JPS6174338A - Optical alignment device - Google Patents

Optical alignment device

Info

Publication number
JPS6174338A
JPS6174338A JP59195728A JP19572884A JPS6174338A JP S6174338 A JPS6174338 A JP S6174338A JP 59195728 A JP59195728 A JP 59195728A JP 19572884 A JP19572884 A JP 19572884A JP S6174338 A JPS6174338 A JP S6174338A
Authority
JP
Japan
Prior art keywords
observed
light
alignment device
optical alignment
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195728A
Other languages
Japanese (ja)
Other versions
JPH0564450B2 (en
Inventor
Tsutomu Tanaka
勉 田中
Yoshisada Oshida
良忠 押田
Nobuyuki Akiyama
秋山 伸幸
Minoru Yoshida
実 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59195728A priority Critical patent/JPS6174338A/en
Publication of JPS6174338A publication Critical patent/JPS6174338A/en
Publication of JPH0564450B2 publication Critical patent/JPH0564450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To easily perform a highly accurate position-detection and alignment by a method wherein a position-detection in a wide range on the surface of the material to be observed is performed using a plurality of slit images, and an average position is detected. CONSTITUTION:A trial printing is performed by vertically moving a wafer 2 microscopically. The position of the wafer 2 at the most excellent condition of resolution is memorized in a memory storage as the data of the position x1, x2, x3, ... xn of the slit image 5'b on a sensor 12. Then, a slit image 5b is projected and image-formed on the newly set wafer 2. Based on the above- mentioned image, a focusing is performed by vertically moving a wafer stage 16 in such a manner that the slit image 5'b to be image-formed on the sensor 12 will be brought to the position indicated by the positional data x1, x2, x3, ...xn in the memory storage. As a result, a position detection and an alignment can be performed easily in a highly accurate manner.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光学的位置合せ装置に関し、特に半導体ウェハ
上にLSI等の回路パターンを焼付けるのに使用される
縮小投影形露光装置の縮小レンズのウェハに対する焦点
検出およびそれによる焦点合せに好適な光学的位置合せ
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical alignment device, and in particular to a reduction lens of a reduction projection exposure device used for printing circuit patterns such as LSI on semiconductor wafers. The present invention relates to an optical alignment device suitable for focus detection and focusing on a wafer.

〔発明の背景〕[Background of the invention]

従来より、半導体ウェハ上のLSIパターンなど、被観
察物の表面の焦点位置に対する位置ずれを検出して位置
合せを行なう方法においては、被観察物表面に断面が例
えば3 mm X O,1+u+程度の細長い形状をし
た単一の光束を斜めに照射し、被観察物表面からのその
反射光を光電変換して反射光の光軸位置を検出している
。しかしながらこのように小さな断面形状の光束を用い
て被観察物表面を検出すると、被wt祭物の表面形状に
凹凸があったり、或いは、表面の反射率が微小な領域内
で異なってし−たすすると、その表面状態の影響で正確
な位置検出および位置合せが困難になるという欠点があ
った。
Conventionally, in a method of detecting and aligning the surface of an object to be observed, such as an LSI pattern on a semiconductor wafer, by detecting a positional shift with respect to the focal point, a cross section of about 3 mm x O, 1+u+ is formed on the surface of the object to be observed. A single elongated light beam is irradiated obliquely, and the reflected light from the surface of the object to be observed is photoelectrically converted to detect the optical axis position of the reflected light. However, when detecting the surface of an object to be observed using a light beam with such a small cross-sectional shape, it is possible to detect irregularities in the surface shape of the object, or the reflectance of the surface may vary within a minute area. This has the disadvantage that accurate position detection and alignment become difficult due to the influence of the surface condition.

