し
た場合であるが、適用装置に特別な制限はない。
Note that the above is one embodiment of the present invention, and many modifications are possible in implementation. For example, although two slit images are shown in the figure to be projected onto the detection surface of the semiconductor array sensor, at least one slit image is sufficient. or,
In FIG. 4, the position of the element in a bright part, that is, the part irradiated with light, is detected, but it is also possible to detect the position of the element in a dark part, that is, a part not irradiated with light. Therefore, the slit plate 3'
Instead, a plurality of wires or strips may be arranged side by side. Furthermore, although FIG. 3 shows the case where the present invention is applied to an electron beam exposure apparatus, there is no particular restriction on the applicable apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の高さ測定を説明する
ための図、第3図は本発明の一実施例を示すブロ
ツク線図、第4図は本発明の作用を説明する図で
ある。 1:光源、2:被露光材料、3′:スリツト
板、4,5:光学レンズ、7:電子銃、8:電子
線、9:電子レンズ系、10:偏向器、11:増
幅器、12:コンピユータ、13:半導体アレイ
センサ、14:増幅器、15:演算回路、16:
表示装置。
Fig. 1 and Fig. 2 are diagrams for explaining conventional height measurement, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a diagram for explaining the operation of the present invention. . 1: Light source, 2: Material to be exposed, 3': Slit plate, 4, 5: Optical lens, 7: Electron gun, 8: Electron beam, 9: Electron lens system, 10: Deflector, 11: Amplifier, 12: Computer, 13: Semiconductor array sensor, 14: Amplifier, 15: Arithmetic circuit, 16:
Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 物体の表面に一定角度θで光を照射し、且つ
その照射点近傍に複数の明暗像を結ばせる光照射
光学系と、前記照射点から反射する光を集光し前
記複数の明暗像を結像する光学系と、該明暗像の
結像面に置かれた多数の半導体光検出素子からな
る半導体アレイセンサと、該半導体アレイセンサ
上における明暗像の基準位置からの距離を求める
回路とを備え、前記半導体アレイセンサ上での複
数の明暗像の配列長さは該センサの長さよりはる
かに長くなし、且つ明暗像の間隔は最低一個の明
暗像がセンサ上に存在する如き大きさとなし、更
に各明暗像の幅は相互に異なつた値をもつように
形成してあることを特徴とする物体の表面高さ測
定装置。
1. A light irradiation optical system that irradiates the surface of an object with light at a constant angle θ and forms a plurality of bright and dark images near the irradiation point, and a light irradiation optical system that collects light reflected from the irradiation point to form the plurality of bright and dark images. An optical system for forming an image, a semiconductor array sensor consisting of a large number of semiconductor photodetecting elements placed on an imaging plane of the bright and dark images, and a circuit for determining the distance of the bright and dark images from a reference position on the semiconductor array sensor. comprising: the array length of the plurality of bright and dark images on the semiconductor array sensor is much longer than the length of the sensor, and the interval between the bright and dark images is such that at least one bright and dark image exists on the sensor; Furthermore, the apparatus for measuring the surface height of an object is characterized in that the widths of the bright and dark images are formed to have mutually different values.
JP20828782A 1982-11-27 1982-11-27 Measuring device of surface height of body Granted JPS5999215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20828782A JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20828782A JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Publications (2)

Publication Number Publication Date
JPS5999215A JPS5999215A (en) 1984-06-07
JPS6253049B2 true JPS6253049B2 (en) 1987-11-09

Family

ID=16553745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20828782A Granted JPS5999215A (en) 1982-11-27 1982-11-27 Measuring device of surface height of body

Country Status (1)

Country Link
JP (1) JPS5999215A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174338A (en) * 1984-09-20 1986-04-16 Hitachi Ltd Optical alignment device
JPH0756444B2 (en) * 1985-09-19 1995-06-14 株式会社トプコン Position detector

Also Published As

Publication number Publication date
JPS5999215A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
JP4269393B2 (en) Alignment mark and alignment method
US4788431A (en) Specimen distance measuring system
JPS6341401B2 (en)
JPS6253049B2 (en)
JPH0511257B2 (en)
JPS6316687B2 (en)
JP3146568B2 (en) Pattern recognition device
JPH0474644B2 (en)
JP2952019B2 (en) Charged beam intensity profile measuring apparatus and measuring method using the same
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JPS59164910A (en) Distance measuring apparatus
JPH06102028A (en) Noncontact optical range finder and range finding method
JPH07190735A (en) Optical measuring device and its measuring method
JPH0729452Y2 (en) Displacement measuring device
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
JPS61134605A (en) Measuring device of surface height of object
JPH10185515A (en) Coil position detector
JP2675051B2 (en) Optical non-contact position measuring device
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPH0217050B2 (en)
JP2778231B2 (en) Position detection device
JPS5826325Y2 (en) position detection device
JP2946336B2 (en) Sample surface height detector
JPH0661115A (en) Gap detection and setting device
JPH056340B2 (en)