特開昭56−42205号公報にはその解決策のひとつ
として、被観察物表面上での光束断面の細長い方向が、
被観察物表面の表面形状に影響されない方向を向くよう
に光束を照射する方法が開示それているが、未だ十分な
解決策とはなっていないのが実情であり、検出領域が小
さいと、被観察物表面の反り、うねり、傾きなどの検出
が困難で、また被観察物が透光性の場合、その表面で反
射する光束と、内部に進入して下の層との境で反射して
再び出てくる光束とがあるが、これらが混じり合うと検
出光として一様のもとはならず、検出精度が劣化すると
いう問題も未解決のままである。
Japanese Unexamined Patent Publication No. 56-42205 discloses one solution to this problem, in which the elongated direction of the beam cross section on the surface of the object to be observed is
Although methods have been disclosed for irradiating a light beam in a direction that is not affected by the surface shape of the surface of the object to be observed, the reality is that this is not yet a sufficient solution. It is difficult to detect warps, undulations, tilts, etc. on the surface of the object to be observed, and if the object is translucent, there is a difference between the light beam reflected from the surface and the light beam that enters the interior and is reflected at the boundary with the layer below. There is also a light beam that comes out again, but if these are mixed, the detection light will not be uniform, and the problem of deterioration of detection accuracy remains unsolved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の従来技術の問題点を解決し、被
Iil!祭物の表面形状にかかわらず、高精度の位置検
出と位置合せの可能な光学的位置合せ装置を提供するこ
とである。
The object of the present invention is to solve the problems of the prior art mentioned above and solve the problems of the prior art. An object of the present invention is to provide an optical alignment device capable of highly accurate position detection and alignment regardless of the surface shape of a ritual object.

〔発明の概要〕[Summary of the invention]

前述の目的を達成するための本発明の光学的位置合せ装
置は、被*察物の表面上に広がる限定された面領域に所
定断面形状の複数の光束を並べて照射する照射光学系と
、前記面領域上の各照射光の反射光を受光する光電変換
手段と、この光電変換手段によって受光された各反射光
の光軸の位置を検出する位置検出手段と、この位置検出
手段によって検出された各反射光の光軸の位置に応じて
被観察物を移動させる変位手段とを備えており。
The optical alignment device of the present invention for achieving the above-mentioned object includes: an irradiation optical system that lines up and irradiates a plurality of light beams with a predetermined cross-sectional shape onto a limited surface area spread over the surface of an object; A photoelectric conversion means for receiving the reflected light of each irradiated light on the surface area, a position detection means for detecting the position of the optical axis of each reflected light received by the photoelectric conversion means, and a position detection means for detecting the position of the optical axis of each reflected light received by the photoelectric conversion means; and a displacement means for moving the object to be observed according to the position of the optical axis of each reflected light.

複数のスリット像による位置検出によって被ll!察物
の表面形状に例えば凹凸や反りなどがあってもその平均
的な位置の検出が果されるようにしであるものである。
By position detection using multiple slit images! Even if the surface shape of the object to be inspected has, for example, unevenness or warpage, the average position can be detected.

〔発明の実施例〕[Embodiments of the invention]

本発明を縮小投影形露光装置の焦点合せ装置に適用した
実施例について以下に図面と共に説明する。
An embodiment in which the present invention is applied to a focusing device of a reduction projection exposure apparatus will be described below with reference to the drawings.

第1図は焦点合せ装置の実施例を示す全体構成図で縮小
レンズ1の焦点位置にウェハ2を位置合せするための光
学・機械系を示している。
FIG. 1 is an overall configuration diagram showing an embodiment of a focusing device, and shows an optical/mechanical system for aligning a wafer 2 to the focal position of a reduction lens 1. As shown in FIG.

第1図において、レーザ光源3からのレーザ光束をビー
ムエキスパンダ4により図の紙面表裏方向に拡げて偏平
な光束にし、スリット5に入射させる。スリット5を通
過した断面が細長い形状の光を第2レンズ9を介して第
1反射ミラー7に入射させ、ミラー7で前記光束断面の
細長い方向と直交する方向に光路を曲げて、ウェハ2上
に斜め上方から照射することによりウェハ2上にスリッ
ト5の像5′を投影結像させる。このスリット像5′は
第2反射ミラー8で光路を曲げて第2レンズ9により対
物レンズ10の手前に結像させる。この位置におけるス
リット像はスリット5の位置の像と同形状である。対物
レンズ10はこのスリット像をさらに拡大するためのも
のであるが、対物レンズ10の視野には限界があるため
、スリット像の長手方向を圧縮するためにこの例では第
1円筒レンズ11を配置しである。対物レンズ10で拡
大したスリット像をCCDの如きリニアイメージセンサ
I2上に投影結像させるが、この場合もセンサ12の受
光部は細幅の窓であるため、第2円筒レンズ13を配置
し、スリット像の全てを圧縮してセンサ12の受光画素
列上に投影結像させている。
In FIG. 1, a laser beam from a laser light source 3 is expanded by a beam expander 4 in the direction of the plane of the drawing to form a flat beam, and the beam is made incident on a slit 5. The light having an elongated cross section that has passed through the slit 5 is incident on the first reflecting mirror 7 via the second lens 9, and the optical path is bent by the mirror 7 in a direction perpendicular to the elongated direction of the cross section of the light beam, and the light beam is directed onto the wafer 2. An image 5' of the slit 5 is projected and formed onto the wafer 2 by irradiating the light obliquely from above. The optical path of this slit image 5' is bent by a second reflecting mirror 8, and an image is formed in front of the objective lens 10 by a second lens 9. The slit image at this position has the same shape as the image at the slit 5 position. The objective lens 10 is for further enlarging this slit image, but since the field of view of the objective lens 10 is limited, the first cylindrical lens 11 is arranged in this example to compress the slit image in the longitudinal direction. It is. The slit image magnified by the objective lens 10 is projected onto a linear image sensor I2 such as a CCD, but in this case as well, since the light receiving part of the sensor 12 is a narrow window, a second cylindrical lens 13 is arranged, All of the slit images are compressed and projected onto the light-receiving pixel array of the sensor 12.

第2図は第1図の例においてスリットが各結像位置でど
の様な形状になるかを示しており1図の紙面表裏方向に
細長い一本のスリット5の像が、ウェハ2上では、(′
Dで示すように幅方向に拡大されたスリット像5aとし
て、投影結像され、対物レンズ10の手前では、■で示
す如く円筒レンズ11によって長手方向が圧縮されたス
リット像5’aとして結像され、またリニアイメージセ
ンサ12上では、■に示すように対物レンズ10で拡大
されたスリット像5’aの筑手方向を円筒レンズ13に
よって圧縮したスリット像5’aとして投影結像されて
いる。
FIG. 2 shows the shape of the slit at each imaging position in the example of FIG. (′
It is projected and imaged as a slit image 5a expanded in the width direction as shown by D, and in front of the objective lens 10 is formed as a slit image 5'a compressed in the longitudinal direction by the cylindrical lens 11 as shown by ■. Also, on the linear image sensor 12, as shown in (2), the slit image 5'a expanded by the objective lens 10 is compressed in the cylindrical lens 13 in the slit image 5'a, which is projected and imaged. .

第3図にウェハ2上に結像される一本のスリット像5a
の照射位置の違いによる検出位置の差を示す。例えばウ
ェハ2の表面形状が第3図に示すような凹凸形状となっ
ているものとすると、その上に塗布されたフォトレジス
ト14もその凹凸形状にならった表面形状になる。この
レジスト14の表面を検出する際、スリット像5aが小
さと、実線で示す光束で凹部を検出して縮小レンズ1の
焦点位置に合せ、これによって露光を行なった場合に、
表面部(凸部)は焦点位置からずれることにるので、部
分的に解像状態が悪いというような事態が生じる恐れが
あり、また逆に一点鎖線で示す光束で凸部を検出すれば
凹部で焦点ずれを起こすことになる。さらにウェハ2が
縮小レンズ1の光軸に対して傾斜していると、焦点検出
位置では高解像度で露光できるが、その他の箇所は焦点
ずれを起こし、解像しないという問題すら生じる恐れが
ある。
One slit image 5a formed on the wafer 2 in FIG.
This shows the difference in the detection position due to the difference in the irradiation position. For example, if the surface of the wafer 2 has an uneven shape as shown in FIG. 3, the photoresist 14 applied thereon will also have a surface shape that follows the uneven shape. When detecting the surface of the resist 14, if the slit image 5a is small, if the concave part is detected with the light beam shown by the solid line and aligned with the focal position of the reduction lens 1, and thereby exposure is performed,
Since the surface part (convex part) is shifted from the focal position, there is a risk that the resolution may be poor in some parts, and conversely, if the convex part is detected with the light beam shown by the dashed-dotted line, the concave part will be detected. This will cause a shift in focus. Further, if the wafer 2 is tilted with respect to the optical axis of the reduction lens 1, exposure can be performed with high resolution at the focus detection position, but there is a risk that other locations may be out of focus and may even be unable to be resolved.

本発明に従えば、第4図に示すように、ウェハ2の表面
にスリット像5aを複数同時に投影結像させ、各々のス
リット像の平均位置を合焦位置とすることにより前述の
焦点ずれが解消される。
According to the present invention, as shown in FIG. 4, a plurality of slit images 5a are simultaneously projected and formed on the surface of the wafer 2, and the average position of each slit image is set as the in-focus position, thereby eliminating the above-mentioned defocus. It will be resolved.

第5図は、第1図の装置においてスリット5を複数値べ
て本発明を適用した場合の要部の構成を示している。こ
のようにスリット5を複数平行に並べた多重スリット1
5を配置すると、第2レンズ9によってウェハ2上には
スリット5の幅方向が拡大された平行スリット像5bが
投影結像される。
FIG. 5 shows the configuration of essential parts when the present invention is applied to a plurality of slits 5 in the apparatus shown in FIG. A multiple slit 1 in which a plurality of slits 5 are arranged in parallel in this way
5, a parallel slit image 5b in which the width direction of the slit 5 is enlarged is projected onto the wafer 2 by the second lens 9.

この平行スリット像5bは、第2レンズ9で対物レンズ
の手前にスリット長手方向に縮小された像5’bとして
結像される。前述と同様に対物レンズ10により拡大さ
れ第2円筒レンズ13でスリット長さ方向に圧縮された
スリット像5’bは、第6図上部に示すようにリニアイ
メージセンサ12上に平行なスリット像5’bの列とし
て投影結像され、そのときのセンサ12の出力は第6図
下部に示す様になる。
This parallel slit image 5b is formed by the second lens 9 in front of the objective lens as an image 5'b reduced in the slit longitudinal direction. The slit image 5'b, which has been enlarged by the objective lens 10 and compressed in the slit length direction by the second cylindrical lens 13 in the same way as described above, becomes a parallel slit image 5 on the linear image sensor 12, as shown in the upper part of FIG. 'b is projected and imaged as a column, and the output of the sensor 12 at that time is as shown in the lower part of FIG.

ここで一般に縮小投影露光装置における焦点合せは、試
し焼きを行なって合焦位置を求めておき。
Generally, when focusing in a reduction projection exposure apparatus, a trial printing is performed to determine the in-focus position.

これを基準位置としてウェハ2を位置決めすることによ
り行なわれる。即ち、ウェハ2を微小距離(0,5μm
程度)ずつ上下させて試し焼きを行ない、最も解像状態
が良い時のウェハ2の位置をセンサ12上のスリット像
5“bの位置Xi、 X2. X3・・・Xnのデータ
と(て、適当な記憶装置に記憶させておく。次いで新た
にセットしたウェハ2上にスリット像5bを投影結像し
、それによってセンサ12上に結像されるスリット像5
”bが前記記憶装置内の位置データXI、 X2. X
3.・・・Xnで表わされる位置に来るようにウェハス
テージ16を上下させ、焦点合せを行なう。尚、スリッ
ト像5″bの位置は、第7図に拡大して示すように、セ
ンサ12の出力に対して閾値Thを設定し、その閾値に
相当するセンサ12の画素20を求め、その中央値をス
リット像5“bの位置と設定するようにしてもよし1゜ 第5図の例では複数のスリット5がX方向のみに並んで
いたが、第8図はXYの2方向に複数のスリット5が並
んでいる多重スリット17を用いた例をしめしている。
This is done by positioning the wafer 2 using this as a reference position. That is, the wafer 2 is placed at a very small distance (0.5 μm
The position of the wafer 2 when the resolution is the best is determined based on the data of the position Xi, X2. Then, the slit image 5b is projected onto the newly set wafer 2, and the slit image 5b is thereby formed on the sensor 12.
"b is position data XI in the storage device, X2.X
3. ...The wafer stage 16 is moved up and down so that it comes to the position represented by Xn, and focusing is performed. The position of the slit image 5''b is determined by setting a threshold value Th for the output of the sensor 12, finding the pixel 20 of the sensor 12 corresponding to the threshold value, as shown in an enlarged view in FIG. The value may be set to the position of the slit image 5"b.1゜In the example in Figure 5, multiple slits 5 are lined up only in the X direction, but in Figure 8, multiple slits 5 are lined up in the two directions of XY. An example using multiple slits 17 in which slits 5 are lined up is shown.

この場合、光電変換器としてはエリアイメージセンサ1
8を用いる。このように。
In this case, the area image sensor 1 is used as the photoelectric converter.
8 is used. in this way.

XY方向にスリット5を設けると、ウェハ2の傾きまで
も検出し位置合せできるようになる。この場合において
も前述と同様に合焦位置を予め試し焼きによって求めて
おき、そのときのエリアイメ″−ジセンサ18上のスリ
ット像5’bの位置をメモリーに記憶しておく。このよ
うにすれば、第9図(a)〜(b)に示すように、ウェ
ハ2に投影結像されたスリット像5bの位置(これはセ
ンサ18上に投影結像されたスリット像5’bの位置と
同等)により、ウェハ2の傾き即ち姿勢も検出すること
ができる。第9図において、(a)は合焦位置にある時
、(b)はX方向に上下の傾きがあり。
By providing the slits 5 in the XY directions, even the inclination of the wafer 2 can be detected and aligned. In this case as well, the in-focus position is determined in advance by trial printing as described above, and the position of the slit image 5'b on the area image sensor 18 at that time is stored in the memory. , as shown in FIGS. 9(a) and 9(b), the position of the slit image 5b projected and imaged on the wafer 2 (this is equivalent to the position of the slit image 5'b projected and imaged on the sensor 18). ), it is also possible to detect the inclination, or posture, of the wafer 2. In FIG. 9, (a) is the in-focus position, and (b) is the vertical inclination in the X direction.

Y方向について合焦している時、(C)はX方向につい
て合焦しており、Y方向について上下の傾きがある時、
(d)はXY両方向について上下の傾きがある場合をし
めしている。
When the focus is in the Y direction, (C) is in focus in the X direction, and when there is a vertical tilt in the Y direction,
(d) shows a case where there is vertical inclination in both the X and Y directions.

以上のような検出系に加えてウェハを傾き調整自在なホ
ルダー付きのステージ相載置すれば、極めて高精度の焦
点検出と焦点合せを実現し得るものである。
In addition to the detection system described above, if the wafer is placed on a stage with a holder whose tilt can be adjusted, extremely high precision focus detection and focusing can be achieved.

次にウェハ2上へ照射する光束の入射角と偏光方向につ
いて第10図と第11図によって説明する。
Next, the incident angle and polarization direction of the light beam irradiated onto the wafer 2 will be explained with reference to FIGS. 10 and 11.

ウェハ2にフォトレジスト14を塗布した場合の光の進
行方向は、第10図に示すように、レジスト14の表面
で反射するものと、レジスト14の中に入り込んで下地
M19で反射して再び出てくる光、レジスト14内で反
射する光、下地層19に入り込む光などがある。レジス
ト14表面だけで光が反射すれば、リニアイメージセン
サ12やエリアイメージセンサ18でそのレジスト表面
の合焦位置検出が可能となる。しかしながら、下地層1
9からの反射光があると、前記センサ上ではどこの位置
を検出しているのか正確に判断できない場合が生じる6
そこで出来るだけレジスト14表面での反射率を高くす
る必要があり、このため好ましくはウェハ2への光束の
入射角を70°以上に大きくシ、また入射光束をS偏光
とするのがよい。
When the photoresist 14 is applied to the wafer 2, the traveling direction of the light is as shown in FIG. There is light that enters, light that is reflected within the resist 14, and light that enters the underlayer 19. If the light is reflected only by the surface of the resist 14, the linear image sensor 12 or the area image sensor 18 can detect the focused position on the resist surface. However, the base layer 1
If there is reflected light from 9, it may not be possible to accurately determine which position is being detected on the sensor 6
Therefore, it is necessary to make the reflectance on the surface of the resist 14 as high as possible, and for this reason, it is preferable that the angle of incidence of the light beam onto the wafer 2 be set to 70° or more, and that the incident light beam be S-polarized.

(発明の効果〕 以上の述べたように本発明によれば、被観察物表面上比
較的広い範囲の位置検出を行なっているので、被観察物
の表面形状に凹凸や反り、うねり等があったとしてもそ
の平均的位置を検出することができるものである。また
前記広範囲の平均的位置を検出する方法として細長い光
束スリットを複数波べて被観察物表面上に結像させ、こ
のスリット像を光学的に光電変換素子の受光面上に導い
て検出する方式をとっているので、受光面上のスリット
像位置から被観察物の位置や姿勢を検出することが可能
となり、縮小投影形露光装置の縮小レンズの焦点検出及
び焦点合せに利用してウェハへのレチクル像の高精度の
焼付が達成でき、LSI製品歩留りの向上と高集積化と
が果せるものである。
(Effects of the Invention) As described above, according to the present invention, since position detection is performed over a relatively wide range on the surface of the object to be observed, the surface shape of the object to be observed may have irregularities, warps, undulations, etc. In addition, as a method for detecting the average position over a wide range, a plurality of elongated beam slits are waved to form an image on the surface of the object to be observed, and the slit image is This method uses a method to optically guide and detect the light onto the light-receiving surface of the photoelectric conversion element, making it possible to detect the position and orientation of the object to be observed from the slit image position on the light-receiving surface. By using it for focus detection and focusing of the reduction lens of the device, it is possible to achieve highly accurate printing of a reticle image onto a wafer, thereby improving the yield of LSI products and achieving higher integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を縮小投影形露光装置の焦点検出・焦点
合せ装置に適用する場合の実施例を示す光学・機械系の
全体構成図、第2図は第1図における各部スリット像の
形状を示す構成図、第3図は検出領域が微小な場合の焦
点検出位置のずれを示す概念図、第4図は本発明に従っ
て複数のスリット像を用いた平均的焦点位置の検出を示
す概念図、第5図は本発明にかかる多重スリット方式を
示す要部の構成図、第6図はリニアイメージセンサの受
光面上に投影結像されたスリット像を添画したセンサ画
素位置に対する出力の分布を示す線図、第7図は第6図
の1スリット分を幅方向に拡大して同様に受光面上のス
リット像を添画したセンサ画素位置に対する出力の分布
を拡大して示す線図、第8図はスリットをXYの二方向
に設けた焦点合せ装置の全体構成図、第9図(a)〜(
d)は第8図の方式による被l1lt祭物の姿勢状態を
示す゛概念図、第10図はウェハに塗布したフォトレジ
ストに照射した光束の進行方向とセンサの出力を示す概
念図、第11図は入射角と偏光の違いによるレジスト上
での反射率の変化を示す線図である。 1・・・縮小レンズ、2・・・ウェハ、3・・・レーザ
光源、5・・・スリット、6・・・第ルンズ、9・・・
第2レンズ、10・・・対物レンズ、12・・・リニア
イメージセンサ、13・・・第2円筒レンズ、14・・
・フォトレジスト、15・・・多重スリット、16・・
・ウェハステージ、17・・・多重スリット、18・・
・エリアイメージセンサ。 代理人  弁理士   秋 本  正 実第1図 第2図 第3図 第5図 第6図 第7図 マオ轟木江丁 第8図 第9図 (a)            (b)(c)    
         (d)≧=ど 一妊 第10図 第11図 入射角(′ン
Fig. 1 is an overall configuration diagram of an optical/mechanical system showing an embodiment in which the present invention is applied to a focus detection/focusing device of a reduction projection exposure apparatus, and Fig. 2 shows the shapes of slit images of various parts in Fig. 1. FIG. 3 is a conceptual diagram showing the deviation of the focus detection position when the detection area is minute, and FIG. 4 is a conceptual diagram showing the detection of the average focal position using a plurality of slit images according to the present invention. , FIG. 5 is a block diagram of the main parts showing the multiple slit system according to the present invention, and FIG. 6 is a distribution of outputs with respect to sensor pixel positions with attached slit images projected onto the light-receiving surface of the linear image sensor. FIG. 7 is a diagram showing the output distribution for sensor pixel positions enlarged by enlarging one slit in FIG. Figure 8 is an overall configuration diagram of a focusing device with slits provided in two directions, X and Y, and Figures 9 (a) to (
d) is a conceptual diagram showing the state of the posture of the object to be sacrificed according to the method shown in FIG. The figure is a diagram showing changes in reflectance on a resist due to differences in incident angle and polarization. DESCRIPTION OF SYMBOLS 1... Reduction lens, 2... Wafer, 3... Laser light source, 5... Slit, 6... 1st lens, 9...
Second lens, 10...Objective lens, 12...Linear image sensor, 13...Second cylindrical lens, 14...
・Photoresist, 15...Multiple slits, 16...
・Wafer stage, 17...Multiple slits, 18...
・Area image sensor. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Mao Todoroki Echo Figure 8 Figure 9 (a) (b) (c)
(d) ≧ = 100% Fig. 11

Claims (1)

【特許請求の範囲】 1、限定された断面形状の光束を被観察物の表明に照射
し、その反射光の光軸位置を検出して被観察物の焦点位
置に対する相対的な位置合せを行なう光学的位置合せ装
置において、被観察物の表面上に広がる面領域に複数の
光束を並べて照射する照射光学系と、前記面領域上の各
照射光束の反射光を受光する光電変換手段と、前記光電
変換手段によって受光された各反射光の光軸の位置を検
出する位置検出手段と、前記位置検出手段によって検出
された各反射光の光軸の位置に応じて被観察物を移動さ
せる変位手段とを備えたことを特徴とする光学的位置合
せ装置。 2、照射光学系が少なくとも二本の細長い平行スリット
を有し、平行スリットの並んだ像が被観察物の表面に結
像するようにした特許請求の範囲第1項に記載の光学的
位置合せ装置。 3、光電変換手段が、被観察物表面上の光束を拡大して
受光するために受光面の前方に拡大投影レンズを有する
特許請求の範囲第1項に記載の光学的位置合せ装置。 4、照射光学系が一方向に並んだ少なくとも二本の細長
い平行スリットを有し、光電変換手段が前記方向と対応
した一方向の走査を行なうリニアイメージセンサを有す
る特許請求の範囲第1項に記載の光学的位置合せ装置。 5、照射光学系が一方向に並んだ少なくとも二本の細長
い平行スリットと、前記方向に直交する方向に並んだ少
なくとも二本の別の平行スリットとを有し、光電変換手
段が前記直交する二方向を含む平面と対応した受光面の
エリアイメージセンサを有する特許請求の範囲第一項に
記載の光学的位置合せ装置。 6、位置検出手段が検出結果を記憶する記憶手段を備え
、記憶手段に記憶された過去の検出結果を基準値として
位置検出結果の相対変位置を変位手段に与えるようにし
た特許請求の範囲第一項に記載の光学的位置合せ装置。 7、照射光学系から照射される光束がS偏光であって、
その被観察物表面への入射角が70°以上である特許請
求の範囲第一項に記載の光学的位置合せ装置。
[Claims] 1. A light beam with a limited cross-sectional shape is irradiated onto the surface of the object to be observed, and the optical axis position of the reflected light is detected to perform relative positioning with respect to the focal point of the object to be observed. The optical alignment device includes: an irradiation optical system that irradiates a plurality of light beams side by side on a surface area spread over a surface of an object to be observed; a photoelectric conversion means that receives reflected light of each of the irradiation light beams on the surface area; a position detection means for detecting the position of the optical axis of each reflected light received by the photoelectric conversion means; and a displacement means for moving the object to be observed according to the position of the optical axis of each reflected light detected by the position detection means. An optical alignment device comprising: 2. Optical alignment according to claim 1, wherein the irradiation optical system has at least two elongated parallel slits, and images of the parallel slits are formed on the surface of the object to be observed. Device. 3. The optical alignment device according to claim 1, wherein the photoelectric conversion means has an enlarged projection lens in front of the light receiving surface for enlarging and receiving the light beam on the surface of the object to be observed. 4. Claim 1, wherein the irradiation optical system has at least two elongated parallel slits arranged in one direction, and the photoelectric conversion means has a linear image sensor that scans in one direction corresponding to the said direction. The optical alignment device described. 5. The irradiation optical system has at least two elongated parallel slits arranged in one direction and at least two other parallel slits arranged in a direction perpendicular to the said direction, and the photoelectric conversion means The optical alignment device according to claim 1, comprising an area image sensor whose light receiving surface corresponds to a plane including a direction. 6. The position detection means is provided with a storage means for storing detection results, and the relative displacement position of the position detection result is given to the displacement means using the past detection results stored in the storage means as a reference value. The optical alignment device according to item 1. 7. The light beam irradiated from the irradiation optical system is S-polarized light,
The optical alignment device according to claim 1, wherein the angle of incidence on the surface of the object to be observed is 70° or more.
JP59195728A 1984-09-20 1984-09-20 Optical alignment device Granted JPS6174338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195728A JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195728A JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6211247A Division JP2728368B2 (en) 1994-09-05 1994-09-05 Exposure method

Publications (2)

Publication Number Publication Date
JPS6174338A true JPS6174338A (en) 1986-04-16
JPH0564450B2 JPH0564450B2 (en) 1993-09-14

Family

ID=16345973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195728A Granted JPS6174338A (en) 1984-09-20 1984-09-20 Optical alignment device

Country Status (1)

Country Link
JP (1) JPS6174338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336526A (en) * 1986-07-30 1988-02-17 Oki Electric Ind Co Ltd Wafer exposure equipment
JPS63161616A (en) * 1986-12-25 1988-07-05 Nikon Corp Position sensor
US6094268A (en) * 1989-04-21 2000-07-25 Hitachi, Ltd. Projection exposure apparatus and projection exposure method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516565A (en) * 1974-06-06 1976-01-20 Ibm KOGAKUTEKIFUKUSHAKINIOITE BUTSUTAIHYOMENOYOBI * MOSHIKUHAZOHYOMENOJIDOTEKINIICHITSUKERUTAMENO HOHO
JPS55134812A (en) * 1979-04-02 1980-10-21 Optimetrix Corp Optical collection system
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS5696203A (en) * 1979-12-27 1981-08-04 Fujitsu Ltd Detection device for optical position
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS5999215A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS59121932A (en) * 1982-12-28 1984-07-14 Fujitsu Ltd Automatic focusing control unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516565A (en) * 1974-06-06 1976-01-20 Ibm KOGAKUTEKIFUKUSHAKINIOITE BUTSUTAIHYOMENOYOBI * MOSHIKUHAZOHYOMENOJIDOTEKINIICHITSUKERUTAMENO HOHO
JPS55134812A (en) * 1979-04-02 1980-10-21 Optimetrix Corp Optical collection system
JPS5632114A (en) * 1979-06-12 1981-04-01 Philips Nv Optical image forming system
JPS5696203A (en) * 1979-12-27 1981-08-04 Fujitsu Ltd Detection device for optical position
JPS56101112A (en) * 1980-01-16 1981-08-13 Fujitsu Ltd Exposure method
JPS58156937A (en) * 1982-03-12 1983-09-19 Hitachi Ltd Exposing device
JPS5947731A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Automatic focusing mechanism of projection exposing apparatus
JPS5999216A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS5999215A (en) * 1982-11-27 1984-06-07 Jeol Ltd Measuring device of surface height of body
JPS59121932A (en) * 1982-12-28 1984-07-14 Fujitsu Ltd Automatic focusing control unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336526A (en) * 1986-07-30 1988-02-17 Oki Electric Ind Co Ltd Wafer exposure equipment
JPS63161616A (en) * 1986-12-25 1988-07-05 Nikon Corp Position sensor
US6094268A (en) * 1989-04-21 2000-07-25 Hitachi, Ltd. Projection exposure apparatus and projection exposure method

Also Published As

Publication number Publication date
JPH0564450B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
US4815854A (en) Method of alignment between mask and semiconductor wafer
US6233043B1 (en) Position detection technique applied to proximity exposure
US4636626A (en) Apparatus for aligning mask and wafer used in semiconductor circuit element fabrication
JPH0726803B2 (en) Position detection method and device
JP3880155B2 (en) Positioning method and positioning device
JPS61174717A (en) Positioning apparatus
JPS61111402A (en) Position detector
JP2005070225A (en) Surface image projector and the surface image projection method
JPH09223650A (en) Aligner
JP3279979B2 (en) Wafer / mask position detection apparatus and deformation error detection method
JPS6174338A (en) Optical alignment device
JP2728368B2 (en) Exposure method
US4708484A (en) Projection alignment method and apparatus
JP2004247476A (en) Surface position measuring method
JP3754743B2 (en) Surface position setting method, wafer height setting method, surface position setting method, wafer surface position detection method, and exposure apparatus
JP3048895B2 (en) Position detection method applied to proximity exposure
JP3299144B2 (en) Position detecting apparatus and position detecting method applied to proximity exposure
JP3101582B2 (en) Position detecting apparatus and method using oblique optical axis optical system
JPS6236822A (en) Optical positioning device
JPS61128522A (en) Focussing device
JPS61117831A (en) Focusing device
JPH0766120A (en) Surface position detector and fabrication of semiconductor employing it
JPH07151514A (en) Superposition accuracy measuring method and measuring device
JP3333759B2 (en) Measuring method and setting method of distance between mask and wafer
JP2513281B2 (en) Alignment device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term